Studying the Factors Affecting Performance of an Agri-voltaic Plant under 185kWp Conventional Ground Mounted Solar Photovoltaic Power plant in Gurugram, Haryana

Document Type : Original Article

Author

Solar and Alternate Energy Department, Amity University Haryana, Manesar, Gurugram, Haryana, Pin 122412, India

10.22059/jser.2024.374319.1395

Abstract

Agri-voltaic is dual use of land for farming and solar photovoltaic electricity generation thereby increasing productivity of the land. The objective of this paper is to study the feasibility of creating an Agri-voltaic plant under a 185kWp ground mounted solar power plant located in Amity University Haryana near the Aravali Mountain range. The study provides detailed information about the method adapted to convert the wasteland into arable land and presents the feasibility of creating such plants under solar power plant. The study highlights the technical, environmental, social and political challenges associated with this technology and provides possible solutions.
The experimental study showed that converting a conventional solar power plant to Argi-voltaic plant requires proper tilling of barren land on which it is commissioned. Regional plants and some medicinal plants grew well. Wildlife posed threat to the farm and plants like bitter gourd, spinach and coriander could not grow as were eaten away by birds. An average of 718.9 kWh of energy was generated uniformly. Potential barriers for societal diffusion of APV are lack of regulatory policies addressing the land use issues, taxation and subsidies for APV and lack of technical & economical knowledge among stakeholders which requires immediate attention.

Keywords

  1. Ghosh, A. (2023). Nexus between agriculture and photovoltaics (agrivoltaics, agriphotovoltaics) for sustainable development goal: A review. Solar Energy, 266, 112146. https://doi.org/10.1016/j.solener.2023.112146
  2. GOETZBERGER, A., & ZASTROW, A. (1982). On the Coexistence of Solar-Energy Conversion and Plant Cultivation. International Journal of Solar Energy, 1(1), 55–69. https://doi.org/10.1080/01425918208909875
  3. Ketzer, D., Schlyter, P., Weinberger, N., & Rösch, C. (2020). Driving and restraining forces for the implementation of the Agrophotovoltaics system technology – A system dynamics analysis. Journal of Environmental Management, 270, 110864. https://doi.org/10.1016/j.jenvman.2020.110864
  4. Brohm, R., & Khanh, N. Q. (2018). Dual Use Approaches for Solar Energy and Food Production. (International Experience and Potentials for Vietnam. Green Innovation and Development Centre (GreenID): Hanoi, Vietnam). http://en.greenidvietnam.org.vn/publish-report-dual-use-approaches-for-solar-energy-and-food-production-international-experience-and-potentials-for-vietnam.html
  5. Mahto, R., Sharma, D., John, R., & Putcha, C. (2021). Agrivoltaics: A Climate-Smart Agriculture Approach for Indian Farmers. Land, 10(11), 1277. https://doi.org/10.3390/land10111277
  6. Bellini, E. (2021). Japan releases new guidelines for agrivoltaics as installations hit 200 MW. PV Magazine International.
  7. Bellini, E. (2022). France defines standards for agrivoltaics. PV Magazine International.
  8. Lytle, W., Meyer, T. K., Tanikella, N. G., Burnham, L., Engel, J., Schelly, C., & Pearce, J. M. (2021). Conceptual Design and Rationale for a New Agrivoltaics Concept: Pasture-Raised Rabbits and Solar Farming. Journal of Cleaner Production, 282, 124476. https://doi.org/10.1016/j.jclepro.2020.124476
  9. Andrew, A. C., Higgins, C. W., Bionaz, M., Smallman, M. A., & Ates, S. (2021). Pasture production and lamb growth in agrivoltaic system. AIP Conference Proceedings, 060001. https://doi.org/10.1063/5.0055889
  10. Toledo, C., & Scognamiglio, A. (2021). Agrivoltaic Systems Design and Assessment: A Critical Review, and a Descriptive Model towards a Sustainable Landscape Vision (Three-Dimensional Agrivoltaic Patterns). Sustainability, 13(12), 6871. https://doi.org/10.3390/su13126871
  11. Gorjian, S., Bousi, E., Özdemir, Ö. E., Trommsdorff, M., Kumar, N. M., Anand, A., Kant, K., & Chopra, S. S. (2022). Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology. Renewable and Sustainable Energy Reviews, 158, 112126. https://doi.org/10.1016/j.rser.2022.112126
  12. Bhattacharya, S., Das, S., & Boruah, D. (2023). Design of Ground mounted Solar Photovoltaic System and Analysis of Integrated Agri-voltaic Plant. YMER, 22(2), 1324–1362.
  13. Pulipaka, S., Winter, T., & Hemetsberger, W. (2024). Solar Power Europe 2024: Agrisolar Best Practice Guidelines India Edition. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://energyforum.in/fileadmin/india/media_elements/publications/20240219_Agrisolar_Best_Practice_Guidelines/Agrisolar_best_practice_guidlines.pdf
  14. Casares de la Torre, F. J., Varo, M., López-Luque, R., Ramírez-Faz, J., & Fernández-Ahumada, L. M. (2022). Design and analysis of a tracking / backtracking strategy for PV plants with horizontal trackers after their conversion to agrivoltaic plants. Renewable Energy, 187, 537–550. https://doi.org/10.1016/j.renene.2022.01.081
  15. Sarr, A., Soro, Y. M., Tossa, A. K., & Diop, L. (2023). Agrivoltaic, a Synergistic Co-Location of Agricultural and Energy Production in Perpetual Mutation: A Comprehensive Review. Processes, 11(3), 948. https://doi.org/10.3390/pr11030948
  16. Chimankare, R. V, Das, S., Kaur, K., & Magare, D. (2022). A review of the growth of flowering plants in a greenhouse under different climatic conditions. YMER, 21(10), 536–557. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://ymerdigital.com/uploads/YMER211083.pdf
  17. Mamun, M. A. al, Dargusch, P., Wadley, D., Zulkarnain, N. A., & Aziz, A. A. (2022). A review of research on agrivoltaic systems. Renewable and Sustainable Energy Reviews, 161, 112351. https://doi.org/10.1016/j.rser.2022.112351
  18. Kumpanalaisatit, M., Setthapun, W., Sintuya, H., Pattiya, A., & Jansri, S. N. (2022). Current status of agrivoltaic systems and their benefits to energy, food, environment, economy, and society. Sustainable Production and Consumption, 33, 952–963. https://doi.org/10.1016/j.spc.2022.08.013
  19. Sekiyama, T., & Nagashima, A. (2019). Solar Sharing for Both Food and Clean Energy Production: Performance of Agrivoltaic Systems for Corn, A Typical Shade-Intolerant Crop. Environments, 6(6), 65. https://doi.org/10.3390/environments6060065
  20. Dinesh, H., & Pearce, J. M. (2016). The potential of agrivoltaic systems. Renewable and Sustainable Energy Reviews, 54, 299–308. https://doi.org/10.1016/j.rser.2015.10.024
  21. Moon, H.-W., & Ku, K.-M. (2022). Impact of an Agriphotovoltaic System on Metabolites and the Sensorial Quality of Cabbage (Brassica oleracea var. capitata) and Its High-Temperature-Extracted Juice. Foods, 11(4), 498. https://doi.org/10.3390/foods11040498
  22. Jiang, S., Tang, D., Zhao, L., Liang, C., Cui, N., Gong, D., Wang, Y., Feng, Y., Hu, X., & Peng, Y. (2022). Effects of different photovoltaic shading levels on kiwifruit growth, yield and water productivity under “agrivoltaic” system in Southwest China. Agricultural Water Management, 269, 107675. https://doi.org/10.1016/j.agwat.2022.107675
  23. Pal, A., & Das, S. (2015). Analytical Model for Determining the Sun’s Position at All Time Zones. International Journal of Energy Engineering, 5(3), 58–65. doi: 10.5923/j.ijee.20150503.03
  24. Sudhakar, K., Srivastava, T., Satpathy, G., & Premalatha, M. (2013). Modelling and estimation of photosynthetically active incident radiation based on global irradiance in Indian latitudes. International Journal of Energy and Environmental Engineering, 4(1), 21. https://doi.org/10.1186/2251-6832-4-21
  25. Das, S. (2022). Status of Agri-voltaic in India and the Opportunities and Challenges. The 50thAAACU Founding Anniversary and 23rd Biennial Conference with International Forum on Agricultural Innovation, Sustainability, Entrepreneurship & Networking (i-FAISEN), 2022, 71–78.
  26. Weselek, A., Ehmann, A., Zikeli, S., Lewandowski, I., Schindele, S., & Högy, P. (2019). Agrophotovoltaic systems: applications, challenges, and opportunities. A review. Agronomy for Sustainable Development, 39(4), 35. https://doi.org/10.1007/s13593-019-0581-3
  27. Ott, E. M., Kabus, C. A., Baxter, B. D., Hannon, B., & Celik, I. (2022). Environmental Analysis of Agrivoltaic Systems. In Comprehensive Renewable Energy (pp. 127–139). Elsevier. https://doi.org/10.1016/B978-0-12-819727-1.00012-1
  28. Neupane Bhandari, S., Schlüter, S., Kuckshinrichs, W., Schlör, H., Adamou, R., & Bhandari, R. (2021). Economic Feasibility of Agrivoltaic Systems in Food-Energy Nexus Context: Modelling and a Case Study in Niger. Agronomy, 11(10), 1906. https://doi.org/10.3390/agronomy11101906
  29. Marrou, H., Dufour, L., & Wery, J. (2013). How does a shelter of solar panels influence water flows in a soil–crop system? European Journal of Agronomy, 50, 38–51. https://doi.org/10.1016/j.eja.2013.05.004
  30. Hassanpour Adeh, E., Selker, J. S., & Higgins, C. W. (2018). Remarkable agrivoltaic influence on soil moisture, micrometeorology and water-use efficiency. PLOS ONE, 13(11), e0203256. https://doi.org/10.1371/journal.pone.0203256
  31. Othman, N. F., Yaacob, M. E., Mat Su, A. S., Jaafar, J. N., Hizam, H., Shahidan, M. F., Jamaluddin, A. H., Chen, G., & Jalaludin, A. (2020). Modeling of Stochastic Temperature and Heat Stress Directly Underneath Agrivoltaic Conditions with Orthosiphon Stamineus Crop Cultivation. Agronomy, 10(10), 1472. https://doi.org/10.3390/agronomy10101472
  32. Hernandez Velasco, M. (2021). Enabling Year-round Cultivation in the Nordics-Agrivoltaics and Adaptive LED Lighting Control of Daily Light Integral. Agriculture, 11(12), 1255. https://doi.org/10.3390/agriculture11121255
  33. Pascaris, A. S. (2021). Examining existing policy to inform a comprehensive legal framework for agrivoltaics in the U.S. Energy Policy, 159, 112620. https://doi.org/10.1016/j.enpol.2021.112620
  34. Jones, G. F., Evans, M. E., & Shapiro, F. R. (2022). Reconsidering beam and diffuse solar fractions for agrivoltaics. Solar Energy, 237, 135–143. https://doi.org/10.1016/j.solener.2022.03.014
  35. Rahman, A., Sharma, A., Postel, F., Goel, S., Kumar, K., & Tara Laan. (2023). Agrivoltaics in India: Challenges and opportunities for scale up. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.iisd.org/system/files/2023-05/agrivoltaics-in-india.pdf
  36. Gölz, S., & Larisch, F. (2024). Acceptance of AgriVoltaics - A Multi-Stakeholder Survey for a German AgriVoltaic System in Fruit Farming. AgriVoltaics Conference Proceedings, 1. https://doi.org/10.52825/agripv.v1i.531
  37. Kumar, A., & Thapar, S. (2017). Addressing land issues for utility scale renewable energy deployment in India. Shakti Foundation. https://shaktifoundation.in/wp-content/ uploads/2018/01/Study-Report-Addressing-Land-Issues-for-Utility-Scale-Renewable- Energy-Deployment-in-India.pdf
  38. Pearce, J. M. (2022). Agrivoltaics in Ontario Canada: Promise and Policy. Sustainability, 14(5), 3037. https://doi.org/10.3390/su14053037
  39. Al-Obaidi, A. (2016). Introduction to soil mechanics, Lecture notes. https://alqalam.edu.iq/wp-content/uploads/2023/01/soil-mechanics-Third-Stage.pdf
  40. Ghayas, H., Radhakrishnan, S. R., Sehgal, V. K., & Singh, S. (2022). Measurement and comparison of photosynthetically active radiation by different methods at Delhi. Theoretical and Applied Climatology, 150(3–4), 1559–1571. https://doi.org/10.1007/s00704-022-04252-9
  41. Kwartiningsih, E., Ramadhani, A. N., Putri, N. G. A., & Damara, V. C. J. (2021). Chlorophyll Extraction Methods Review and Chlorophyll Stability of Katuk Leaves (Sauropus androgynous). Journal of Physics: Conference Series, 1858(1), 012015. https://doi.org/10.1088/1742-6596/1858/1/012015
  42. Ministry of New and Renewable Energy Report 2021-22. (2022). https://mnre.gov.in/solar/current-status
  43. Chamara, R., & Beneragama, C. (2020). Agrivoltaic systems and its potential to optimize agricultural land use for energy production in Sri Lanka: A Review. Journal of Solar Energy Research, 5(2), 417–431. https://doi.org/10.22059/JSER.2020.302720.1154