Design of Parallel Boost Converters for Renewable Energy Applications

Document Type : Original Article

Authors

1 Electrical and Electronics Engineering, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Guntur, Andhra Pradesh.

2 Department of Electrical and Electronics Engineering, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Guntur, Andhra Pradesh.

10.22059/jser.2024.368785.1359

Abstract

To achieve effective electrical power conversion from both the photovoltaic (PV) system and the wind system, parallel-connected boost converters (PBC) are employed in this paper. A perturb and observe (P&O) formula-based concentrated power opinion tracing (CPOT) controller operates the PV and wind-operated permanent magnet synchronous generator, providing the input supply to the proposed converter. With the help of the PBC, the direct current (DC) voltage is increased and converted into a single-phase, 230Vrms, 50Hz alternating current (AC) voltage in a single-stage operation. For this DC power to AC power conversion, the system attempts to synchronize two different power sources. The sliding variable configuration control (SVCC) method is used to control the proposed PBC to obtain a constant AC output voltage from variable DC input voltage sources. The recommended control method has been applied to maintain the output voltage constant through changing load conditions. The implemented technique increases the performance of the power transition system while reducing total harmonic distortion (THD). The entire system is structured using the MATLAB/Simulink environment, which is utilized to validate the results.

Keywords

[1] Mohammadi Sheikhlari, A., & Sarvi, M. (2022). A multilevel inverter structure based on the development of full-bridge cells with the minimum number of switches for renewable energy applications. Journal of Solar Energy Research, 7(1), 971-982. DOI: 10.22059/JSER.2022.329155.1215
[2] Soundarya, G., Sitharthan, R., Sundarabalan, C. K., Balasundar, C., Karthikaikannan, D., & Sharma, J. (2021). Design and modeling of hybrid DC/AC microgrid with manifold renewable energy sources. IEEE Canadian Journal of Electrical and Computer Engineering, 44(2), 130-135. DOI: 10.1109/ICJECE.2020.2989222
[3] Silva, S., Laranjeira, E., & Soares, I. (2021). Health benefits from renewable electricity sources: A review. Energies, 14(20), 6678. DOI: 10.3390/en14206678
[4] Kong, L. G., Chen, X. L., Gong, J. H., Fan, D. J., Wang, B. L., & Li, S. (2022). Optimization of the hybrid solar power plants comprising photovoltaic and concentrating solar power using the butterfly algorithm. Energy Conversion and Management, 257, 115310. DOI:10.1016/j.enconman.2022.115310
[5] Alatai, S., Salem, M., Ishak, D., Das, H. S., Alhuyi Nazari, M., Bughneda, A., & Kamarol, M. (2021). A review on state-of-the-art power converters: Bidirectional, resonant, multilevel converters and their derivatives. Applied Sciences, 11(21), 10172.
[6] Ezhilvannan, P., Krishnan, S., Hemanth Kumar, B., Janardhan, K., & Ramachandran, S. (2023). Analysis of the effectiveness of a two-stage three-phase grid-connected inverter for photovoltaic applications. Journal of Solar Energy Research, 8(2), 1471-1483. DOI: 10.22059/JSER.2023.357025.1285
[7] Xu, Q., Vafamand, N., Chen, L., Dragičević, T., Xie, L., & Blaabjerg, F. (2020). Review on advanced control technologies for bidirectional DC/DC converters in DC microgrids. IEEE Journal of Emerging and Selected Topics in Power Electronics, 9(2), 1205-1221. DOI: 10.1109/JESTPE.2020.2978064
[8] Henao‐Bravo, E. E., Saavedra‐Montes, A. J., Ramos‐Paja, C. A., Bastidas‐Rodriguez, J. D., & Gonzalez Montoya, D. (2020). Charging/discharging system based on zeta/sepic converter and a sliding mode controller for DC bus voltage regulation. IET Power Electronics, 13(8), 1514-1527. DOI: 10.1049/iet-pel.2019.0746
[9] Alhuwaishel, F. M., & Enjeti, P. (2024, February). An electrolytic capacitor less non-isolated microinverter with integrated battery storage system for residential applications. In 2024 IEEE Applied Power Electronics Conference and Exposition (APEC) (pp. 1275-1279). IEEE. DOI: 10.1109/APEC48139.2024.10509351
[10] Karthikeyan, N., & Jebaselvi, G. A. (2024). A bidirectional four-port DC–DC converter for grid connected and isolated loads of hybrid renewable energy system using hybrid approach. Analog Integrated Circuits and Signal Processing, 1-21. DOI: 10.1007/s10470-024-02251-6
[11] Li, H., Wu, W., Huang, M., Chung, H. S. H., Liserre, M., & Blaabjerg, F. (2020). Design of PWM-SMC controller using linearized model for grid-connected inverter with LCL filter. IEEE Transactions on Power Electronics, 35(12), 12773-12786. DOI: 10.1109/TPEL.2020.2990496
[12] Haifeng W., Liu, Q., Bai, Z., Xie, G., Zheng, J., & Su, B. (2020). Thermodynamics analysis of a novel steam/air biomass gasification combined cooling, heating and power system with solar energy. Applied Thermal Engineering, 164, 114494. DOI: 10.1016/j.applthermaleng.2019.114494
[13] Pires, V. F., Cordeiro, A., Roncero-Clemente, C., Rivera, S., & Dragičević, T. (2022). DC-DC converters for bipolar microgrid voltage balancing: A comprehensive review of architectures and topologies. IEEE Journal of Emerging and Selected Topics in Power Electronics. DOI: 10.1109/JESTPE.2022.3208689
[14] Wu, L., Liu, J., Vazquez, S., & Mazumder, S. K. (2021). Sliding mode control in power converters and drives: A review. IEEE/CAA Journal of Automatica Sinica, 9(3), 392-406. DOI: 10.1109/JAS.2021.1004380
[15] Bist, N., & Sircar, A. (2021). Hybrid solar geothermal setup by optimal retrofitting. Case Studies in Thermal Engineering, 28, 101529. DOI: 10.1016/j.csite.2021.101529
[16] Masmoudi, A., Abdelkafi, A., Krichen, L., & Saidi, A. S. (2022). An experimental approach for improving stability in DC bus voltage of a stand-alone photovoltaic generator. Energy, 257, 124797. DOI: 10.1016/j.energy.2022.124797
[17] Josia, H. R. (2023). Off-Grid solar PV system design and analysis in isolated island for sustainable energy access: a case study in Sukun Island, Indonesia. Journal of Solar Energy Research, 8(3), 1609-1621. DOI: 10.22059/JSER.2023.360373.1318
[18] Talbi, B., Krim, F., Laib, A., & Sahli, A. (2020). Model predictive voltage control of a single-phase inverter with output LC filter for stand-alone renewable energy systems. Electrical Engineering, 102, 1073-1082. DOI: 10.1007/s00202-020-00936-5
[19] Ahmad, N. S., Tsai, T. W., & Chen, Y. M. (2020). Single-phase grid-connected inverters with simplified SPWM control. IEEE Open Journal of Power Electronics, 1, 170-179. DOI: 10.1109/OJPEL.2020.2996427
[20] Elnozahy, A., Yousef, A. M., Abo-Elyousr, F. K., Mohamed, M., & Abdelwahab, S. A. M. (2021). Performance improvement of hybrid renewable energy sources connected to the grid using artificial neural network and sliding mode control. Journal of Power Electronics, 21, 1166-1179. DOI: 10.1007/s43236-021-00242-8
[21] Arun, V., Sundaramoorthy, P., Nageswara Prasad, T., & Kumar, A. (2023). Asymmetrical single phase reduced switch nine level inverter with trinary sequence DC Input for PV based renewable energy systems. Journal of Solar Energy Research, 8(3), 1599-1608. DOI: 10.22059/JSER.2023.359014.1298
[22] Callegaro, L., Rojas, C. A., Ciobotaru, M., & Fletcher, J. E. (2021). A controller improving photovoltaic voltage regulation in the single-stage single-phase inverter. IEEE Transactions on Power Electronics, 37(1), 354-363. DOI: 10.1109/TPEL.2021.3100530
[23] Sreenivasulu Reddy, D., & Janamala, V. (2023). Optimal allocation of renewable sources with battery and capacitors in radial feeders for reliable power supply using pathfinder algorithm. Journal of Solar Energy Research, 8(4), 1651-1662. DOI: 10.22059/JSER.2023.358718.1299
[24] Hashemian, N., & Noorpoor, A. (2019). Assessment and multi-criteria optimization of a solar and biomass-based multi-generation system: Thermodynamic, exergoeconomic and exergoenvironmental aspects. Energy Conversion and Management195, 788-797. DOI:10.1016/j.enconman.2019.05.039
[25] Darwish, A., Alotaibi, S., & Elgenedy, M. A. (2020). Current-source single-phase module integrated inverters for PV grid-connected applications. IEEE Access, 8, 53082-53096. DOI: 10.1109/ACCESS.2020.2981552
[26] Haq, I. U., Khan, Q., Ullah, S., Khan, S. A., Akmeliawati, R., Khan, M. A., & Iqbal, J. (2022). Neural network-based adaptive global sliding mode MPPT controller design for stand-alone photovoltaic systems. Plos One, 17(1), e0260480. DOI: 10.1371/journal.pone.0260480
[27] Ibrahim, A. W., Zhijian, F., Farh, H. M. H., Dagal, I., Al-Shamma'a, A. A., & Al-Shaalan, A. M. (2024). Hybrid SSA-PSO based intelligent direct sliding-mode control for extracting maximum photovoltaic output power and regulating the DC-bus voltage. International journal of hydrogen energy, 51, 348-370. DOI: 10.1016/j.ijhydene.2023.10.034
[28] Chigane, K., & Ouassaid, M. (2024). Experimental power control of a single-phase DC/AC converter using fuzzy integral sliding mode approach for photovoltaic systems. International Journal of Dynamics and Control, 12(2), 494-513. DOI: 10.1007/s40435-023-01198-2
[29] Tan, M. K., Moloney, B. O., Lim, K. G., Yang, S. S., Goh, H. H., & Teo, K. T. K. (2023). Fuzzy logic based perturb-and-observe algorithm for minimizing output fluctuation of a PV system. In 2023 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET) (pp. 319-324). IEEE. DOI: 10.1109/IICAIET59451.2023.10291451
[30] Mousa, H. H., Youssef, A. R., & Mohamed, E. E. (2021). State of the art perturb and observe MPPT algorithms based wind energy conversion systems: A technology review. International Journal of Electrical Power & Energy Systems, 126, 106598. DOI: 10.1016/j.ijepes.2020.106598
[31] Trinh, H. A., Nguyen, D. G., Phan, V. D., Duong, T. Q., Truong, H. V. A., Choi, S. J., & Ahn, K. K. (2023). Robust adaptive control strategy for a bidirectional DC-DC converter based on extremum seeking and sliding mode control. Sensors, 23(1), 457. DOI: 10.3390/s23010457
[32] Khamharnphol, R., Kamdar, I., Waewsak, J., Chaichan, W., Khunpetch, S., Chiwamongkhonkarn, S., & Gagnon, Y. (2023). Microgrid hybrid solar/wind/diesel and battery energy storage power generation system: application to Koh Samui, Southern Thailand. International Journal of Renewable Energy Development, 12(2). DOI: 10.14710/ijred.2023.47761
[33] Farooqi, M. Z., Singh, B., & Panighiri, B. K. (2023). Performance enhancement of single-phase two-stage AC-DC converter with reduced DC-link capacitance. IEEE Transactions on Industry Applications, 59(5), 5739-5748. DOI: 10.1109/TIA.2023.3286381