[3] Fotukian, S. M., & Esfahany, M. N. (2010). Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube.
International communications in heat and mass transfer,
37(2), 214-219.
https://doi.org/10.1016/j.icheatmasstransfer.2009.10.003
[4] Zhang, L., Guo, H., Wu, J., & Du, W. (2012). Compound heat transfer enhancement for shell side of double-pipe heat exchanger by helical fins and vortex generators. Heat and Mass Transfer, 48, 1113-1124. https://doi.org/10.1007/s00231-011-0959-5
[5] Sheikholeslami, M., Ganji, D. D., & Gorji-Bandpy, M. (2016). Experimental and numerical analysis for effects of using conical ring on turbulent flow and heat transfer in a double pipe air to water heat exchanger. Applied Thermal Engineering, 100, 805-819.https://doi.org/10.1016/j.applthermaleng.2016.02.075
[7] Qi, C., Luo, T., Liu, M., Fan, F., & Yan, Y. (2019). Experimental study on the flow and heat transfer characteristics of nanofluids in double-tube heat exchangers based on thermal efficiency assessment.
Energy Conversion and Management,
197, 111877.
https://doi.org/10.1016/j.enconman.2019.111877
[8] Karimi, A., Al-Rashed, A. A., Afrand, M., Mahian, O., Wongwises, S., & Shahsavar, A. (2019). The effects of tape insert material on the flow and heat transfer in a nanofluid-based double tube heat exchanger: two-phase mixture model.
International Journal of Mechanical Sciences,
156, 397-409.
https://doi.org/10.1016/j.ijmecsci.2019.04.009
[9] Gnanavel, C., Saravanan, R., & Chandrasekaran, M. (2020). Heat transfer enhancement through nano-fluids and twisted tape insert with rectangular cut on its rib in a double pipe heat exchanger.
Materials Today: Proceedings,
21, 865-869.
https://doi.org/10.1016/j.matpr.2019.07.606
[10] Sinaga, N., Nisar, K. S., & Kaood, A. (2021). Second law efficiency analysis of air injection into inner tube of double tube heat exchanger.
Alexandria Engineering Journal,
60(1), 1465-1476.
https://doi.org/10.1016/j.aej.2020.10.064
[11] El Maakoul, A., El Metoui, M., Abdellah, A. B., Saadeddine, S., & Meziane, M. (2017). Numerical investigation of thermohydraulic performance of air to water double-pipe heat exchanger with helical fins.
Applied Thermal Engineering,
127, 127-139.
https://doi.org/10.1016/j.enconman.2020.112710
[12] El Maakoul, A., Feddi, K., Saadeddine, S., Abdellah, A. B., & El Metoui, M. (2020). Performance enhancement of finned annulus using surface interruptions in double-pipe heat exchangers.
Energy conversion and management,
210, 112710.
https://doi.org/10.1016/j.applthermaleng.2017.08.024
[13] El Maakoul, A., Laknizi, A., Saadeddine, S., Abdellah, A. B., Meziane, M., & El Metoui, M. (2017). Numerical design and investigation of heat transfer enhancement and performance for an annulus with continuous helical baffles in a double-pipe heat exchanger.
Energy conversion and management,
133, 76-86.
https://doi.org/10.1016/j.enconman.2016.12.002
[15] Asadi, A., Zaboli, M., Mogharrebi, A. R., Saedodin, S., & Ganji, D. D. (2022). Numerical analysis of turbulence-inducing elements with various geometries and utilization of hybrid nanoparticles in a double pipe heat exchanger.
Alexandria Engineering Journal,
61(5), 3633-3644.
https://doi.org/10.1016/j.aej.2021.08.074
[16] Sharifi, K., Sabeti, M., Rafiei, M., Mohammadi, A. H., & Shirazi, L. (2018). Computational fluid dynamics (CFD) technique to study the effects of helical wire inserts on heat transfer and pressure drop in a double pipe heat exchanger.
Applied Thermal Engineering,
128, 898-910.
https://doi.org/10.1016/j.applthermaleng.2017.08.146
[18] Andrzejczyk, R., Muszynski, T., & Kozak, P. (2019). Experimental investigation of heat transfer enhancement in straight and U-bend double-pipe heat exchanger with wire insert.
Chemical Engineering and Processing-Process Intensification,
136, 177-190.
https://doi.org/10.1016/j.cep.2019.01.003
[19] Arjmandi, H., Amiri, P., & Pour, M. S. (2020). Geometric optimization of a double pipe heat exchanger with combined vortex generator and twisted tape: A CFD and response surface methodology (RSM) study.
Thermal Science and Engineering Progress,
18, 100514.
https://doi.org/10.1016/j.tsep.2020.100514
[20] Córcoles, J. I., Moya-Rico, J. D., Molina, A. E., & Almendros-Ibáñez, J. A. (2020). Numerical and experimental study of the heat transfer process in a double pipe heat exchanger with inner corrugated tubes.
International Journal of Thermal Sciences,
158, 106526.
https://doi.org/10.1016/j.ijthermalsci.2020.106526
[21] Kola, P. V. K. V., Pisipaty, S. K., Mendu, S. S., & Ghosh, R. (2021). Optimization of performance parameters of a double pipe heat exchanger with cut twisted tapes using CFD and RSM.
Chemical Engineering and Processing-Process Intensification,
163, 108362.
https://doi.org/10.1016/j.cep.2021.108362
[22] Nakhchi, M. E., & Esfahani, J. A. (2020). CFD approach for two-phase CuO nanofluid flow through heat exchangers enhanced by double perforated louvered strip insert.
Powder technology,
367, 877-888.
https://doi.org/10.1016/j.powtec.2020.04.043
[23] Lokhande, A. A., Waghole, D. R., & Dayane, S. A. (2023). Heat transfer augmentation in shell and tube heat exchangers using copper oxide nanofluid with modified geometry: A numerical investigation.
Materials Today: Proceedings,
72, 1240-1245.
https://doi.org/10.1016/j.matpr.2022.09.290
[24] Rahman, M., Islam, M. S., & Khan, A. H. (2023). Numerical investigation and benchmarking of heat transfer and pressure loss characteristics with two-sided rib-roughened and two-sided heat supply in narrow rectangular channels.
Thermal Science and Engineering Progress,
41, 101812.
https://doi.org/10.1016/j.tsep.2023.101812
[25] Ghazanfari, V., Imani, M., Shadman, M. M., Amini, Y., & Zahakifar, F. (2023). Numerical study on the thermal performance of the shell and tube heat exchanger using twisted tubes and Al2O3 nanoparticles.
Progress in nuclear energy,
155, 104526.
https://doi.org/10.1016/j.pnucene.2022.104526
[26] Tusar, M. H., Bhowmik, P. K., Salam, B., Ahamed, J. U., & Kim, J. K. (2021). Convective heat transfer and friction factor characteristics of helical strip inserted annuli at turbulent flow.
International Journal of Heat and Mass Transfer,
176, 121422.
https://doi.org/10.1016/j.ijheatmasstransfer.2021.121422
[27] Hangi, M., Rahbari, A., & LipiĆski, W. (2021). Design improvement of compact double-pipe heat exchangers equipped with tube-side helical insert and annulus-side helical strip: Hydrothermal and exergy analyses.
Applied Thermal Engineering,
190, 116805.
https://doi.org/10.1016/j.applthermaleng.2021.116805
[29] White, F. M., & Majdalani, J. (2006). Viscous fluid flow (Vol. 3, pp. 433-434). New York: McGraw-Hill.
[30] Bizhani, M., & Kuru, E. (2015, May). Modeling Turbulent Flow of Non-Newtonian Fluids Using Generalized Newtonian Models. In
International Conference on Offshore Mechanics and Arctic Engineering (Vol. 56482, p. V002T08A001). American Society of Mechanical Engineers.
https://doi.org/10.1115/OMAE2015-41427
[31] Esfahanian, V., Rahbari, I., & Mortazavi, M. H. (2015). Uncertainty quantification of RANS turbulence models for power-law non-newtonian fluid flows. Modares Mechanical Engineering, 15(5), 287-294. 20.1001.1.10275940.1394.15.5.54.8
[32] Song, K., He, Y., Zhang, Q., Wu, X., He, A., & Hou, Q. (2024). Thermal performance promotion of a novel double-tube heat exchanger by helical fin with perforations.
International Communications in Heat and Mass Transfer,
150, 107189.
https://doi.org/10.1016/j.icheatmasstransfer.2023.107189
[34] Bhadouriya, R., Agrawal, A., & Prabhu, S. V. (2015). Experimental and numerical study of fluid flow and heat transfer in an annulus of inner twisted square duct and outer circular pipe. International Journal of Thermal Sciences, 94, 96-109. https://doi.org/10.1016/j.ijthermalsci.2015.02.019