Numerical Simulation of the Flow in a Concentric Double-Pipe Heat Exchanger with a Square Inner Pipe and a Circular Outer Pipe

Document Type : Original Article


1 Department of Mechanical and Aerospace Engineering, Faculty of Mechanical and Aerospace Engineering, Islamic Azad University, Ramsar Branch, Ramsar, Iran

2 Department of Mechanical and Aerospace Engineering, Faculty of Mechanical and Aerospace Engineering, Islamic Azad University, Ramsar Branch, Ramsar, Iran.



Double-pipe heat exchangers are commonly used in various industries, including power plants, solar cells, refineries, and automotive. The double-pipe heat exchanger is one of the most used simple exchangers in the industry. In this study, we employ computational fluid dynamics to investigate the flow characteristics of nanofluids within a double-pipe heat exchanger featuring a square inner tube and a circular outer tube (SC). The simulations are conducted under constant heat flux conditions, exploring laminar and turbulent flow regimes. Numerical results for water flow under forced convection are compared with reference results for validation. The results indicate that as the Reynolds number increases, particularly in turbulent flow regimes, the Nusselt number in nanofluid flow increases more than in water flow. For instance, in the case of aluminum oxide nanofluid flow at a Reynolds number of 500, the Nusselt number demonstrates a nearly 5% enhancement over water flow. In contrast, at a Reynolds number of 20000, this enhancement escalates to approximately 20%. Three types of nanoparticles are considered to investigate the effect of nanoparticle type on heat transfer and pressure drop. The results show that the use of nanoparticles has a slight effect on the friction factor while significantly enhancing heat transfer.


[1]           Ding, Y., Alias, H., Wen, D., & Williams, R. A. (2006). Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). International Journal of Heat and Mass Transfer49(1-2), 240-250.
[2]           Vajjha, R. S., & Das, D. K. (2009). Experimental determination of thermal conductivity of three nanofluids and development of new correlations. International journal of heat and mass transfer52(21-22), 4675-4682.
[3]           Fotukian, S. M., & Esfahany, M. N. (2010). Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube. International communications in heat and mass transfer37(2), 214-219.
[4]           Zhang, L., Guo, H., Wu, J., & Du, W. (2012). Compound heat transfer enhancement for shell side of double-pipe heat exchanger by helical fins and vortex generators. Heat and Mass Transfer48, 1113-1124.
[5]           Sheikholeslami, M., Ganji, D. D., & Gorji-Bandpy, M. (2016). Experimental and numerical analysis for effects of using conical ring on turbulent flow and heat transfer in a double pipe air to water heat exchanger. Applied Thermal Engineering100, 805-819.
[6]           Han, D., He, W. F., & Asif, F. Z. (2017). Experimental study of heat transfer enhancement using nanofluid in double tube heat exchanger. Energy Procedia142, 2547-2553.
[7]           Qi, C., Luo, T., Liu, M., Fan, F., & Yan, Y. (2019). Experimental study on the flow and heat transfer characteristics of nanofluids in double-tube heat exchangers based on thermal efficiency assessment. Energy Conversion and Management197, 111877.
[8]           Karimi, A., Al-Rashed, A. A., Afrand, M., Mahian, O., Wongwises, S., & Shahsavar, A. (2019). The effects of tape insert material on the flow and heat transfer in a nanofluid-based double tube heat exchanger: two-phase mixture model. International Journal of Mechanical Sciences156, 397-409.
[9]           Gnanavel, C., Saravanan, R., & Chandrasekaran, M. (2020). Heat transfer enhancement through nano-fluids and twisted tape insert with rectangular cut on its rib in a double pipe heat exchanger. Materials Today: Proceedings21, 865-869.
[10]         Sinaga, N., Nisar, K. S., & Kaood, A. (2021). Second law efficiency analysis of air injection into inner tube of double tube heat exchanger. Alexandria Engineering Journal60(1), 1465-1476.
[11]         El Maakoul, A., El Metoui, M., Abdellah, A. B., Saadeddine, S., & Meziane, M. (2017). Numerical investigation of thermohydraulic performance of air to water double-pipe heat exchanger with helical fins. Applied Thermal Engineering127, 127-139.
[12]         El Maakoul, A., Feddi, K., Saadeddine, S., Abdellah, A. B., & El Metoui, M. (2020). Performance enhancement of finned annulus using surface interruptions in double-pipe heat exchangers. Energy conversion and management210, 112710.
[13]         El Maakoul, A., Laknizi, A., Saadeddine, S., Abdellah, A. B., Meziane, M., & El Metoui, M. (2017). Numerical design and investigation of heat transfer enhancement and performance for an annulus with continuous helical baffles in a double-pipe heat exchanger. Energy conversion and management133, 76-86.
[14]         Majidi, D., Alighardashi, H., & Farhadi, F. (2018). Experimental studies of heat transfer of air in a double-pipe helical heat exchanger. Applied Thermal Engineering133, 276-282.
[15]         Asadi, A., Zaboli, M., Mogharrebi, A. R., Saedodin, S., & Ganji, D. D. (2022). Numerical analysis of turbulence-inducing elements with various geometries and utilization of hybrid nanoparticles in a double pipe heat exchanger. Alexandria Engineering Journal61(5), 3633-3644.
[16]         Sharifi, K., Sabeti, M., Rafiei, M., Mohammadi, A. H., & Shirazi, L. (2018). Computational fluid dynamics (CFD) technique to study the effects of helical wire inserts on heat transfer and pressure drop in a double pipe heat exchanger. Applied Thermal Engineering128, 898-910.
[17]         Alhusseny, A., Turan, A., & Nasser, A. (2017). Rotating metal foam structures for performance enhancement of double-pipe heat exchangers. International Journal of Heat and Mass Transfer105, 124-139.
[18]         Andrzejczyk, R., Muszynski, T., & Kozak, P. (2019). Experimental investigation of heat transfer enhancement in straight and U-bend double-pipe heat exchanger with wire insert. Chemical Engineering and Processing-Process Intensification136, 177-190.
[19]         Arjmandi, H., Amiri, P., & Pour, M. S. (2020). Geometric optimization of a double pipe heat exchanger with combined vortex generator and twisted tape: A CFD and response surface methodology (RSM) study. Thermal Science and Engineering Progress18, 100514.
[20]         Córcoles, J. I., Moya-Rico, J. D., Molina, A. E., & Almendros-Ibáñez, J. A. (2020). Numerical and experimental study of the heat transfer process in a double pipe heat exchanger with inner corrugated tubes. International Journal of Thermal Sciences158, 106526.
[21]         Kola, P. V. K. V., Pisipaty, S. K., Mendu, S. S., & Ghosh, R. (2021). Optimization of performance parameters of a double pipe heat exchanger with cut twisted tapes using CFD and RSM. Chemical Engineering and Processing-Process Intensification163, 108362.
[22]         Nakhchi, M. E., & Esfahani, J. A. (2020). CFD approach for two-phase CuO nanofluid flow through heat exchangers enhanced by double perforated louvered strip insert. Powder technology367, 877-888.
[23]         Lokhande, A. A., Waghole, D. R., & Dayane, S. A. (2023). Heat transfer augmentation in shell and tube heat exchangers using copper oxide nanofluid with modified geometry: A numerical investigation. Materials Today: Proceedings72, 1240-1245.
[24]         Rahman, M., Islam, M. S., & Khan, A. H. (2023). Numerical investigation and benchmarking of heat transfer and pressure loss characteristics with two-sided rib-roughened and two-sided heat supply in narrow rectangular channels. Thermal Science and Engineering Progress41, 101812.
[25]         Ghazanfari, V., Imani, M., Shadman, M. M., Amini, Y., & Zahakifar, F. (2023). Numerical study on the thermal performance of the shell and tube heat exchanger using twisted tubes and Al2O3 nanoparticles. Progress in nuclear energy155, 104526.
[26]         Tusar, M. H., Bhowmik, P. K., Salam, B., Ahamed, J. U., & Kim, J. K. (2021). Convective heat transfer and friction factor characteristics of helical strip inserted annuli at turbulent flow. International Journal of Heat and Mass Transfer176, 121422.
[27]         Hangi, M., Rahbari, A., & LipiƄski, W. (2021). Design improvement of compact double-pipe heat exchangers equipped with tube-side helical insert and annulus-side helical strip: Hydrothermal and exergy analyses. Applied Thermal Engineering190, 116805.
[28]         Chaurasia, S. R., & Sarviya, R. M. (2020). Thermal performance analysis of CuO/water nanofluid flow in a pipe with single and double strip helical screw tape. Applied Thermal Engineering166, 114631.
[29]         White, F. M., & Majdalani, J. (2006). Viscous fluid flow (Vol. 3, pp. 433-434). New York: McGraw-Hill.
[30]         Bizhani, M., & Kuru, E. (2015, May). Modeling Turbulent Flow of Non-Newtonian Fluids Using Generalized Newtonian Models. In International Conference on Offshore Mechanics and Arctic Engineering (Vol. 56482, p. V002T08A001). American Society of Mechanical Engineers.
[31]         Esfahanian, V., Rahbari, I., & Mortazavi, M. H. (2015). Uncertainty quantification of RANS turbulence models for power-law non-newtonian fluid flows. Modares Mechanical Engineering15(5), 287-294. 20.1001.1.10275940.1394.
[32]         Song, K., He, Y., Zhang, Q., Wu, X., He, A., & Hou, Q. (2024). Thermal performance promotion of a novel double-tube heat exchanger by helical fin with perforations. International Communications in Heat and Mass Transfer150, 107189.
[33]         Yang, C., Li, W., & Nakayama, A. (2013). Convective heat transfer of nanofluids in a concentric annulus. International Journal of Thermal Sciences71, 249-257.
[34]         Bhadouriya, R., Agrawal, A., & Prabhu, S. V. (2015). Experimental and numerical study of fluid flow and heat transfer in an annulus of inner twisted square duct and outer circular pipe. International Journal of Thermal Sciences94, 96-109.