[1] Sobri, S., Koohi-Kamali, S. and Rahim, N. A. (2018). Solar photovoltaic generation forecasting methods: A review, Energy Convers Manag, 156, 459–497. DOI: 10.1016/J.ENCONMAN.2017.11.019.
[2] Lahouar, A., Mejri, A. and Ben Hadj Slama, J. (2017). Importance based selection method for day-ahead photovoltaic power forecast using random forests, International Conference on Green Energy and Conversion Systems, GECS 2017. DOI: 10.1109/GECS.2017.8066171.
[3] Shi, J., Lee, W. J., Liu, Y., Yang, Y. and Wang, P. (2012). Forecasting power output of photovoltaic systems based on weather classification and support vector machines, IEEE Trans Ind Appl, 48(3), 1064-1069. DOI: 10.1109/TIA.2012.2190816.
[4] Garud, K. S., Jayaraj, S. and Lee, M. Y. (2021). A review on modeling of solar photovoltaic systems using artificial neural networks, fuzzy logic, genetic algorithm and hybrid models, Int J Energy Res, 45(1), 6–35. DOI: 10.1002/ER.5608.
[5] Ahmad, M. W., Mourshed, M. and Rezgui, Y. (2018). Tree-based ensemble methods for predicting PV power generation and their comparison with support vector regression, Energy, 164, 465–474. DOI: 10.1016/J.ENERGY.2018.08.207.
[6] Sundaram, K. M., Padmanaban, S., Holm-Nielsen, J. B. and Pandiyan, P. (2022). Photovoltaic Systems: Artificial Intelligence-based Fault Diagnosis and Predictive Maintenance, 1st ed. CRC Press. DOI:
10.1201/9781003202288.
[7] Sfetsos A. and Coonick, A. H. (2000). Univariate and multivariate forecasting of hourly solar radiation with artificial intelligence techniques, Solar Energy, 68(2), 169–178. DOI: 10.1016/S0038-092X(99)00064-X.
[8] Dorvlo, A. S. S., Jervase, J. A. and Al-Lawati, A. (2002). Solar radiation estimation using artificial neural networks, Appl Energy, 71(4), 307–319. DOI: 10.1016/S0306-2619(02)00016-8.
[9] Mellit, A., Kalogirou, S. A., Hontoria, L. and Shaari, S. (2009). Artificial intelligence techniques for sizing photovoltaic systems: A review, Renewable and Sustainable Energy Reviews, 13(2), 406–419. DOI: 10.1016/J.RSER.2008.01.006.
[10] Gligor, A., Dumitru, C. D. and Grif, H. S. (2018). Artificial intelligence solution for managing a photovoltaic energy production unit, Procedia Manuf, 22, 626–633. DOI: 10.1016/J.PROMFG.2018.03.091.
[11] VanDeventer W. et al., (2019). Short-term PV power forecasting using hybrid GASVM technique, Renew Energy, 140, 367–379. DOI: 10.1016/J.RENENE.2019.02.087.
[12] Tüfekci, P. (2014). Prediction of full load electrical power output of a base load operated combined cycle power plant using machine learning methods, International Journal of Electrical Power & Energy Systems, 60, 126–140. DOI: 10.1016/J.IJEPES.2014.02.027.
[13] Savaş S. et al., (2022). Innovative and Smart Maintenance in Solar Energy Systems, Journal of Information Systems and Management Research, 4(2), 35–49.
[14] Abubakar, A., Almeida, C. F. M. and Gemignani, M. (2021). Review of Artificial Intelligence-Based Failure Detection and Diagnosis Methods for Solar Photovoltaic Systems, Machines 9(12), 328. DOI: 10.3390/MACHINES9120328.
[15] Mellit A. and Kalogirou, S. (2022). Handbook of Artificial Intelligence Techniques in Photovoltaic Systems: Modeling, Control, Optimization, Forecasting and Fault Diagnosis, Handbook of Artificial Intelligence Techniques in Photovoltaic Systems: Modeling, Control, Optimization, Forecasting and Fault Diagnosis, 1–358. DOI: 10.1016/C2019-0-00960-0.
[16] Caron J. R. and Littmann, B. (2013). Direct monitoring of energy lost due to soiling on first solar modules in California, IEEE J Photovolt, 3(1), 336–340. DOI: 10.1109/JPHOTOV.2012.2216859.
[17] Kalogirou, S. A., Agathokleous, R. and Panayiotou, G. (2013). On-site PV characterization and the effect of soiling on their performance, Energy, 51, 439–446. DOI: 10.1016/J.ENERGY.2012.12.018.
[18] Guo, B., Javed, W., Figgis, B. W. and Mirza, T. (2015). Effect of dust and weather conditions on photovoltaic performance in Doha, Qatar, 2015 1st Workshop on Smart Grid and Renewable Energy, SGRE 2015. DOI: 10.1109/SGRE.2015.7208718.
[19] Tovilović D. M. and Đurišić, Ž. R. (2022). Tree-based machine learning models for photovoltaic output power forecasting that consider photovoltaic panel soiling, International Journal of Sustainable Energy, 41(9), 1279–1302. DOI: 10.1080/14786451.2022.2045989.
[20] Mohammad, A. and Mahjabeen, F. (2023). Revolutionizing solar energy: The impact of artificial intelligence on photovoltaic systems. International Journal of Multidisciplinary Sciences and Arts, 2(1), 117-127. DOI: 10.47709/ijmdsa.v2i1.2599
[21] Yoon, Y. (2019). Smart Monitoring System to Improve Solar Power System Efficiency. The Journal of The Institute of Internet, Broadcasting and Communication, 19(1), 219–224. DOI: 10.7236/JIIBC.2019.19.1.219
[22] Kingsley-Amaehule, M., Uhunmwangho, R., Nwazor, N. and Okedu, K. E. (2022). Smart Intelligent Monitoring and Maintenance Management of Photo-voltaic Systems. International Journal of Smart Grid, 6(4), 110-122. DOI: 10.20508/ijsmartgrid.v6i4.260.g246
[23] Rani, D. P., Suresh, D., Kapula, P. R., Akram, C. M., Hemalatha, N. and Soni, P. K. (2023). IoT based smart solar energy monitoring systems. Materials Today: Proceedings, 80, 3540-3545. DOI: 10.1016/j.matpr.2021.07.293
[24] Sharma, M., Singla, M. K., Nijhawan, P., Ganguli, S. and Rajest, S. S. (2020). An application of IOT to develop concept of smart remote monitoring system. Business Intelligence for Enterprise Internet of Things, 233-239. DOI: 10.1007/978-3-030-44407-5_15
[25] Chen, Z., Sivaparthipan, C. B. and Muthu, B. (2022). IoT based smart and intelligent smart city energy optimization. Sustainable Energy Technologies and Assessments, 49, 101724. DOI: 10.1016/j.seta.2021.101724
[26] Hema, N., Krishnamoorthy, N., Chavan, S. M., Kumar, N. M. G., Sabarimuthu, M. and Boopathi, S. (2023). A Study on an Internet of Things (IoT)-Enabled Smart Solar Grid System. In Handbook of Research on Deep Learning Techniques for Cloud-Based Industrial IoT, 290-308. IGI Global. DOI: 10.4018/978-1-6684-8098-4.ch017
[27] Shakya, S. (2021). A self monitoring and analyzing system for solar power station using IoT and data mining algorithms. Journal of Soft Computing Paradigm, 3(2), 96-109. DOI: 10.36548/jscp.2021.2.004
[28] Panda, D. K. and Das, S. (2021). Smart grid architecture model for control, optimization and data analytics of future power networks with more renewable energy. Journal of Cleaner Production, 301, 126877. DOI: 10.1016/j.jclepro.2021.126877
[29] Hasankhani, A. and Hakimi, S. M. (2021). Stochastic energy management of smart microgrid with intermittent renewable energy resources in electricity market. Energy, 219, 119668. DOI: 10.1016/j.energy.2020.119668
[30] Steindl, G., Stagl, M., Kasper, L., Kastner, W. and Hofmann, R. (2020). Generic digital twin architecture for industrial energy systems. Applied Sciences, 10(24), 8903. DOI: 10.3390/app10248903
[31] Shihavuddin, A. S. M., Rashid, M. R. A., Maruf, M. H., Hasan, M. A., ul Haq, M. A., Ashique, R. H., & Al Mansur, A. (2021). Image based surface damage detection of renewable energy installations using a unified deep learning approach. Energy Reports, 7, 4566-4576. DOI: 10.1016/j.egyr.2021.07.045
[32] Raza, M. W., Amin, R., Malik, A. S., Kasi, M., Kasi, B. and Muhammad, F. (2017), Analysis of The Impact of Environmental Factors on Efficiency of Different Types of Solar Cells, Journal of Applied and Emerging Sciences, 7(1), 76-90. DOI: 10.36785/JAES.71219.
[33] Ay, İ., Kademli, M., Karabulut, Ş. and Savaş, S. (2022). Affecting Factors of Efficiency in Photovoltaic Energy Systems and Productivity-Enhancing Suggestions, 2022 Innovations in Intelligent Systems and Applications Conference (ASYU), 1–6. DOI: 10.1109/ASYU56188.2022.9925271.
[34] Yıldıran, Y. (2022). Doğrusal Regresyon Modeli, in Teori ve Uygulamada Makine Öğrenmesi, Savaş S. and Buyrukoğlu, S. Eds., 1.Ankara: Nobel Akademik Yayıncılık Eğitim Danışmanlık TİC. LTD. ŞTİ., 21–36.
[35] Kutner, M. H., Nachtsheim, C. J., Neter, J. and Li, W. (2005). Applied linear statistical models, 5, McGraw-Hill Irwin Boston.
[36] Colmenares-Quintero, R. F., Rojas-Martinez, E. R., Macho-Hernantes, F., Stansfield, K. E. and Colmenares-Quintero, J. C. (2021). Methodology for automatic fault detection in photovoltaic arrays from artificial neural networks, Cogent Eng, 8(1). DOI: 10.1080/23311916.2021.1981520.