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A B S T R A C T 

This research had the overarching goal of optimizing maintenance intervals and 

reducing the maintenance workload by enhancing accessibility for individuals lacking 

technical expertise in the upkeep of photovoltaic systems, with a particular focus on 

rooftop applications. The study achieved this objective by employing a linear regression 

algorithm to analyse climatic parameters such as wind speed, humidity, ambient 

temperature, and light intensity, collected from the installation site of a photovoltaic 

solar energy system. Simultaneously, the current and voltage values obtained from the 

system were also examined. This analysis not only facilitated the determination of 

power generation within the system but also enabled real-time detection of potential 

issues such as pollution, shadowing, bypass, and panel faults on the solar panels. 

Additionally, an artificial intelligence-supported interface was developed within the 

study, attributing any decline in power generation to specific causes and facilitating 

prompt intervention to rectify malfunctions, thereby ensuring more efficient system 

operation. 
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1. Introduction 

In contemporary times, a growing imperative 

stemming from the decline in fossil fuel resources and 

an augmented environmental consciousness has 

instigated the pursuit of more eco-friendly means to 

meet the escalating global demand for electricity. One 

prominent response to this challenge is the 

burgeoning adoption of Photovoltaic Solar Energy 

Systems (PV-SES). These systems have gained 

prominence due to their capacity to harness solar 

energy directly from the sun and their demonstrated 

trend of declining costs. However, it is essential to 

recognize that the electrical output generated by PV-

SES is intrinsically contingent upon climatic 

parameters and is subject to instantaneous 

fluctuations. Consequently, this variability can 

introduce uncertainties in capacity calculations and 

potentially impede the consistent attainment of the 

desired electricity supply [1]. To mitigate these 

challenges and enhance the precision of electricity 

production estimations in PV-SES, it becomes 

imperative to leverage advanced technologies. In this 

regard, Artificial Intelligence (AI), characterized by 

its capacity to endow machines with data-driven 

automatic decision-making capabilities, simulate 

human cognition, and replicate cognitive functions 

such as learning, emerges as a pivotal tool. Within the 

domain of AI, the subsets of machine learning (ML) 

and deep learning (DL) algorithms assume a central 

role in improving the accuracy of electricity 

production estimations within the context of 

photovoltaic solar energy systems. 

 

Many algorithms such as random forest [2], 

support vector machines [3], artificial neural 

networks [4], and tree-based ensemble methods [5] 

are carried out for prediction of PV power and/or 

identification processes through data analysis.  

 

In the realm of AI applications for PV-SES, a 

noteworthy and established domain pertains to fault 

diagnosis, an area that has garnered attention for a 

minimum of a decade. Notably, the application of AI 

in the context of fault diagnosis and maintenance for 

photovoltaic solar energy systems has witnessed a 

discernible surge in both discourse and scholarly 

investigations in recent years [6].  

 

For PV-SES in particular, AI has been applied at 

least since the year 2000 for applications mainly on 

PV-SES’s performance and on sizing as well as on 

the prediction of solar radiation data and energy 

production planning. Solar radiation data is especially 

necessary in isolated areas where meteorological data 

are not measurable and/or available. Many studies 

have been carried out in the literature. For example 

Sfetsos and Coonick aimed univariate and 

multivariate forecasting of hourly solar radiation with 

artificial intelligence techniques in [7]. Dorvlo et al. 

used artificial neural networks for solar radiation 

estimation in [8]. Mellit et al. provided a literature 

review in their study for AI techniques for sizing PV 

systems in [9]. A solution was provided with AI for 

managing a PV energy production unit by Gligor et 

al., in [10]. Another technique for short-term PV 

power forecasting is genetic algorithm-based support 

vector machine which is used by VanDeventer et al., 

in [11]. ML methods were also used for prediction of 

full load electrical power output of a base load 

operated combined cycle power plant by Tüfekçi in 

[12]. Innovative and smart maintenance opportunities 

and techniques were explained in [13] by Savaş et al. 

 

Within the spectrum of AI applications in PV-

SES, fault diagnosis assumes a pivotal role. An 

overarching perspective on predictive maintenance 

for PV-SES reveals three fundamental approaches. 

The first method encompasses direct visual periodic 

inspections of all system components, alongside an 

analysis of the I-V characteristics of the entire PV-

SES plant, infrared thermography assessments, and a 

comparison of present generation data against the 

plant's actual generation capacity. The second 

approach relies on the utilization of ML and AI-based 

forecasting techniques. The third approach centers on 

the deployment of smart remote monitoring and 

control systems, facilitated by wireless sensor 

networks. Recognizing the paramount objective of 

promptly detecting deviations in the performance of 

PV-SES, particularly in close proximity to the 

affected location, remote-control systems that 

monitor critical parameters such as frequency and 

voltage stability stand out as the most efficacious 

means of predictive fault detection [14]. Especially in 

areas not interconnected to the grid, the option of AI 

fault detection is of great significance and such 

opportunities have been investigated for example in 

[15]. 

 

In addition, many studies have been carried out to 

determine the reasons for the parameters that affect 

the efficiency, such as pollution and shading in PV-

SES’s, their occurrence time and the precautions to 

be taken. An example study [16] was held in 

California for direct monitoring of energy lost due to 

soiling on first solar modules by Caron and Littmann. 

The effect of soiling on the performance of on-site PV 

characterization was investigated by Kalogirou et al. 
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in [17]. Guo et al. [18] studied the effect of dust and 

weather conditions on PV performance in Qatar. 

 

Panel contamination is one of the most important 

parameters affecting the efficiency of a PV-SES. 

Detection of panel contamination and cleaning the 

panels when this contamination reaches a certain 

level will increase efficiency directly. However, 

researchers say that panel contamination, which has 

always been considered homogeneous, is actually not 

homogeneous [19] and this creates difficulties in 

determining the contamination index. Many 

analytical calculations have been made to solve this 

problem. 

 

As is widely acknowledged, numerous interface 

programs are available for the remote management of 

PV-SES. These programs serve to monitor the 

instantaneous power generation of the PV-SES 

through the inverter, thus enabling the detection of 

system errors. However, they typically fall short of 

providing insights into the underlying causes of these 

errors. This limitation, in turn, results in efficiency 

losses, particularly in rooftop PV-SES owned by 

individuals lacking technical expertise, due to 

inadequate maintenance or extended maintenance 

intervals. 

In the context of this research, a novel approach is 

undertaken. The contrubutions of this study can be 

explained as follow.  

 

 Utilizing the Linear Regression algorithm, 

real-time data acquired from the PV-SES are 

meticulously analyzed employing an 

appropriate comparative technique.  

 To identify potential issues such as 

contamination, shadowing, bypass, and panel 

failures affecting the PV-SES.  

 Establishing both the hardware and software 

prerequisites necessary to relay this diagnostic 

information to an online platform in real-time.  

 To streamline the operations of PV-SES 

systems and enhance the accessibility of 

critical diagnostic data, catering not only to 

professional operators but also to non-

technical users. 

 

The remainder of the paper was structured as 

follow: In the second section, the material and method 

used in the study are explained, and information about 

hardware installations is given. In the third section, 

the experimental results obtained from the study and 

the interface created are explained. In the fourth 

section, previous studies are discussed and in the fifth 

section, the study is concluded. 

2. Literature Review 

The integration of AI into solar energy 

management systems has ushered in a profound 

transformation in the monitoring, management, and 

optimization of solar energy generation. These AI-

enabled systems possess the capability to convert raw 

data into actionable insights by leveraging data 

analytics and machine learning algorithms. 

Consequently, this integration yields enhanced 

operational efficiency and facilitates well-informed 

decision-making within the realm of solar energy 

management [20]. 

 

Yongho [21] harnessed the potential of big data 

and sensor networks in a comprehensive approach to 

augment the operational efficiency of solar power 

plants. His endeavors encompassed the development 

of an expert system tailored for power generation 

prediction, the formulation of module unit fault 

detection techniques, the prediction of the lifespan of 

inverter components, and the creation of reporting 

mechanisms. Furthermore, he embarked on the 

optimization of maintenance procedures and 

executed the development of a smart monitoring 

system, which encompasses algorithmic innovations 

and economic analysis. The culmination of these 

efforts converged towards the realization of optimal 

functionality and efficiency in PV power plants. 

In recent years, especially thanks to the Internet of 

Things (IoT), monitoring, maintenance, and 

management activities have started to be realized. 

Kingsley-Amaehul et al. [22] have introduced a 

model for the monitoring, maintenance, and 

management of solar PV systems, incorporating the 

principles of the IoT. This initiative involved the 

formulation of a mathematical model to represent 

solar PV systems and the subsequent implementation 

of algorithms designed to facilitate this model. 

Additionally, the authors developed an embedded 

expert system as a proof of concept. An essential facet 

of this study involved the acquisition of real-time data 

at both fog and cloud levels, thereby underscoring the 

robustness of the control topology that was employed. 

The result analysis revealed that the expert embedded 

system exhibited an impressive overall accuracy rate 

of 98.95%. Moreover, a comparative analysis of data 

collected at fog and cloud levels indicated that the 

system demonstrated 100% integrity in data 

communication, accompanied by a remarkable 98% 

availability.  



Ay et al./Journal of Solar Energy Research Volume 8 Number 4 Autumn (2023) 1663-1679 

1666 

 

Rani et al. [23] proposed a project which is based 

on the use of the up-to-date and cost-effective method 

for remotely monitoring a solar plant performance by 

the inclusion of IoT. They specified that the system 

can assist with plant maintenance, problem 

diagnostics, and real-time monitoring. Another IoT-

based study was held by Sharma et al. in [24]. The 

IoT is notably recognized for its capacity to enable 

the automation of hydraulic systems, streamline 

troubleshooting and maintenance processes, provide 

electrical support, and enable efficient and effective 

work monitoring, including in remote and 

challenging geographical locations. 

Chen et al. [25] have also presented an IoT-based 

framework for an energy-efficient and intelligent 

street lighting system. This system replaces 

traditional metal halide lamps with LED lamps 

designed according to human eye sensitivity, 

resulting in significant energy savings. The IoT 

sensors collect data on traffic flow and occupancy, 

allowing a smart decision-making module to adjust 

light intensity via Pulse Width Modulation dimming. 

Moreover, sustainable energy resources, including 

PV solar panels, battery storage, and smart grids, are 

employed for optimal power usage, complemented by 

a maximum power point tracking algorithm for 

battery charging. Experimental results confirm 

substantial energy savings not only on highways but 

also in residential and suburban pedestrian areas, 

ultimately reducing energy consumption and carbon 

emissions, with a noteworthy focus on battery 

performance through the dynamic charging 

algorithm. 

Hema et al. [26] delved into the realm of IoT-

enabled applications spanning electricity generation, 

transmission, distribution, and utilization. Their 

comprehensive study encompassed the 

implementation of the physical layer, utilization of 

models, operating systems, standards, protocols, and 

architecture of the IoT-enabled Smart Solar Grid 

system. They addressed various facets of the system, 

including configuration, solar power system design, 

IoT device integration, backend systems, workflow 

and procedures, implementation specifics, test 

results, and system performance. Additionally, the 

study delved into the real-time implementation of the 

smart solar grid system and discussed experimental 

findings, shedding light on the encountered 

challenges in the process. 

 

In Shakya's proposed study [27], the primary 

objective is to establish a maintenance alert system 

contingent upon the analysis of generated current and 

voltage data from solar panels. The solar panel 

system's performance is monitored by comparing its 

observed values to pre-established calibrated values, 

which are determined based on various solar radiation 

conditions. The proposed model is designed to trigger 

maintenance alerts when significant deviations in 

power generation by the solar panels are detected, 

thereby facilitating timely maintenance interventions. 

Panda and Das's study [28] provides a 

comprehensive review of the components within the 

smart grid architectural model (SGAM). It focuses on 

exploring the information and communication layers 

and their integration with power networks through 

co-simulation. The study also involves mapping 

smart grid components across various layers, zones, 

and domains within the SGAM framework. 

Additionally, the paper addresses cybersecurity 

challenges, particularly in the context of machine 

learning, and delves into considerations of 

interoperability. Finally, the authors lay out future 

research directions. 

Hasankhani and Hakimi present a stochastic 

management algorithm in their study [29], aiming to 

minimize the overall cost in a multi-Microgrid (MG) 

setting. The study encompasses modeling the 

interactions between multiple MGs, their connections 

to upstream networks, and participation in the 

electricity market. The modeling takes into account 

the impact of renewable resource intermittencies on 

the market clearing price. The paper also addresses 

the optimization of renewable resource capacities 

within the MGs, both before and after their 

engagement with the electricity market. Additionally, 

the method's resilience and effectiveness are 

validated through sensitivity analysis, underscoring 

its robustness in diverse scenarios. 

In the context of renewable energy systems, 

digital twins and deep learning techniques have found 

application. Steindl et al. [30] undertook an analysis 

of digital twin concepts, architectures, and 

frameworks in existing literature. Their objective was 

to devise a technology-independent Generic Digital 

Twin Architecture (GDTA) that aligns with the 

information technology layers defined in the 

Reference Architecture Model Industry 4.0. This 

alignment serves to establish a unified nomenclature 

and understanding of the proposed architectural 

structure. To exemplify the application of the GDTA, 

a proof-of-concept was developed, employing 

Semantic Web technologies in the instantiation 

process for a specific use case involving Packed-Bed 

Thermal Energy Storage. In the work by Shihavuddin 

et al. [31], the utilization of drone images for the 

health inspection of PV and wind installations is 

explored. Their approach introduces a novel method 
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for detecting damage in PV and wind turbines 

through object detection techniques. The study 

includes a performance comparison of contemporary 

object detection methods for assessing damage. 

Notably, the authors develop a trained model that 

amalgamates both Infrared and drone imagery to 

achieve precise damage detection results. To support 

their research, a dataset containing annotated 

instances of damages in solar and wind power 

installations is also introduced. 

Upon an analysis of the aforementioned studies, 

certain limitations in the existing literature become 

evident, including: 

 Several applications remain in the simulation 

phase, without practical real-world 

implementation. 

 Some applications are confined to laboratory 

settings and do not address real-world issues. 

 Many studies primarily take the form of field 

surveys and speculative discussions regarding 

future directions. 

 A limited number of studies effectively 

combine real-time data with practical 

applications. 

This current study has been meticulously designed 

and executed with the intention of mitigating these 

prevalent limitations in the literature. The outcomes 

of this research are anticipated to serve as pioneering 

and exemplary contributions, offering insights and 

solutions that can inspire and guide future 

investigations in the field. 

3. Materials and Methods 

There are basically two reasons that affect the 

efficiency of a PV panel: The panel surface 

temperature (Tp) and the amount of perpendicular 

radiation to the panel surface (E) [32]. Knowing how 

these parameters change the maximum operating 

current (Impp) and maximum operating voltage 

(Vmpp) values of the PV-SES will enable the 

detection of contamination, shadowing, and panel 

malfunctions in the system [33]. 

3.1. Hardware Setup 

In the study context, a meteorology station is 

established next to the 2.4 kWp fixed PV-SES within 

our structure. In the installed system, the vertical 

radiation intensity on the panels was taken with the 

Kipp Zonen CMP11 pyranometer, the wind speed 

with the NRG 40C anemometer, and the ambient 

temperature and humidity values with the Campbell 

Scientific HC2S3 sensor. While the panel surface 

temperature was taken with the QM42VT2 

temperature sensor placed under the panel, the Impp 

and Vmpp values were read with the EPA242-RSI 

amperemeter and EPV242-RSI voltmeter placed at 

the inverter input. All data were read simultaneously 

with the MODBUS communication system and sent 

to our online platform via GSM and evaluated in our 

AI-based infrastructure (see Figure 1). 

The hardware configuration used to create this 

system is as follows: 

Outdoor Temperature: M12FTH3Q 

 Slave ID: 3, Register Value: 1, Read Holding 

Register, Byte: 1, Multipliers: 0.01, 0. 

Panel Temperature: QM42VT2Slave ID: 2 

 Register Value: 5204, Read Holding Register, 

Bytes: 1, Multipliers: 0.01, 0. 

Sunlight Intensity Measurement: CMP 11 

 Slave ID: 1, Register Value: 4001 (2 Words, 4 

Bytes, 32 bit Floating Big-endian casting), 

Read Holding Register, Bytes: 2, Multipliers: 

1, 0. 

Ampermeter: EPA242-RSI-230VAC 

 Slave ID: 5, Register Value: 1, Read Input 

Registers, Bytes: 1, Multipliers: 0.039, 0 

(Calibrated according to the value read from 

the ammeter in the laboratory). 

Voltmeter: EPV242-RSI-230VAC 

 Slave ID: 4, Register Value: 1, Read Input 

Registers, Bytes: 1, Multipliers: 1, 0. 

Outdoor Humidity: M12FTH3Q 

 Slave ID: 3, Register Value: 2, Read Holding 

Register, Bytes: 1, Multipliers: 0.01, 0, Shunt 

Resistor: 60 mV - 20A. 

CMP 11, NRG 40C (Anemometer) and NRG 

200P sensors are planned to be converted to 

MODBUS in order to be compatible with our system, 

since their outputs are different analog signals. In this 

context, we converted the very low voltage 

information, which is the output data of the CMP 11 

pyranometer device, into MODBUS using Klemsan's 

ASCON 352 signal converter. After the installation 

of the system was discovered in the residential area, 

it was planned to be installed indoors where it would 

not be affected by external factors, not where the 

panels are located. In this context, it was decided and 

carried out to extend the sensor cables by 

approximately 10 meters. MODBUS inputs were 

collected in a box and combined as a single 

MODBUS output. Voltmeter and Ammeter were also 

put in the same box, 220 VAC connections were 

made. The hardware system installed and 

components are shown in Figure 2. 
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Figure 1. Schematic representation of data acquisition and evaluation 
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Figure 2. The installed hardware system and components 

 

In order for the AI program, we designed to make 

the right decisions, the simultaneous data must be in 

thermal equilibrium. There is no more than a 2% 

difference between the light intensity data taken 

consecutively for one minute and the panel surface 

temperature data as well. When this condition is met, 

the average of the E(W/m2), Impp(A), Tp(C°), and 

Vmpp(V) data read for one minute is saved to the file 

for analysis. Thus, sudden and unrealistic 

decreases/fluctuations in surface temperature and 

Impp value caused by sudden changes in cloud, rain, 

and wind speed have been prevented from entering 

the data. In addition, the latitude, and longitude 

information of the place where the system was 

installed and the settlement angle information of the 

consumption were loaded into the program as input 

data, and the calculated azimuth and elevation angles 

of the sun were compared with this information 

(Figure 3). Thus, data acquisition has been prevented 

without sunlight falling on the panels. 

For the software to make accurate and appropriate 

comparisons for installed PV-SES, reference data 

showing the change of light intensity coming 

perpendicular to the panels with Impp (Impp-E) and 

change between panel surface temperature with 

Vmpp (Vmpp-Tp), should be created for once by 

operator. Before taking these data, which will be 

accepted as a reference, it is necessary to ensure that 

the surfaces of the panels used in the PV-SES are 

clean and that there is no shading on the system. 

When these conditions are met and the weather is 

clear, a controlled measurement is taken once for a 

certain period of time. 

 

 
Figure 3. Hardware presets and Azimuth for analysis 

and calculation 

3.2. Feature Extraction 

After the reference data and deviation values for 

current and voltage are determined, these data are 

loaded into the software once. After that, all the data 

received are compared with the Linear Regression 

algorithm by the software in accordance with the 

conditions given in Table 1, and the errors and their 

causes are shown to the operator via the interface 

prepared on the infrastructure. 



Ay et al./Journal of Solar Energy Research Volume 8 Number 4 Autumn (2023) 1663-1679 

 1670 

Table 1. Comparison conditions of the received data (En, In, Tpn, Vn) with reference data 

Impp-E graph Condition Vmpp-Tp graph Error / Explanation 

for En = Er values AND for Tpn = Tpr values  - 

In = Ir  Isd AND Vn = Vr Vsd Added to reference data 

Ir-Isd> In > Ir-Ir*%10 AND Vn = Vr  Vsd Pollution started 

In < Ir -Ir*%10 AND Vn = Vr  Vsd Clean the panels 

In < Ir-Isd AND Vn > Vr  Vsd 
Power drawing decreased or 

there is a reflection 

In-1 < In AND Vn-1 > Vn Power drawing increased 

In-1 ≥ In AND In  Ir - Isd AND 𝑉𝑛−1 −
𝑉𝑛−1
𝑛𝑑

> 𝑉𝑛 
(
𝑉𝑛−1 − 𝑉𝑛
𝑉𝑛−1

) . 𝑛𝑑 

.x. Bypass activated 

If the condition above does not change for 3 hours Panel failure 

En = En-1  En-1 * 0,02 AND In >>>> In-1 + In-1*0,5 

OR 

In > 10A AND E < 1000 W/m2 

In this situation, the received 

data is not plotted 

If this situation repeats 2 times in a row Short circuit 

In Table 1, Er means light intensity in the 

reference graph and Ir means current value 

corresponding to Er in the reference graph. Tpr is 

panel surface temperature on the reference graph, and 

Vr is voltage value corresponding to Tpr in the 

reference graph. Isd and Vsd are deviation in current 

and voltage, respectively. Finally, nd is total number 

of bypass diodes in the system. 

3.3. Model and AI Infrastructure 

The study employed the Linear Regression 

algorithm, which is a statistical technique used to 

investigate and model the relationships between 

variables. In this method, it assumes a connection 

between the "y" variable that is being estimated and 

the predictor variables "X1, X2,...,Xn." It is further 

categorized into two types like simple and multiple 

linear regression. In cases where there is only one 

independent variable, simple regression is utilized, 

while multiple regression analysis is employed when 

there are more than one independent variables. 

Equations 1 and 2 represent the calculations for 

simple and multiple regression, respectively [34]. 

y = 𝛽0 + 𝛽1𝑋1𝑖 + ∈𝑖                                                 (1) 

y𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + ⋯ + 𝛽𝑝𝑋𝑖𝑝 + ∈𝑖              (2) 

where 𝑖 = 1, 2, … , 𝑛 and 𝛽0, 𝛽1, 𝛽2, and 𝛽p are 

weights. 

Regression analysis is a versatile statistical 

method employed in various domains including 

energy, finance, production, marketing, health, and 

agriculture for both descriptive and predictive 

purposes. When conducting regression analysis, 

several key concepts should be considered, including 

outliers, multicollinearity, variance, underfitting, and 

overfitting. Properly addressing these factors and 

establishing the most accurate model is crucial for 

enhancing performance in identification and 

estimation processes. To determine the correct model, 

various methods such as evaluating the R-squared 

value, examining P-values for independent variables, 

implementing stepwise regression, and employing 

best subset regression are commonly utilized. These 

techniques aid in selecting the most appropriate 

model that best fits the data and facilitates meaningful 

inferences [35]. 

Solarpanel application has been developed as a 

web-based software with layered architecture in a 

client-server architecture. Layered architecture 

basically consists of three layers. Data 

transfer/communication between the client and the 

server is carried out using application units with 

Application Programming Interface (API). Different 

API types are used in software applications 

depending on the need. Rest API is used as API type 

in SolarPanel application. It is done by using Hyper 

Text Transfer Protocol protocol for communication 

between the client and server with Rest API. Clients 

are structures that make requests from the server and 

can use the data on the server. This structure can use 

the data it receives from the server. 

In the layered architecture, database connection, 

operations such as adding, deleting, updating, and 

extracting data from the database are performed in the 
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data layer. NoSql, that is, a non-relational database, 

MongoDB, was used as the database system. The 

business layer contains business codes and rules are 

written there. The data, pulled from the data layer, is 

processed in this layer. The development of the 

services in the business layer was made with the 

Nest.JS framework as a Node.js application. In 

addition, Python 3.7.9,  Docker 20.10.5, Postman, 

and Swagger can be listed in used languages and 

tools. The processes that interact with the user are 

performed in the presentation layer. In this layer, the 

data from the user is directed to other layers. Angular 

14.20, HTML 5.0, and CSS 3.0 are the technologies 

used here. 

4. Results and Discussion 

In this section, the results of the analysis 

performed based on the data obtained through the 

hardware setup established for the research are 

presented. In addition, the AI-based infrastructure 

developed for the evaluation of these results is also 

explained. The reason for choosing this technology 

and the benefits of the system were explained also in 

this section. 

The current–voltage (I-V) changes of the panels 

we use, showing the change of the panel surface 

temperature under constant light intensity and the 

light intensity falling perpendicularly on the panel 

under constant temperature, are given in Figure 4. 

 

 

 

 
Figure 4. I-V graphs showing the variation of panels with temperature (a) and light intensity (b) under standard test 

conditions [33] 

 

In the panels, Vmpp=40.88V and Impp=9.55A, an 

under the standard test conditions of the modules 

used. The temperature variation coefficient given for 

the open circuit voltage is βVoc=0.32/°C, while the 

temperature variation coefficient given for the short 

circuit current is αIsc =0.05/°C. 

The reference data used for the research 

infrastructure were meticulously arranged, and clean 

reference data, depicted in Figure 5.a and Figure 5.b, 

were generated. These reference data pertain to the 

time frame between 9:00 and 13:00 on October 27, 

2022. Throughout the operation of the system, data of 

reference quality were continuously incorporated into 

the reference data repository, adhering to the feature 

selection criteria outlined in Table 1. This iterative 

process culminated in the determination of optimal 

value ranges, which were dynamically updated to 

refine the system's performance. 
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(a) 

 
(b) 

Figure 5. Reference (a) Impp-E and (b) Vmpp-Tp graphs  

 

In the process of analyzing the collected 

measurements, the operator assesses the data's 

suitability by generating two graphs: the Impp-E 

graph (Figure 5.a) and the Vmpp-Tp graph (Figure 

5.b) using the measured data. During this 

examination, variations in Impp with temperature and 

Vmpp with light intensity are disregarded, given that 

the coefficients of variation for these relationships are 

minimal, as evident in Figure 4. 

As anticipated, Figure 5.b reveals a linear increase 

in Impp with rising light intensity, while Figure 5.b 

illustrates a linear decrease in Vmpp as the panel 

surface temperature increases. 

The data collected from the installed hardware 

system were systematically recorded for subsequent 

processing using the reference data, and an in-depth 

analysis was conducted through the application of a 

linear regression algorithm. The system's 

functionality is bolstered by preserving the resultant 

values within the database. The graphics representing 

the data obtained following the hardware setup, as 

detailed in the Materials and Methods section, are 

depicted in Figure 6. 
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(c) 
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(f) 

Figure 6. Sensor data (a) sunlight intensity, (b) outdoor temperature, (c) outdoor humidity, (d) panel temperature, 

and results obtained with (e) voltmeter and (f) ammeter 

 

The research infrastructure established within this 

study has been designed with the primary objectives 

of simplifying the interpretation of the analytical 

findings and offering early warnings to stakeholders 

involved in SES. Through the development of these 

warning systems, the process of maintaining and 

repairing SES installations has been significantly 

enhanced. The AI-based interface functioned in 

alignment with the specified rules for feature 

extraction and reference data values, as demonstrated 

in Figure 7. In Figure 7.a, the top part of the screen 

displays a power-time graph. Users can interact with 

this graph, allowing them to not only monitor the 

current power generation but also receive alerts 

regarding any system errors at any point on the graph. 

This real-time feedback and diagnostic capability 

significantly improves the management and 

performance of SES.

 

 
(a) 

 
(b) 

Figure 7. (a) Power time sample graph and (b) reference graphics and instant data 

 

At the bottom of the page (Figure 7.b) the Impp-E 

graph and Vmpp-Tp graph drawn from the reference 

data (black dots) are given. The AI-based 

infrastructure compares each instantaneous 

measurement with the Linear Regression algorithm 

following the conditions determined in Table 1 and 

shows the results on the same line (Figure 7.b). It also 

labels the power time curve. In addition, over time, 
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by adding the data within the deviation range 

determined from the reference curve to the reference 

data (red dots), it has Vmpp and Impp values in a 

wide range of temperature and light intensity. 

Thus, this infrastructure will be able to calculate 

the real efficiency loss of the panels over time from 

the change in the reference data over the years and 

compare it with the values given in the catalogue. In 

addition, in case of a decrease in power generation in 

the PV-SES, it can detect whether this decrease is due 

to panel contamination or shadowing.  

Depending on the situation; 

 It detects the pollution caused by reasons such 

as dust, sand, and mud accumulating on the 

panels and gives a warning for cleaning the 

panels according to the intensity of the 

pollution. 

 In case the pollution on the panel disappears due 

to meteorological reasons (wind, rain, etc.), it 

can give a warning that the pollution has 

disappeared. 

 When inhomogeneous contamination occurs on 

the panels, it perceives this situation as shading, 

and if the shading is not removed for a certain 

period of time (3 hours), it gives a panel error 

and directs the operator to the panel. 

 When shading occurs on the panels, it can 

determine how many bypass diodes are 

activated, shading time and time. 

 It can detect short circuits and panel faults that 

may occur in the PV-SES and give warnings. 

Examples of some of the above errors and 

warnings received from the panels after installation 

are presented in Figure 8. 

The designed infrastructure, while not explicitly 

calculating the intensity of contamination on the 

panels, offers significant advantages. It achieves this 

by enabling swift maintenance and repairs to panels 

immediately upon any occurrence. Furthermore, it 

detects and mitigates situations such as pollution 

caused by meteorological events, preventing undue 

increases in workload. This is particularly valuable in 

the current landscape where rooftop applications are 

on the rise. The system serves as a valuable guide, 

even for users lacking technical knowledge about 

photovoltaic systems. It efficiently shortens the time 

needed for maintenance and repair from the moment 

a failure occurs, thus enhancing overall system 

performance and reducing the associated workload.  

Moreover, the system rapidly identifies factors 

responsible for shadows falling on the PV system. In 

cases where these factors are within human control, 

the infrastructure helps in eliminating or mitigating 

these shadowing issues, further enhancing efficiency. 

Additionally, by recognizing the factors causing 

system losses within a year, it allows for the precise 

scheduling of maintenance cycles, thereby reducing 

the chances of errors and ensuring smooth operation 

of the system.  

 

 
Figure 8. Example system alerts 
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Especially in the last decade, with the widespread 

use of deep learning studies, various estimation 

studies have been carried out for the repair and 

maintenance of SES. The purpose of these research is 

to prevent malfunctions before they occur and 

preventive maintenance and repair.  

The study of Sundaram et al. [6] provides insight 

into the fault detection techniques implemented for 

PV panels and includes studies related to predictive 

maintenance needed to improve the performance of 

the solar PV systems using AI techniques. Also they 

give detailed overview of fundamental concepts of 

fault diagnosis algorithm for solar PV system in their 

study. Mellit [9] and Abubakar et al. [14] outlined the 

role of AI in PV operation and maintenance, and 

reviewed the literatures in their studies. 

Colmenares-Quintero et al. [36] presented a 

methodology for automatic fault detection in PV 

arrays. In the study, nine possible faults are detected 

by artificial neural networks, caused by malfunction 

in the bypass and blocking diodes. The obtained 

models were trained from simulation data and the 

evaluation shows that the prediction system has a 

total accuracy of 92.95%. Sfetsos and Coonick [7] 

also indicated in their study that the developed AI 

models predict the solar radiation time series more 

effectively compared to the conventional procedures 

based on the clearness index. 

Tovilović and Đurišić [19] presented direct 

regression models for forecasting PV system output 

power based on ML methods such as random forests, 

extra trees and gradient boosting, in which the 

Cleanness Index (CI) was introduced as an indicator 

of the PV panel soiling level. The mean average error 

of forecasts of the best model, which contained CI, 

and the model created by excluding CI from the set of 

input variables were 0.22% and 1.24%, respectively, 

as related to the nominal power of the PV panel.  

Garud et al. [4] carried out a studie to model solar 

photovoltaic systems using artificial neural networks, 

fuzzy logic, genetic algorithm and hybrid models and 

to research AI applications on Grid-Connected Solar 

PV Systems. 

The studies discussed here collectively underscore 

the increasing momentum of predictive and 

preventive maintenance and repair efforts within the 

renewable energy sector, particularly driven by the 

integration of AI algorithms. However, a common 

limitation in many of these studies is their 

confinement to simulations or theoretical analyses, 

with a limited number progressing to practical 

application. 

This present study seeks to overcome this 

limitation by conducting real-time AI applications. It 

not only issues real-time system warnings but also 

dynamically updates the application. Furthermore, it 

enhances the process by continually integrating 

relevant data based on feature selection criteria into 

the reference dataset. As a result, the reference data 

grows incrementally and becomes increasingly 

representative of the data over time, reflecting the true 

conditions and behavior of the renewable energy 

system, ultimately bridging the gap between 

theoretical studies and practical application. 

5. Conclusions 

This work presents a comprehensive monitoring 

and maintenance prediction framework for PV-SES 

that leverages multisensory data to streamline the 

maintenance process and enhance its effectiveness. 

This system not only accurately estimates power 

generation but also possesses the capability to predict 

a range of potential system errors based on 

continuous signal monitoring. 

The experimental setup involved the collection of 

various data points, including vertical radiation 

intensity, panel surface temperature, maximum 

operating current, and voltage, alongside wind speed, 

air temperature, and humidity values. These data were 

meticulously recorded, taking into account the 

avoidance of unrealistic variations due to sudden 

weather changes. Considering the substantial 

influence of panel surface temperature and 

perpendicular radiation intensity on maximum 

operating current and voltage, reference data were 

formulated to establish correlations between 

maximum operating current and light intensity, as 

well as maximum operating voltage and panel surface 

temperature. 

Subsequently, the obtained measurement results 

were scrutinized by applying the linear regression 

method and multiple criteria, leading to the 

identification of potential flaws in the PV system, 

such as pollution, shading, variations in power 

production, panel failure, short circuits, and more. 

The monitoring and maintenance prediction 

system provides a visual representation of the power 

production's temporal evolution and any identified 

errors according to predefined criteria. Additionally, 

it calculates the efficiency loss of the panels over time 

by comparing them to reference data. This 

comprehensive approach empowers maintenance 

teams to take timely corrective actions, ensuring the 

sustained high efficiency of the PV-SES. 
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The most important limitation of the study is that 

the data required for accurate analysis are obtained 

from panels. For this reason, additional hardware 

arrangements were made for the study and data were 

obtained during the project process. 

In future studies, meteorological information can 

be obtained and added to the AI-supported 

infrastructure. The results can be extended with 

different ML techniques. Thus, the scope of the study 

can be expanded and made more widespread. 
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Nomenclature 

Tp Panel surface temperature (C°) 

E The amount of perpendicular radiation to 

the panel surface (W/m2) 

Impp Maximum operating current (A) 

Vmpp Maximum operating voltage (V) 

Er Light intensity 

Ir Current value 

Tpr Panel surface temperature on the 

reference graph 

Vr Voltage value in the reference graph 

Isd Deviation in current 

Vsd Deviation in voltage 

nd Total number of bypass diodes 

βVoc Temperature variation coefficient given 

for the open circuit voltage (/°C) 

αIsc Temperature variation coefficient given 

for the short circuit current (/°C) 
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