[1] Patanik, S., Guru, N., Kasturi, K., & Nayak, M. R. (2023). Solar Photovoltaic and Wind Turbine Generation based Microgrid Management Architecture Considering Battery Energy Storage Degradation and Time of Use Tariff.
Journal of Solar Energy Research,
8(2), 1459-1470. DOI:
10.22059/jser.2023.356135.1276
[2] Ghaffarzadeh, N., & Faramarzi, H. (2022). Optimal Solar plant placement using holomorphic embedded power Flow Considering the clustering technique in uncertainty analysis.
Journal of Solar Energy Research,
7(1), 997-1007. DOI:
10.22059/jser.2022.330961.1221
[3] Perera, T., & Udayakumar, C. (2023). Voltage Unbalance Assessment of Solar PV Integrated Low Voltage Distribution System in Sri Lanka Using Monte Carlo Simulation. Journal of Solar Energy Research, 8(2), 1357-1366. DOI: 10.22059/jser.2023.350730.1262
[4] Aryan Nezhad, M. (2022). Frequency control and power balancing in a hybrid renewable energy system (HRES): Effective tuning of PI controllers in the secondary control level.
Journal of Solar Energy Research,
7(1), 963-970. DOI:
10.22059/jser.2022.330109.1219
[5] Chatterjee, S., Kumar, P., & Chatterjee, S. (2018). A techno-commercial review on grid connected photovoltaic system.
Renewable and Sustainable Energy Reviews,
81, 2371-2397. DOI:
10.1016/j.rser.2017.06.045
[6] Hussein Sachit, A., Fani, B., Delshad, M., Shahgholian, G., & Golsorkhi Esfahani, A. (2023). Analysis and Implementation of Second-Order Step-Up Converter Using Winding Cross Coupled Inductors for Photovoltaic Applications.
Journal of Solar Energy Research,
8(2), 1516-1525. DOI:
10.22059/JSER.2023.357285.1291
[7] Hernández, Y. M., Tsovilis, T. E., Asimakopoulou, F., Politis, Z., Barton, W., & Lozano, M. M. (2016). A simulation approach on rotor blade electrostatic charging and its effect on the lightning overvoltages in wind parks.
Electric Power Systems Research,
139, 22-31. DOI:
10.1016/j.epsr.2015.11.039
[8] Hernandez, J. C., Vidal, P. G., & Jurado, F. (2008). Lightning and surge protection in photovoltaic installations.
IEEE Transactions on power delivery,
23(4), 1961-1971. DOI:
10.1109/TPWRD.2008.917886
[9] Staikos, E. T., Peppas, G. D., & Tsovilis, T. E. (2022). Wide Frequency Response of Varistors and Coordination With Transient Voltage Suppression Diodes.
IEEE Transactions on Power Delivery,
38(1), 453-462. DOI:
10.1109/TPWRD.2022.3194595
[10] Zhang, Y., Chen, H., & Du, Y. (2020). Considerations of photovoltaic system structure design for effective lightning protection.
IEEE Transactions on Electromagnetic Compatibility,
62(4), 1333-1341. DOI:
10.1109/TEMC.2020.2990930
[11] Konneh, K. V., Masrur, H., Othman, M. L., Wahab, N. I. A., Hizam, H., Islam, S. Z., ... & Senjyu, T. (2021). Optimal design and performance analysis of a hybrid off-grid renewable power system considering different component scheduling, PV modules, and solar tracking systems.
IEEE Access,
9, 64393-64413. DOI:
10.1109/ACCESS.2021.3075732
[12] Demirel, E., Dolgun, G. K., & Keçebaş, A. (2022). Comprehensive transient analysis on control system in a photovoltaic power plant under lightning strike.
Solar Energy,
233, 142-152. DOI:
10.1016/j.solener.2022.01.037
[13] Sueta, H. E., Modena, J., Barbosa, J. O., Santos, S. R., & Zilles, R. (2022, October). Preliminary studies on the distribution of lightning current in the components of PV modules. In
2022 36th International Conference on Lightning Protection (ICLP) (pp. 1-6). IEEE. DOI:
10.1109/ICLP56858.2022.9942591
[14] Azamian, A., Rezaeealam, B., Ghanbari, T., & Rokrok, E. (2023). Improved Low Voltage Ride-through Capability of PV Connected to the Unbalanced Main Grid.
Journal of Solar Energy Research,
8(1), 1326-1344. DOI:
10.22059/jser.2022.351322.1264
[15] Sun, Q., Zhong, X., Huang, L., & Yao, L. (2022). A Novel Crossover Wiring of DC Cable for Photovoltaic System Against Lightning-Induced Overvoltage.
IEEE Transactions on Electromagnetic Compatibility. DOI:
10.1109/TEMC.2022.3227365
[16] Naxakis, I., Nikolaidis, P., & Pyrgioti, E. (2016, September). Performance of an installed lightning protection system in a photovoltaic park. In
2016 IEEE International Conference on High Voltage Engineering and Application (ICHVE) (pp. 1-4). IEEE. DOI:
10.1109/ICHVE.2016.7800672
[17] Zhang, Y., Chen, H., & Du, Y. (2019). Lightning protection design of solar photovoltaic systems: Methodology and guidelines.
Electric Power Systems Research,
174, 105877. DOI:
10.1016/j.epsr.2019.105877
[18] Hetita, I., Zalhaf, A. S., Mansour, D. E. A., Han, Y., Yang, P., & Wang, C. (2022). Modeling and protection of photovoltaic systems during lightning strikes: A review.
Renewable Energy,
184, 134-148. DOI:
10.1016/j.renene.2021.11.083
[19] Zhang, Y., Chen, H., & Du, Y. (2020). Considerations of photovoltaic system structure design for effective lightning protection.
IEEE Transactions on Electromagnetic Compatibility,
62(4), 1333-1341. DOI:
10.1109/TEMC.2020.2990930
[20] Wang, Y., Yao, X., Tao, S., Zhang, X., Lin, Y., & Sua, M. (2020). Study on lightning transient behavior of photovoltaic installations.
Int. J. Smart Grid Clean Energy,
9(2), 390-396. DOI:
10.12720/sgce.9.2.390-396
[21] Hetita, I., Mansour, D. E. A., Han, Y., Yang, P., & Zalhaf, A. S. (2022). Experimental and numerical analysis of transient overvoltages of PV systems when struck by lightning.
IEEE Transactions on Instrumentation and Measurement,
71, 1-11. DOI:
10.1109/TIM.2022.3199225
[22] Alemi, M. R., & Sheshyekani, K. (2015). Wide-band modeling of tower-footing grounding systems for the evaluation of lightning performance of transmission lines.
IEEE Transactions on Electromagnetic Compatibility,
57(6), 1627-1636. DOI:
10.1109/TEMC.2015.2453512
[23] Morched, A., Gustavsen, B., & Tartibi, M. (1999). A universal model for accurate calculation of electromagnetic transients on overhead lines and underground cables.
IEEE Transactions on Power Delivery,
14(3), 1032-1038. DOI:
10.1109/61.772350
[24] Gustavsen, B., Martinez, J. A., & Durbak, D. J. I. T. O. P. D. (2005). Parameter determination for modeling system transients-Part II: Insulated cables.
IEEE Transactions on power delivery,
20(3), 2045-2050. DOI:
10.1109/TPWRD.2005.848774
[25] Cigré, W. G. (2019). Impact of Soil-Parameter Frequency Dependence on the Response of Grounding Electrodes and on the Lightning Performance of Electrical Systems (C4. 33). Technical Brochure, 67.
[26] Permal, N., Osman, M., Ariffin, A. M., & Ab Kadir, M. Z. A. (2021). The impact of substation grounding grid design parameters in non-homogenous soil to the grid safety threshold parameters.
IEEE Access,
9, 37497-37509. DOI:
10.1109/ACCESS.2021.3063018
[27] Heidler, F., Cvetic, J. M., & Stanic, B. V. (1999). Calculation of lightning current parameters.
IEEE Transactions on power delivery,
14(2), 399-404. DOI:
10.1109/61.754080
[28] Datsios, Z. G., Mikropoulos, P. N., & Tsovilis, T. E. (2019). Effects of lightning channel equivalent impedance on lightning performance of overhead transmission lines.
IEEE Transactions on Electromagnetic Compatibility,
61(3), 623-630. DOI:
10.1109/TEMC.2019.2900420