Analysis of Electromagnetic Transient Overvoltages of PV Systems Considering Frequency Dependence of Grounding System

Document Type : Original Article

Authors

Department of Electrical Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran

10.22059/jser.2023.358411.1294

Abstract

Photovoltaic (PV) systems are susceptible to lightning strikes. In this paper, a new accurate and efficient electromagnetic transient (EMT) model of grounding systems (GSs) is presented. The proposed approach considers the impact of frequency-dependent (FD) modeling of GSs on the overvoltage values in PV systems in time domain analysis. The proposed wide-band model is significantly accurate for various types of GSs (single-port and multi-port GSs) and models the frequency dependence of the soil electrical parameters based on experimental data (conductivity and relative permittivity). The proposed model can be implemented in time domain without any GS impedance matrix inversion, so it has less complexity compared to previous approaches. Most of the existing studies suffer from low accuracy in the PV system modeling during lightning transients because of neglecting the effects of the mounting system, metal frame, and mutual coupling, which are considered in the present work. The results demonstrate that the PV factors and frequency dependence of soil have a great effect on the PV system overvoltages. The proposed model offers improved accuracy by covering the entire frequency range of interest. Additionally, it takes into account the mounting system, metal frame, and mutual coupling in EMT analysis.

Keywords


[1] Patanik, S., Guru, N., Kasturi, K., & Nayak, M. R. (2023). Solar Photovoltaic and Wind Turbine Generation based Microgrid Management Architecture Considering Battery Energy Storage Degradation and Time of Use Tariff. Journal of Solar Energy Research, 8(2), 1459-1470. DOI: 10.22059/jser.2023.356135.1276
[2] Ghaffarzadeh, N., & Faramarzi, H. (2022). Optimal Solar plant placement using holomorphic embedded power Flow Considering the clustering technique in uncertainty analysis. Journal of Solar Energy Research, 7(1), 997-1007. DOI: 10.22059/jser.2022.330961.1221
[3] Perera, T., & Udayakumar, C. (2023). Voltage Unbalance Assessment of Solar PV Integrated Low Voltage Distribution System in Sri Lanka Using Monte Carlo Simulation. Journal of Solar Energy Research, 8(2), 1357-1366. DOI: 10.22059/jser.2023.350730.1262
[4] Aryan Nezhad, M. (2022). Frequency control and power balancing in a hybrid renewable energy system (HRES): Effective tuning of PI controllers in the secondary control level. Journal of Solar Energy Research, 7(1), 963-970. DOI: 10.22059/jser.2022.330109.1219
[5] Chatterjee, S., Kumar, P., & Chatterjee, S. (2018). A techno-commercial review on grid connected photovoltaic system. Renewable and Sustainable Energy Reviews, 81, 2371-2397. DOI: 10.1016/j.rser.2017.06.045
[6] Hussein Sachit, A., Fani, B., Delshad, M., Shahgholian, G., & Golsorkhi Esfahani, A. (2023). Analysis and Implementation of Second-Order Step-Up Converter Using Winding Cross Coupled Inductors for Photovoltaic Applications. Journal of Solar Energy Research, 8(2), 1516-1525. DOI: 10.22059/JSER.2023.357285.1291
[7] Hernández, Y. M., Tsovilis, T. E., Asimakopoulou, F., Politis, Z., Barton, W., & Lozano, M. M. (2016). A simulation approach on rotor blade electrostatic charging and its effect on the lightning overvoltages in wind parks. Electric Power Systems Research, 139, 22-31. DOI: 10.1016/j.epsr.2015.11.039
[8] Hernandez, J. C., Vidal, P. G., & Jurado, F. (2008). Lightning and surge protection in photovoltaic installations. IEEE Transactions on power delivery, 23(4), 1961-1971. DOI: 10.1109/TPWRD.2008.917886
[9] Staikos, E. T., Peppas, G. D., & Tsovilis, T. E. (2022). Wide Frequency Response of Varistors and Coordination With Transient Voltage Suppression Diodes. IEEE Transactions on Power Delivery, 38(1), 453-462. DOI: 10.1109/TPWRD.2022.3194595
[10] Zhang, Y., Chen, H., & Du, Y. (2020). Considerations of photovoltaic system structure design for effective lightning protection. IEEE Transactions on Electromagnetic Compatibility, 62(4), 1333-1341. DOI: 10.1109/TEMC.2020.2990930
[11] Konneh, K. V., Masrur, H., Othman, M. L., Wahab, N. I. A., Hizam, H., Islam, S. Z., ... & Senjyu, T. (2021). Optimal design and performance analysis of a hybrid off-grid renewable power system considering different component scheduling, PV modules, and solar tracking systems. IEEE Access, 9, 64393-64413. DOI: 10.1109/ACCESS.2021.3075732
[12] Demirel, E., Dolgun, G. K., & KeçebaƟ, A. (2022). Comprehensive transient analysis on control system in a photovoltaic power plant under lightning strike. Solar Energy, 233, 142-152. DOI: 10.1016/j.solener.2022.01.037
[13] Sueta, H. E., Modena, J., Barbosa, J. O., Santos, S. R., & Zilles, R. (2022, October). Preliminary studies on the distribution of lightning current in the components of PV modules. In 2022 36th International Conference on Lightning Protection (ICLP) (pp. 1-6). IEEE. DOI: 10.1109/ICLP56858.2022.9942591
[14] Azamian, A., Rezaeealam, B., Ghanbari, T., & Rokrok, E. (2023). Improved Low Voltage Ride-through Capability of PV Connected to the Unbalanced Main Grid. Journal of Solar Energy Research, 8(1), 1326-1344. DOI: 10.22059/jser.2022.351322.1264
[15] Sun, Q., Zhong, X., Huang, L., & Yao, L. (2022). A Novel Crossover Wiring of DC Cable for Photovoltaic System Against Lightning-Induced Overvoltage. IEEE Transactions on Electromagnetic Compatibility. DOI: 10.1109/TEMC.2022.3227365
[16] Naxakis, I., Nikolaidis, P., & Pyrgioti, E. (2016, September). Performance of an installed lightning protection system in a photovoltaic park. In 2016 IEEE International Conference on High Voltage Engineering and Application (ICHVE) (pp. 1-4). IEEE. DOI: 10.1109/ICHVE.2016.7800672
[17] Zhang, Y., Chen, H., & Du, Y. (2019). Lightning protection design of solar photovoltaic systems: Methodology and guidelines. Electric Power Systems Research, 174, 105877. DOI: 10.1016/j.epsr.2019.105877
[18] Hetita, I., Zalhaf, A. S., Mansour, D. E. A., Han, Y., Yang, P., & Wang, C. (2022). Modeling and protection of photovoltaic systems during lightning strikes: A review. Renewable Energy, 184, 134-148. DOI: 10.1016/j.renene.2021.11.083
[19] Zhang, Y., Chen, H., & Du, Y. (2020). Considerations of photovoltaic system structure design for effective lightning protection. IEEE Transactions on Electromagnetic Compatibility, 62(4), 1333-1341. DOI: 10.1109/TEMC.2020.2990930
[20] Wang, Y., Yao, X., Tao, S., Zhang, X., Lin, Y., & Sua, M. (2020). Study on lightning transient behavior of photovoltaic installations. Int. J. Smart Grid Clean Energy, 9(2), 390-396. DOI: 10.12720/sgce.9.2.390-396
[21] Hetita, I., Mansour, D. E. A., Han, Y., Yang, P., & Zalhaf, A. S. (2022). Experimental and numerical analysis of transient overvoltages of PV systems when struck by lightning. IEEE Transactions on Instrumentation and Measurement, 71, 1-11. DOI: 10.1109/TIM.2022.3199225
[22] Alemi, M. R., & Sheshyekani, K. (2015). Wide-band modeling of tower-footing grounding systems for the evaluation of lightning performance of transmission lines. IEEE Transactions on Electromagnetic Compatibility, 57(6), 1627-1636. DOI: 10.1109/TEMC.2015.2453512
[23] Morched, A., Gustavsen, B., & Tartibi, M. (1999). A universal model for accurate calculation of electromagnetic transients on overhead lines and underground cables. IEEE Transactions on Power Delivery, 14(3), 1032-1038. DOI: 10.1109/61.772350
[24] Gustavsen, B., Martinez, J. A., & Durbak, D. J. I. T. O. P. D. (2005). Parameter determination for modeling system transients-Part II: Insulated cables. IEEE Transactions on power delivery, 20(3), 2045-2050. DOI: 10.1109/TPWRD.2005.848774
[25] Cigré, W. G. (2019). Impact of Soil-Parameter Frequency Dependence on the Response of Grounding Electrodes and on the Lightning Performance of Electrical Systems (C4. 33). Technical Brochure, 67.
[26] Permal, N., Osman, M., Ariffin, A. M., & Ab Kadir, M. Z. A. (2021). The impact of substation grounding grid design parameters in non-homogenous soil to the grid safety threshold parameters. IEEE Access, 9, 37497-37509. DOI: 10.1109/ACCESS.2021.3063018
[27] Heidler, F., Cvetic, J. M., & Stanic, B. V. (1999). Calculation of lightning current parameters. IEEE Transactions on power delivery, 14(2), 399-404. DOI: 10.1109/61.754080
[28] Datsios, Z. G., Mikropoulos, P. N., & Tsovilis, T. E. (2019). Effects of lightning channel equivalent impedance on lightning performance of overhead transmission lines. IEEE Transactions on Electromagnetic Compatibility, 61(3), 623-630. DOI: 10.1109/TEMC.2019.2900420