Presenting a New High Gain Boost Converter with Inductive Coupling Energy Recovery Snubber for Renewable Energy Systems- Simulation, Design and Construction

Document Type : Original Article


Najafabad Branch, Islamic Azad University



Solar energy is one of the most important sources of energy because it is a renewable and inexhaustible energy. This paper presents a new energy recovery snubber for a high step-up boost converter, which can be used in renewable energy systems such as photovoltaic. The proposed snubber enjoys useful advantages such as providing soft-switching conditions, high voltage gain, simplicity of control, and balanced voltage stresses. In this topology, the voltage stress on the diodes and switches is a small percentage of the output voltage. A simple boost and a fly-forward converter are used to increase the output voltage. A snubber circuit is used for the main switch to recover the energy of the snubber capacitor. Therefore, the main switch turns off at low voltage and it causes a reduction in turn off loss. Experimental results of a 48V to 380V and 500W laboratory prototype show efficiency greater than 95% and verify the given theoretical analysis.


  • Aryan Nezhad, M. (2022). Frequency control and power balancing in a hybrid renewable energy system (HRES): Effective tuning of PI controllers in the secondary control level. Journal of Solar Energy Research,7(1), 963-970.
  • Sharifiyana, O., Dehghani, M., Shahgholian, G., Mirtalaei, S.M.M., Jabbari, M. (2022). Overview of dc-dc non-insulated boost convert­ers (Structure and improvement of main para­me­ters). Journal of Intelligent Procedures in Electrical Technology, 12(48), 1-29.
  • Haghshenas, G., Mirtalaei, S.M.M., Mordmand, H., Shahgholian, G. (2019). High step-up boost-fly back converter with soft switching for photovoltaic applications. Journal of Circuits, Systems, and Computers, 28(1), 1-16.
  • Taghizadeh, S., Hossain, M.J., Lu, J., Water, W. (2018). A unified multi-functional on-board EV charger for power-quality control in household networks, Applied Energy, 215, 186-201.
  • Bi,, Liu, Y., Zhu, Y., Fan, Q. (2021). An impedance source modular DC/DC converter for energy storage system: analysis and design. International Journal of Electrical Power and Energy Systems, 133, 107261.
  • Ceballos, P.V., Montoya, D.G., Ramos-Paja, C.A., Bastidas-Rodríguez, J.D. (2020). Charger/dis­charger dc/dc converter with interleaved configuration for DC-bus regulation and battery protection”, Energy Science and Engineering, 8(2), 530-543.
  • Karimi, H., Jadid, S., Hasanzadeh, S. (2022). A stochastic tri-stage energy management for multi-energy systems considering electrical, thermal, and ice energy storage systems. Journal of Energy Storage, 55, 105393,
  • Mallik, A., Al Nahian, S., Rashid, F. (2018). PV/T systems for renewable energy storage: A review. Journal of Solar Energy Research, 3(1), 35-42.
  • Dhimish, M., Schofield, N. (2022). Single-switch boost-buck DC-DC converter for industrial fuel cell and photovoltaics applications. International Journal of Hydrogen Energy, 47(2), 1241-1255.
  • Amir, A., Amir, A., Che, H.S., Elkhateb, A., Rahim, N.A. (2019). Comparative analysis of high voltage gain dc-dc converter topologies for photovoltaic systems. Renewable Energy, 136, 1147-1163.
  • Wang, H., Gaillard, A., Hissel, D. (2019). A review of dc/dc converter-based electrochemical impedance spectroscopy for fuel cell electric vehicles. Renewable Energy, 141, 124-138.
  • Rosas-Caro, J.C., Valdez-Resendiz, J.E., Mayo-Maldonado, J.C., Sanchez, V.M., Lopez-Nuñez, A.R., Barbosa, R., Valdivia, L.J., Fuel-cell energy generation system based on the series-capacitor boost converter. International Journal of Hydrogen Energy, 46(51), 26126-26137.
  • Guilbert, A., Gaillard, A., N'Diaye, A., Djerdir, A. (2016). Power switch failures tolerance and remedial strategies of a 4-leg floating interleaved dc/dc boost converter for photovoltaic/fuel cell applications. Renewable Energy, 90, 14-27.
  • Mirtalaei, M., Amani Nafchi, R. (2019). Boost high step-Up DC/DC converter with coupled inductors and diode-capacitor technique, Journal of Intelligent Procedures in Electrical Technology, 10(39), 3-12, 2019.
  • Baddipadiga, B.P.R., Prabhala, V.A.K., Ferdowsi, M. (2018). A family of high-voltage-gain DC-DC converters based on a generalized structure. IEEE Trans. on Power Electronics, 33(10), 8399-8411.
  • Spiliotis, K., Gonçalves, J.E., Sande, W.V.D., Ravyts, S., Daenen, M., Saelens, D., Baert, K., Driesen, J. (2019). Modeling and validation of a DC/DC power converter for building energy simulations: Application to BIPV systems. Applied Energy, 240, 646-665.
  • Shojaeian, H., Hasanzadeh, S., Heydari, M. (2018). High efficient and high step-up dual switches converter based on three coupled inductors. International Journal of Industrial Electronics Control and Optimization, 1(2), 143-152.
  • Sharifiyana, O., Dehghani, M., Shahgholian, G., Mirtalaei, S.M.M., Jabbari, M. (2023). Non-isolated boost converter with new active snubber structure and energy recovery capability. Journal of Circuits, Systems and Computers, 32(5), 2350084.
  • Liu, H., Hu, H., Wu, H., Xing, Y., Batarseh, I., (2016). Overview of high-step-up coupled-inductor boost converters. IEEE Journal of Emerging and Selected Topics in Power Electronics, 4(2), 689-704.
  • Samadi, M., Rakhtala, S.M., Ahmadian Alashti, M. (2019). Boost converter topologies, hybrid boost and new topologies of voltage multiplier in photovoltaic systems. Journal of Solar Energy Research, 4(4), 287-299.
  • Gu, B., Dominic, J., Lai, J.S., Zhao, Z., Liu, C. (2012). High boost ratio hybrid transformer DC-DC converter for photovoltaic module applications. Proceeding of the IEEE/APEC, 598-606.
  • Faiz, J., Shahgholian, G., Ehsan, M. (2008). Stability analysis and simulation of a single‐phase voltage source UPS inverter with two‐stage cascade output filter. European Transactions on Electrical Power, 18(1), 29-49.
  • Lee, P.W., Lee, Y.S., Cheng, D.K., Liu, X.C. (2000). Steady-state analysis of an inte­rleaved boost converter with coupled inductors. IEEE Trans. on Industrial Electr­onics, 47(4), 787–795.
  • Pourjafar, , Sedaghati, F., Shayeghi, H., Maalandish, M. (2019). High step-up dc–dc converter with coupled inductor suitable for renewable applications. IET Power Electronics, 12(1), 92-101.
  • Lin, B.R., Chen, J.J. (2008). Analysis and impl­emen­­tation of a soft-switching converter with high-voltage conversion ratio. IET Power Electr­onics, 1(3), 386–394.
  • Taheri, D., Shahgholian, G., Mirtalaei, M.M. (2022). Analysis, design and implementation of a high step-up multi-port non-isolated converter with coupled inductor and soft switching for photovoltaic applications. IET Generation, Transmission and Distribution, 16(17), 3473-3497.
  • Huber, L., Jovanovic, M.M. (2000). A design approach for server power supplies for networking applications. Proceeding of the IEEE/APEC, 1163–1169.
  • Tohidi, B., Delshad, M., Saghafi, H. (2022). A new interleaved zvt high step-up converter with low count elements for photovoltaic applications. Journal of Renewable Energy and Environment, 9(1), 70-77.
  • Emamdad, Akbari, E., Karbasi, S., Zare Ghaleh Seyyedi, A. (2024). Design and analysis of a new structure for non-isolated dc-dc boost converters. Journal of Intelligent Procedures in Electrical Technology, 15(58), 109-120.
  • Semeskandeh, S., Hojjat, M., Hosseini-Abardeh, M. (2024), Improving the efficiency of floating photovoltaic system in the northern part of Iran using a two-stage multi-string inverter, Journal of Intelligent Procedures in Electrical Technology, 15(57), 85-98.
  • Law, K.K., Cheng, K.W., Yeung, Y.P. (2005). Design and analysis of switched-capacitor-based step-up resonant converters. IEEE Trans. Circuits Systems, 52(5), 1998–2016.
  • Kianpour, A., Shahgholian, G. (2017). A floating-output interleaved boost DC–DC converter with high step-up gain. Automatika, 58(1), 18-26.
  • Ismail, E.H., Al-Saffar, M.A., Sabzali, A.J., Fardoun, A.A. (2008). A family of single-switch PWM converters with high step-up conversion ratio. IEEE Trans. Circuits Systems, 55(4), 1159–1171.
  • Heidari Beni, S., Mirtalaei, S.M.M., Kianpour, A., Aghababaei Beni, S. (2017). Design and improvement of a soft switching high step‐up boost converter with voltage multiplier. IET Power Electronics, 10(15), 2163-2169.
  • Wu, T.F., Tseng, S.Y., Hu, J.S., Chen, Y.M. (2006). Buck and boost derived converter for livestock/poultry stunning applications. Procee­ding of the IEEE/APEC, 1530–1536.
  • Wong, Y.S., Chen, J.F., Liu, K.B., Hsieh, Y.P. (2017). A novel high step-up dc-dc converter with coupled inductor and switched clamp capacitor techniques for photovoltaic systems. Energies, 10, 378.
  • Wei, J., Xu, P., Wu, H., Lee, F.C., Yaa, K., Yee, M. (2001), Comparison of three topology candidates for 12V VRM. Proceeding of the IEEE/APEC, 245- 251.
  • Wu, T., Lai, Y., Hung, J., Chen, Y. (2008). Boost converter with coupled inductors and buck-boost type of active clamp. IEEE Trans. on Industrial Electronics, 55(1), 154-162.
  • Suriyakulnaayudhya, R. (2015). A high gain step-up fly boost converter for high voltage high power applications. Proceeding of the IEEE/EEEIC, 1268-1272.
  • Chang, T., Wu, Y., Chang, C., Yang, J. (2012). Soft-switching boost converter with a flyback snubber for high power applications. IEEE Trans. on Power Electronics, 27(3), 1108-1119.
  • Wu, B, Smedley, K. (2015). A new Isolated Hybrid Boosting Converter. Proceeding of the IEEE/APEC, 28-34.
  • Zelnik, R., Prazenica, M. (2021). Snubber Design for Fly-back Converter. Proceeding of the ICE, 1-6, Palanga, Lithuania.
  • Bohra, S., Sarkar, A., Anand, S. (2020). Low side switch based regenerative snubber circuit for fly-back converter. Proceeding of the IEEE/ECCE, 4802-4807.
  • Chen, F., Amirahmadi, A., Batarseh, I. (2014). Zero voltage switching forward-flyback converter with efficient active LC snubber circuit. Proceeding of the IEEE/APEC, 2041-2047.
  • Gaurav, N., Ray, S. (2017). Design of snubber circuit to minimize switching and conduction losses in boost converter. Proceeding IEEE/ICSTM, 470-476, Chennai, India.
  • Lee, H., Yun, J. (2019). Quasi-resonant voltage doubler with snubber capacitor for boost half-bridge DC-DC converter in photovoltaic micro-inverter. IEEE Trans. on Power Electronics, 34(9), 8377-8388.
  • Liang, T.J., Chen, S.M., Yang, L.S., Chen, J.F., Ioinovici, A. (2012). Ultra-large gain step-up switched-capacitor DC-DC converter with a coupled inductor for alternative sources of energy. IEEE Trans. on Circuit and System, 59(4), 864-874.
  • Martiš, J., Vorel, P., Procházka, P. (2019). 12 kW Flyback Converter with a Passive Quasi-resonant Snubber. Proceeding of the IEEE/EDPE, 106-111.
  • Lagap, T., Dimopoulos, E., Munk-Nielsen, S. (2015). An RCDD snubber for a bidirectional flyback converter. Proceeding of the IEEE/EPE, 1-10.
  • Halder, T. (2012). An improved hybrid energy recovery soft switching snubber for the Flyback converter. Proceeding of the IEEE/PEDES, 1-6,.
  • M. Tadvin, S. R. B. Shah, M. R. T. Hossain, "A Brief Review of Snubber Circuits for Flyback Converter", Proceeding of the IEEE/I2CT, pp. 1-5, June 2018.
  • Liu, V.T., Zhang, L.J. (2014). Design of high-efficiency boost-forward-fly back conver­te­rs with high voltage gain. Proceeding of the IEEE/ICCA, Taichung, 1061-1066.
  • Toffoli, F.L., Pereira, D.C., Paula, W.J., Júnior, D.S.O. (2015). Survey on non-isolated high-voltage step-up dc–dc topologies based on the boost converter. IET Power Electronics, 8(10), 2044-2057.
  • Yu, C. Hutchens, J.S. Lai, J. Zhang, G. Lisi, A. Djabbari, G. Smith, T. Hegarty. (2009). High-efficiency converter with charge pump and coupled inductor for wide input photovoltaic AC module applications. Proceeding of the IEEE/ECCE, 3895-3900, San Jose, CA, USA.
  • Gopi, A., Saravanakumar, R. (2014). High step-up isolated efficient single switch dc-dc converter for renewable energy source. Ain Shams Engineering Journal, 5(4), 1115-1127.
  • Benedetto, M., Bigarelli, L., Lidozzi, A., Solero, L. (2021). Efficiency comparison of 2-level sic inverter and soft switching-snubber SiC inverter for electric motor drives. Energies, 14, 1690.
  • Zhang, F., Yang, X., Chen. W., Wang, L. (2020). Voltage balancing control of series-connected SiC MOSFETs by using energy recovery snubber circuits. IEEE Trans on Power Electronics, 35(10), 10200-10212.
  • Babu, K.R., Ramteke, M.R., Suryawanshi, H.M., Kothapalli, K.R. (2020). High gain soft switched DC-DC converter for renewable applications. Proceeding of the IEEE/TPEC, 1-6, College Station, TX, USA.
  • Ferencz, I., Petreus, D., Pătărău, T. (2020). Comparative study of three snubber circuits for a phase-shift converter. Proceeding of the IEEE/SPEEDAM, 763-768, Sorrento, Italy.
  • Premkumar, M., Kumar, C., Anbarasan, A., Sowmya, R. (2020). A novel non-isolated high step-up DC-DC boost converter using single switch for renewable energy systems. Electrical Engineering, 102, 811–829.
  • Zhang, , Yang, X., Zheng, T.Q., Zhang, J. (2020). A Passive soft-switching snubber with energy active recovery circuit for PWM inverters. IEEE Access, 8, 100031-100043.
  • Esfahani,N., Delshad, M., Mohammad, B.T. (2020). A new family of soft single switched dc-dc converters with lossless passive snubber. Majlesi Journal of Electrical Enginee­ring, 14, 51- 59.