Innovative Multistage Solar Parabolic Trough Collector: Design, Development, and Thermal Performance

Document Type : Research Article

Authors

Chemical Engineering Department, Al-Nahrain University, Baghdad, Iraq

10.22059/jser.2026.403441.1644

Abstract

Reliance on fossil fuels has led to severe environmental challenges that require more intensive development of clean energy alternatives. A design and experimental evaluation of a novel multistage parabolic trough collector (PTC) set under Basra City’s climatic conditions, southern Iraq, is presented. Four interconnected parabolic channels were designed to enhance cumulative heat gain while reducing the construction installation space. A corrugated copper tube receiver is used to increase the heat transfer surface and induce flow turbulence. A single-axis solar-tracking system was added to maximize incident solar radiation, with water flow rates of 3, 5, and 7 L/min. Conducting experimental results indicated that increasing the water flow rate reduced the outlet water temperature. The temperature gain was enhanced by 24%. The maximum temperature gain of 19 °C was recorded at 3 L/min, whereas the minimum was recorded at 7 L/min. Conversely, thermal efficiency increased with flow rate, reaching 82% at 7 L/min, corresponding to an improvement by 15-18%. The heat transfer coefficient was boosted up to 35%. The pressure drop was measured between 0.42 and 0.53 bar. These findings confirm the potential of the new design to enhance efficient energy capture, and a quantitative comparison with the traditional single-stage SPTC.

Keywords

[1]. Twidell, J. (2021). Renewable energy resources. Routledge.‏ https://doi.org/10.4324/9780429452161.
[2]. Hashim, W. M., Shomran, A. T., Jurmut, H. A., Gaaz, T. S., Kadhum, A. A. H., & Al-Amiery, A. A. (2018). Case study on solar water heating for flat plate collector. Case studies in thermal engineering, 12, 666-671.‏ https://doi.org/10.1016/j.csite.2018.09.002.
[3]. Pandey, K. M., & Chaurasiya, R. (2017). A review on analysis and development of solar flat plate collector. Renewable and Sustainable Energy Reviews, 67, 641-650.‏ https://doi.org/10.1016/j.rser.2016.09.078.
[4]. Upadhyay, B. H., Patel, A. J., & Ramana, P. V. (2022). A detailed review on solar parabolic trough collector. International Journal of Ambient Energy, 43(1), 176-196.‏ https://doi.org/10.1080/01430750.2019.1636869.
[5]. Duffie, J. A., & Beckman, W. A. (2013). Solar engineering of thermal processes. John Wiley & Sons.‏
[6]. Moravej, M. (2021). An experimental study of the performance of a solar flat plate collector with triangular geometry. Journal of Solar Energy Research, 6(4), 923-936.‏ https://doi.org/10.22059/jser.2020.311364.1178.
[7]. Khan, M. M. A., Ibrahim, N. I., Mahbubul, I. M., Ali, H. M., Saidur, R., & Al-Sulaiman, F. A. (2018). Evaluation of solar collector designs with integrated latent heat thermal energy storage: A review. Solar Energy, 166, 334-350. https://doi.org/10.1016/j.solener.2018.03.014.
[8]. Teferie, S. T. (2014). Simulation of Parabolic Trough Concentrating Solar Power Generation System (Doctoral dissertation, Addis Ababa University).‏
[9]. Rabaia, M. K. H., Abdelkareem, M. A., Sayed, E. T., Elsaid, K., Chae, K. J., Wilberforce, T., & Olabi, A. G. (2021). Environmental impacts of solar energy systems: A review. Science of The Total Environment, 754, 141989.‏ https://doi.org/10.1016/j.scitotenv.2020.141989.
[10]. Hafez, A. Z., Attia, A. M., Eltwab, H. S., ElKousy, A. O., Afifi, A. A., AbdElhamid, A. G., ... & Ismail, I. M. (2018). Design analysis of solar parabolic trough thermal collectors. Renewable and Sustainable Energy Reviews, 82, 1215-1260.‏ https://doi.org/10.1016/j.rser.2017.09.010.
[11]. Tagle-Salazar, P. D., Nigam, K. D., & Rivera-Solorio, C. I. (2020). Parabolic trough solar collectors: A general overview of technology, industrial applications, energy market, modeling, and standards. Green Processing and Synthesis, 9(1), 595-649.‏ https://doi.org/10.1515/gps-2020-0059.
 
[12]. Kadhim, S. A., & Hameed, V. M. (2025). An Advanced Maturity of Parabolic Solar Collector Passive Enhancement Techniques. Journal of Solar Energy Research.‏ https://doi.org/10.22059/jser.2025.395560.1568.
[13]. Chafie, M., Aissa, M. F. B., Bouadila, S., Balghouthi, M., Farhat, A., & Guizani, A. (2016). Experimental investigation of parabolic trough collector system under Tunisian climate: Design, manufacturing and performance assessment. Applied thermal engineering, 101, 273-283.‏ https://doi.org/10.1016/j.applthermaleng.2016.02.073.
[14]. Reddy, K. S., & Ananthsornaraj, C. (2020). Design, development and performance investigation of solar Parabolic Trough Collector for large-scale solar power plants. Renewable Energy, 146, 1943-1957. https://doi.org/10.1016/j.renene.2019.07.158.
‏[15]. Chargui, R., Tashtoush, B., & Awani, S. (2022). Experimental study and performance testing of a novel parabolic trough collector. International Journal of Energy Research, 46(2), 1518-1537.‏ https://doi.org/10.1002/er.7267.
[16]. Hameed, V. M., & Ibrahim, M. (2021, February). An experimental study        on new multistage solar parabolic trough collector. In IOP Conference Series: Materials Science and Engineering (Vol. 1094, No. 1, p. 012103). http://dx.doi.org/10.1088/1757-899X/1094/1/012103.
[17]. Bellos, E., & Tzivanidis, C. (2020). Enhancing the performance of a parabolic trough collector with combined thermal and optical techniques. Applied thermal engineering, 164, 114496.‏ https://doi.org/10.1016/j.applthermaleng.2019.114496.
[18]. Faheem, M., Jizhan, L., Akram, M. W., Khan, M. U., Yongphet, P., Tayyab, M., & Awais, M. (2024). Design optimization, fabrication, and performance evaluation of solar parabolic trough collector for domestic applications. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 46(1), 13896-13915.‏ https://doi.org/10.1080/15567036.2020.1806407.
[19]. Borzuei, D., Moosavian, S. F., Ahmadi, A., Ahmadi, R., & Bagherzadeh, K. (2021). An experimental and analytical study of influential parameters of parabolic trough solar collector. Journal of Renewable Energy and Environment, 8(4), 52-66.‏ https://doi.org/10.30501/jree.2021.261647.1172.
[20]. Karaağaç, M. O., Akıncı, B., & Ergün, A. (2024). Enhancing the performance of parabolic trough solar collectors: Cost-effective innovative designs for sustainable energy harvesting. Applied Thermal Engineering, 253, 123693.‏ https://doi.org/10.1016/j.applthermaleng.2024.123693.
[21]. Chargui, R., Tashtoush, B., & Awani, S. (2022).                Experimental study and performance testing of a novel parabolic trough collector. International Journal of Energy Research, 46(2), 1518-1537.‏ https://doi.org/10.1002/er.7267.
[22].  Zhao, K., Wang, X., Gai, Z., Qin, Y., Li, Y., & Jin, H. (2024). Enhancing the efficiency of solar parabolic trough collector systems via cascaded multiple concentration ratios. Journal of Cleaner Production, 437, 140665.‏ https://doi.org/10.1016/j.jclepro.2024.140665. 
[23]. Kolahkaj, S., Moravej, M., & Ghafouri, A. (2024). Thermal performance of a flat-plate solar collector using elliptical riser tubes and magnesium oxide nanofluid. International Journal of Ambient Energy, 45(1), 2323642.‏ https://doi.org/10.1080/01430750.2024.2323642.
[24]. Guerraiche, D., Bougriou, C., Guerraiche, K., Valenzuela, L., & Driss, Z. (2020). Experimental and numerical study of a solar collector using phase change material as heat storage. Journal of Energy Storage, 27, 101133. https://doi.org/10.1016/j.est.2019.101133.
 
[25]. Ahmed, K. A., & Natarajan, E. (2019). Thermal performance enhancement in a parabolic trough receiver tube with internal toroidal rings: A numerical investigation. Applied Thermal Engineering, 162, 114224.‏ https://doi.org/10.1016/j.applthermaleng.2019.114224.
[26]. Abed, N., & Afgan, I. (2020). An extensive review of various technologies for enhancing the thermal and optical performances of parabolic trough collectors. International Journal of Energy Research, 44(7), 5117-5164.‏ https://doi.org/10.1002/er.5271.
[27]. B. El Wardi, D. Yassine, H.A. Ahmed, B. Hocine, K. Yassine, Numerical investigation of a novel sinusoidal tube receiver for parabolic trough technology, Appl. Energy 218 (2018) 494–510 (15 May).
[28].  Holman, J. P. (2010). Heat transfer. (No Title).
[29]. Kulkarni, H. B. (2016). Design and development of prototype cylindrical parabolic solar collector for water heating application. International Journal of Renewable Energy Development, 5(1), 49.‏ http://dx.doi.org/10.14710/ijred.5.1.49-55.
[30]. Yassen, T. A. (2012). Experimental and theoretical study of a parabolic trough solar collector. Anbar Journal of Engineering Science, 5(1), 109-125.‏ https://doi.org/10.37649/aengs.2012.41141.
[31]. Saleh, E. M., & Hameed, V. M. (2024). Innovative new solar parabolic trough collector enhanced by corrugated receiver surface with PCM and turbulator inside. Journal of Energy Storage, 86, 111403. https://doi.org/10.1016/j.est.2024.111403.