[1] Nadim, M., Rashed, M. R. H., Muhury, A., & Mominuzzaman, S. M. (2016).
Estimation of optimum tilt angle for PV cell: A study in perspective of Bangladesh. Paper presented at the 2016 9th International Conference on Electrical and Computer Engineering (ICECE).DOI:
10.1109/ICECE.2016.7853908
[2] Islam, M. A., Alam, M. S., Sharker, K. K., & Nandi, S. K. (2016). Estimation of solar radiation on horizontal and tilted surface over Bangladesh.
Computational Water, Energy, and Environmental Engineering, 5(2), 54-69. DOI:
10.4236/cweee.2016.52006
[3] Besharat, F., Dehghan, A. A., & Faghih, A. R. (2013). Empirical models for estimating global solar radiation: A review and case study. Renewable and Sustainable Energy Reviews, 21, 798-821. DOI:10.1016/j.rser.2012.12.043
[4] Pandey, B., Aryal, R., Gnawali, C., Poudyal, K., Karki, I., & Koirala, I. (2019). Estimation of Monthly average daily diffuse solar radiation using empirical models for Kathmandu Nepal.
Journal of Nepal Physical Society, 5(1), 6-13. DOI:
10.3126/jnphyssoc.v5i1.26875
[5] Ilboudo, J.M., Bonkoungou, D., Tassembedo, S., and Koalaga, Z. (2024). General models for monthly average daily global solar irradiation. Science Journal of Energy Engineering, 12(4), 81–90. DOI:10.11648/j.sjee.20241204.12
[6] Makade, R. G., Chakrabarti, S., & Jamil, B. (2019). Prediction of global solar radiation using a single empirical model for diversified locations across India.
Urban Climate, 29, 100492. DOI:
10.1016/j.uclim.2019.100492
[7] Mohammadi, B., & Moazenzadeh, R. (2021). Performance analysis of daily global solar radiation models in Peru by regression analysis.
Atmosphere, 12(3), 389. DOI:
10.3390/atmos12030389
[9] Khanlari, A., Sözen, A., Şirin, C., Tuncer, A. D., & Gungor, A. (2020). Performance enhancement of a greenhouse dryer: Analysis of a cost-effective alternative solar air heater.
Journal of Cleaner Production, 251, 119672. DOI:
10.1016/j.jclepro.2019.119672
[10] Ben Othman, A., Belkilani, K., & Besbes, M. (2020). Prediction improvement of potential PV production pattern, imagery satellite-based.
Scientific Reports, 10(1), 19951. DOI:
10.1038/s41598-020-76957-8
[11] Tamim, A. (2021).
Assessment of solar energy potential and development in Afghanistan. Paper presented at the Proc. E3S Web Conf.DOI:
10.1051/e3sconf/202123900012
[12] Ahmad, N., Ghadi, Y. G., Adnan, M., & Ali, M. (2023). From smart grids to super smart grids: a roadmap for strategic demand management for next generation SAARC and European power infrastructure.
IEEE Access, 11, 12303-12341. DOI:
10.1109/ACCESS.2023.3241686
[13] Jahangiri, M., Haghani, A., Mostafaeipour, A., Khosravi, A., & Raeisi, H. A. (2019). Assessment of solar-wind power plants in Afghanistan: A review.
Renewable and Sustainable Energy Reviews, 99, 169-190.DOI:
10.1016/j.rser.2018.10.003
[14] Malik, P., Gehlot, A., Singh, R., Gupta, L. R., & Thakur, A. K. (2022). A review on ANN based model for solar radiation and wind speed prediction with real-time data.
Archives of Computational Methods in Engineering, 29(5), 3183-3201.DOI:
10.1007/s11831-021-09687-3
[15] Liaqat, M., Ghadi, Y., & Adnan, M. (2021). Multi-objective optimal power sharing model for futuristic SAARC super smart grids.
IEEE Access, 10, 328-351. DOI:
10.1109/ACCESS.2021.3137592
[16] Bangladesh Energy Reports. (2022). AnnualPower Sector Report
[17] Ordoñez Palacios, L. E., Bucheli Guerrero, V., & Ordoñez, H. (2022). Machine learning for solar resource assessment using satellite images.
Energies, 15(11), 3985. DOI:
10.3390/en15113985
[18] Ul-Haq, A., Jalal, M., Hassan, M. S., Sindi, H., Ahmad, S., & Ahmad, S. (2021). Implementation of smart grid technologies in Pakistan under CPEC project: technical and policy implications.
IEEE Access, 9, 61594-61610.DOI:
10.1109/ACCESS.2021.3074338
[19]Chodakowska, E., Nazarko, J., Nazarko, Ł., Rabayah, H. S., Abendeh, R. M., & Alawneh, R. (2023). ARIMA models in solar radiation forecasting in different geographic locations.
Energies, 16(13), 5029. DOI:
10.3390/en16135029
[20] Manzoor, H. U., Aaqib, S. M., Manzoor, T., Azeem, F., Ashraf, M. W., & Manzoor, S. (2025). Effect of Optimized Tilt Angle of PV Modules on Solar Irradiance for Residential and Commercial Buildings in Different Cities of Pakistan: Simulation‐Based Study.
Energy Science & Engineering, 13(4), 1831-1845. DOI:
10.1002/ese3.70004
[21] Khalid, H. M., Rafique, Z., Muyeen, S., Raqeeb, A., Said, Z., Saidur, R., & Sopian, K. (2023).Dust accumulation and aggregation on PV panels: An integrated survey on impacts, mathematical models, cleaning mechanisms, and possible sustainable solution
Solar Energy, 259, 277. DOI:
10.1016/j.solener.2023.05.036
[22] Rajagukguk, R. A., & Lee, H. (2023). Enhancing the performance of solar radiation decomposition models using deep learning.
Journal of the Korean Solar Energy Society, 43(3), 73-86. DOI:
10.7836/kses.2023.43.3.073
[23] Nadeem, T. B., Ali, S. U., Asif, M., & Suberi, H. K. (2024). Forecasting daily solar radiation: An evaluation and comparison of machine learning algorithms.
AIP Advances, 14(7). DOI:
10.1063/5.0211723
[24] Gyeltshen, S., Hayashi, K., Tao, L., & Dem, P. (2025). Statistical evaluation of a diversified surface solar irradiation data repository and forecasting using a recurrent neural network-hybrid model: A case study in Bhutan. Renewable Energy, 245, 122706. DOI: 10.1016/j.renene.2025.122706
[25] RajasundrapandiyanLeebanon, T., Murugan, N., Kumaresan, K., & Jeyabose, A. (2025). Long-term solar radiation forecasting in India using EMD, EEMD, and advanced machine learning algorithms.
Environmental Monitoring and Assessment, 197(3), 1-36. DOI:
10.1007/s10661-025-13738-8
[26] World Bank SE4ALL. (2020). Global Energy Tracking Framework. Washington DC.
[27] Pereira, L. S., Allen, R. G., Smith, M., & Raes, D. (2015). Crop evapotranspiration estimation with FAO56: Past and future.
Agricultural water management, 147, 4-20.DOI:
10.1016/j.agwat.2014.07.031
[28] Keshtegar, B., Bouchouicha, K., Bailek, N., Hassan, M. A., Kolahchi, R., & Despotovic, M. (2022). Solar irradiance short-term prediction under meteorological uncertainties: survey hybrid artificial intelligent basis music-inspired optimization models.
The European Physical Journal Plus, 137(3), 362. DOI:
10.1140/epjp/s13360-022-02371-w
[29] Rajagukguk, R. A., & Lee, H. (2025). Application of explainable machine learning for estimating direct and diffuse components of solar irradiance.
Scientific Reports, 15(1), 7402. DOI:
10.1038/s41598-025-91158-x
[30] Saud, J. S., Shrestha, P. M., Joshi, U., Tiwari, B. R., Karki, I. B., & Poudyal, K. N. (2023). Estimation of Global Solar Radiation using Angstrom and Gopinathan Model on Sunshine Hour and Temperature in Highland, Nepal.
Molung Educational Frontier, 92-107. DOI:
10.3126/mef.v13i01.56094
[31] Qi, Q., Wu, J., Gueymard, C. A., Qin, W., Wang, L., Zhou, Z., . . . Zhang, M. (2024). Mapping of 10-km daily diffuse solar radiation across China from reanalysis data and a Machine-Learning method.
Scientific Data, 11(1), 756. DOI:
10.1038/s41597-024-03609-1
[32] Attya M., Abo-Seida O., Mohamed H., Mohammed A. (2025). A hybrid deep learning framework for solar irradiation prediction based on regional satellite images and data.
Neural Computing and Applications. 1-37. DOI:
10.1007/s00521-025-11197-3
[33]Santhakumari M., Nalla S., Naick B.P., Mavi S., Chandrapuri S.(2025).Attenuation effect of air pollution on global solar irradiation-Evidence from the Indian cities.DOI:10.2139/ssrn.5587679
[34]Al-Shourbaji I., Alameen A.(2025). Optimizing Solar Radiation Prediction with ANN and Explainable AI-Based Feature Selection. Technologies.13(7),263.DOI:
10.3390/technologies13070263
[35] Baran S., Marín JC., Cuevas O., Díaz M., Szabo M., Nicolis O., et al.(2025). Machine-learning-based probabilistic forecasting of solar irradiance in Chile.
Advances in Statistical Climatology, Meteorology and Oceanography. 11(1), 89-105.DOI:
10.5194/ascmo-11-89-2025
[36] Rashid, M.-A., Mamun, R., Sultana, J., Hasnat, A., Khan, K., & Rahman, M. (2012). Evaluating the Solar Radiation System under the Climatic Condition of Dhaka, Bangladesh and Computing the Angstrom Coefficients.
International Journal of Natural Sciences, 2(1), 38-42. DOI:
10.3329/ijns.v2i1.10882
[37] Basunia, M., Yoshio, H., & Abe, T. (2012). Simulation of solar radiation incident on horizontal and inclined surfaces.
The Journal of Engineering Research, 9(2), 27-35. DOI:
10.24200/tjer.vol9iss2pp27-35
[38] Miranda, E., Fierro, J. F. G., Narváez, G., Giraldo, L. F., & Bressan, M. (2021). Prediction of site-specific solar diffuse horizontal irradiance from two input variables in Colombia.
Heliyon, 7(12). DOI:
10.1016/j.heliyon.2021.e08602
[40] Collares-Pereira, M., & Rabl, A. (1979). The average distribution of solar radiation-correlations between diffuse and hemispherical and between daily and hourly insolation values. Solar Energy, 22(2),155-164.DOI:10.1016/0038-092X(79)90100-2
[42]Sarkar, M. N. I., & Sifat, A. I. (2016). Global solar radiation estimation from commonly available meteorological data for Bangladesh.
Renewables: Wind, Water, and Solar, 3(1), 6. DOI:
10.1186/s40807-016-0027-3
[43] Singh, A., Singh, S., Srivastava, P., & Jain, A. (2025). Angstrom-Prescott, Artificial and Convolutional neural network radiation models over North India.
Earth Science Informatics, 18(1), 158. DOI:
10.1007/s12145-024-01618-7