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1. Introduction

Over the last few decades, renewable energy has
undergone substantially transformation, emerging as
a sustainable and an environmentally friendly
alternative to conventional fossil fuels. Due to their
virtually unlimited availability, renewable sources
such as hydro-power, wind turbines, photovoltaic
panels, solar thermal systems, and biomass plants
now play a vital role in contributing to the electricity
supply in many nations [1]. Among various
renewable energy sources, the solar energy has
recently gained significant attention because it can
support  long-term  sustainable  development,
particularly in regions that receive high levels of
solar radiation. Reliable information on the solar
radiation is crucial for designing solar power
systems, assessing agricultural productivity and
understanding seasonal climate variations and their
impacts on different sectors. Countries in South
Asia—such as Bangladesh, India, and Nepal-
possess naturally high solar potential, making
accurate solar radiation estimation essential for
planning effective national energy strategies.

A country’s per person energy consumption is
commonly regarded as a fundamental indicator of its
social and economic development. At present, the
global average energy consumption is approximately
2.37 kilowatts-hours per person [2]. Consequently,
nations with limited access to energy often
experience significant development disadvantages.
The global population is projected to reach nearly 12
billion by 2100 [2]. With rapid technological
advancement, global energy demand may increase to
nearly five times the current level. Conventional
energy sources such as coal, oil, natural gas, and
wood, are limited and will be unable to sustain this
increasing demand in the long term. Therefore, the
ongoing energy crisis has made the transition from
fossil fuels to renewable energy sources more urgent
than ever. This urgency is particularly critical for
developing and underdeveloped countries, where
economic progress is strongly dependent on energy
availability. Among all renewable energy sources,
the solar energy is widely recognized as a clean,
safe, abundant, and renewable source that can help
meet future energy needs. Unlike thermal energy
derived from fossil fuels, Solar Radiation (SR) refers
to the natural electromagnetic energy that reaches
the Earth, either directly or in a diffused form [2].

Utilizing solar energy effectively is essential
for achieving long-term energy security in an
environmentally sustainable manner. To estimate the
amount of solar radiation, empirical models
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commonly utilize bright sunshine duration along
with  meteorological  parameters, including
geographical location and elevation. These
approachess are generally referred to as sunshine-
based models, which establish a relationship
between the sunshine duration and the amount of
global solar radiation reaching the Earth’s surface
[3]. Direct measurement of solar radiation using
instruments such as pyranometers is expensive,
requires specialized maintenance, and is often
unavailable in many regions. Several South Asian
countries have limited access to long-term ground-
based solar radiation records. Additionally, the
estimation of solar radiation is complicated by
factors such as cloud cover, atmospheric aerosols,
and seasonal variability. Consequently, satellite-
based datasets, such as NASA’s Surface Solar
Energy (SSE) records, are frequently used to address
data gaps. In the absence of ground-based
measurements, researchers typically relay on
historical satellite records. The present study utilizes
monthly average daily global solar radiation data for
the period 2025, obtained from the NASA Langley
Research Center’s Surface Solar Energy (SSE)
database [4].

The primary objective of this research is to
develop a mathematical model for estimating daily
global solar radiation using freely available input
parameters  without requiring any financial
resources. Policymakers, energy authorities, and
stakeholders must prioritize the urgent need for
effective energy planning by promoting clean and
renewable energy alternatives. The adoption of
renewable energy technologies helps reduce carbon
emissions and establishes a resilient and sustainable
energy  foundation for  future  generations
[5],[6].Empirical models are commonly utilized in
the form of temperature-based,sunshine-dependent,
or hybrid forms, in which the relationship between
input variables and solar radiation (SR) is
established using linear or nonlinear regression
techniques,as well as polynomial equations [7].

In South Asian countries, including India,
Bangladesh, Pakistan, and Nepal, have been actively
investigating solar radiation using meteorological
and satellite-based data. For example, India has
well-established  solar  radiation = monitoring
networks; however, countries such as Bangladesh
and Nepal largely rely on modeled datasets. Hybrid
approaches that integrate empirical models with
machine learning have demonstrated higher
accuracy in estimating solar radiation. Although
several studies have analyzed horizontal and tilted
surface solar radiation in two or three South Asian
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countries, no comprehensive research has yet

focused on estimating horizontal surface solar

radiation using the Angstrom-Prescott empirical

model across all eight South Asian regions. This

research gap highlights the need for more accurate

estimation of solar energy on horizontal surfaces,

particularly in regions where direct solar radiation

measurements are limited or unavailable.
The novelty of this research can be summarized

as follows:

® Firstly, the study applies the Angstrom-—
Prescott model within a comparative
framework, enabling solar radiation estimation
across different South Asian zones rather than a
single location.

® Secondly, it utilizes low cost and readily
available input data, making the model suitable
for data- scarce regions.

® Thirdly, by analyzing both spatial and seasonal
variations in solar energy, the study identifies
region-specific opportunities for renewable
energy development.

® Finally, the research links solar radiation
estimation with policy implications,
demonstrating how accurate assessments can
enhance energy planning and support long-term
socio-economic development in South Asia.

2. Literature Review

Solar energy is one of the most plentiful and
well-established renewable energy resources, with
the Earth receiving far more solar energy than
humanity could ever consume [8]. Significant
advancements have been achieved in solar power
technologies and overall system performance [9].
Besides, Global Horizontal Irradiance (GHI) data
plays a pivotal role in the design, assessment and
optimization of photovoltaic (PV) energy systems
[10]. Among the SAARC countries, Afghanistan is
the least developed in terms of energy access, with
only about 30% of its population connected to
electricity [11]. Persistent political instability has
severely constrained solar power development,
leading to a substantial gap between installed
capacity and actual energy generation [12]. The
accuracy of solar radiation estimation has been
enhanced through calibrated Angstrom models
applied across different temporal scales [13],[14].
India currently leads the SAARC region in terms of
energy share and solar potential, with an estimated
annual value of (14.02 MWh/m?)[15]. However,
Power circulation and distribution losses remain a
critical challenge in several countries. For instance,
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nearly 10% of generated energy is wasted in
Bangladesh due to infrastructural inefficiencies [16].
Machine Learning (ML) models have proven
effective in estimating solar radiation by integrating
satellite-derived and ground-based observations
[17]. Furthermore, the concept of a SAARC super
smart grid has been proposed as an optimal
framework for regional power-sharing and energy
security [18]. Recent advancements in machine
learning and deep learning have substantially
enhanced the accuracy of solar radiation and surface
solar irradiance forecasting [19]. In Pakistan,
seasonal tilt optimization of PV panels has been
shown to improve incident irradiance and power
output [20], while the adverse effects of dust
accumulation on PV efficiency have been mitigated
with sustainable cleaning strategies [21]. Gradient
boosting models have been employed to separate
direct and diffuse radiation components, thereby
enriching forecasting capabilities across diverse
climatic conditions [19][22].

Machine learning approaches have significantly
improved daily solar radiation forecasting,
particularly in complex terrains such as Bhutan,
where solar potential is limited and primarily utilized
for localized applications [23],[24]. In India, long-
term meteorological datasets spanning 13 years have
enabled ML models to achieve high predictive
accuracy [25]. GHI also plays a crucial role not only
in PV system performance assessment but also in
applications such as vehicle climate control [26],
[27]. Despite the emergence of advanced ML
methods, Angstrom—Prescott empirical models
remain  fundamental,  with  recent  studies
incorporating additional meteorological parameters
to enhance their accuracy [28]. Further progress
includes the development of understandable machine
learning models utilizing high-resolution datasets to
predict Direct Normal Radiation (DNR) and Diffuse
Horizontal Radiation (DHR), both of which are
essential for improving PV system efficiency [29].
Empirical constants derived from regression-based
and Angstrom models have improved solar radiation
estimation in high-altitude regions, such as Nepal
[30]. Hybrid techniques integrating real-time sensor
measurements with satellite data continue to develop
global solar resource assessment frameworks [31]. A
recent hybrid deep learning framework published in
Neural Computing and Applications[32], combines
satellite imagery and tabular data, employing
adjusted Random Forest and Generative Adversarial
Networks (GAN) for image imputation, along with
an LSTM model enhanced to capture seasonality and
long-term trends, resulting in significantly enhanced
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DHI forecasting accuracy.In humid subtropical
climates, a recent study in India employed machine
learning models to evaluate monthly average diffuse
solar radiation using pyranometer measurements, and
compared the results with empirical models,
demonstrating that modern ML  techniques
outperform classical regression-based approaches in
such regions[33]. Al-Shourbaji and Alameen [34]
developed an Artificial Neural Network (ANN) for
solar irradiance prediction, utilizing LIME and
SHAP methods to identify the most essential
meteorological features, thereby enhancing model
simplicity and predictive accuracy. In addition,
probabilistic machine-learning post-processing to
ensemble weather forecasts (WRF) for solar
irradiance prediction in Chile, enhancing both
calibration and point forecast skill through a
Distributional Regression Network (DRN) [35].
Despite these advancements, several research gaps
remain. Many recent studies are highly region-
specific (e.g., India and Chile) and fail to address the
climatic heterogeneity and data scarcity prevalent
across SAARC countries. Although hybrid and
probabilistic models demonstrate strong predictive
performance, their implementation for real time
operational control of PV systems remains limited.
Moreover, the lack of publicly available, high-
resolution (both regional and temporal) GHI,
DNIl,and DHI datasets in many underdeveloped
regions restricts the training and validation of
advanced ML models. Finally, only a limited number
of studies incorporate long-term climate variability
or climate-change conditions into solar radiation
forecasting models, which is crucial for planning
future solar infrastructure in improving regions.

3. Materials and Methods

The amount of extraterrestrial solar radiation
(Hy) received on a horizontal surface mainly
depends on geographic latitude and is not affected
by local environmental factors. However, as this
radiation passes through the Earth's atmospheric
envelope, it is modified by scattering and absorption
caused by clouds and atmospheric aerosols. As a
result, the actual global solar radiation reaching the
Earth’s surface is strongly influenced by the local
condition and is consistently lower than the
corresponding extraterrestrial radiation.

The original Angstrom-type empirical model
establishes a relationship between the monthly mean
clearness index and the mean fraction of potential
sunshine duration [36], [37], [38]-
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H N
H:g—a+b§ (1)

where, H= Monthly mean daily solar radiation on a
horizontal surface

H,= Monthly mean extraterrestrial radiation on a
horizontal surface

a, b= Angstrom empirical constants

S=Monthly mean hours of bright sunshine
So=Monthly mean of the maximum possible daily
sunshine duration or day length

H%: Monthly mean clearness index

%:Monthly mean proportion of potential sunshine
hours

The key parameters involved in solar radiation
geometry include the following [36] —

Solar Constant (I,.): This represents the rate of
solar energy received per unit surface area when the
surface is oriented perpendicular to the Sun’s rays
and located at the Earth’s mean distance from the
Sun. It reflects the Sun’s power output in watts per
square meter. The standard accepted value of the
solar constant is approximately 1367 W/m?.
Declination Angle (8): This represents the angle
between the Earth’s and the Sun’s centers, and its
projection onto the Earth’s equatorial plane.This
angle changes over the course of the year because of
the axial tilt of the Earth and its elliptical path
around the Sun.The mathematical expression for
declination is given as follows [36]:
§ = 2345 sin[>2 (284 +n)]
where, n is the day of the year.
Sunset Hour Angle (w):This represents the hour
angle at sunset (or sunrise) on a horizontal surface. It
indicates the time interval between solar noon and
either sunrise or sunset, depending on weather the
hour angle is positive or negative [36].
w = cos~Y(—tang tand)

where, ¢ is the latitude.

Maximum Possible Sunshine Duration (S;): It is
also known as the day length which represents the
total duration during which the sun remains above
the horizon in a given day. Since 15 degrees of hour
angle correspond to one hour, the potential

@)

@)

maximum sunshine duration can be
calculated accordingly [36].
So = 2w 4)

15
where, w is the sunset hour angle

Bright Sunshine (S): A crucial factor in estimating
solar radiation is the length of daylight within a 24
hours period. The sunshine duration is typically
computed using the following well-established solar
geometry formulas [1].
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i —singsins
Sun rise = 12 — %Cos‘i (M) ©)
15 cos@coss
Sun set = 12 4+ — cos ™ (M) (©)
15 cosQcoss
Sun hour, S = Sunset — Sunrise @

Where, § is the declination angle.

Extraterrestrial Radiation (Hy): It refers to the
solar radiation that exists outside the Earth’s
atmosphere. The amount of radiation available on a
specific day depends on the Earth’s position along
its orbital path around the Sun [38].

Hy =

Isc % [1 + 0.033COS% [%simpsin(? +
cosgocos&'osa)] (8)

The monthly mean global solar irradiance was
estimated using data obtained from a satellite-based
climate and solar resource platform developed by
NASA, as well as data calculated by the Angstrom
Empirical model for eight weather monitoring
centers across South Asia.

Table 1. Location of the selected 8 meteorological
stations [39]

Meteorologi Latitude Longitude
cal Stations (degree) (degree)
Kabul 34.53 69.17
Dhaka 23.81 90.41
Thimphu 27.47 89.64
New Delhi 28.64 77.22
Male 4.18 73.50
Kathmandu 27.70 85.32
Islamabad 33.43 73.04
Colombo 6.93 79.86

In this study, the parameters H, and S, were
evaluated on a monthly basis using equations (8) and
(4), respectively Collares-Pereira  and Rabl
introduced a mathematical model for converting
daily global solar radiation into hourly values. This
model incorporates the coefficients a and b, which
are explicitly defined within their formulation [40]

a = 0.409 + 0.5016 sin(w — 60) 9)

b = 0.6609 — 0.4767 sin(w — 60) (10)

3.1. Model Validation

To evaluate the accuracy of the model
(Equations 11-13), several statistical indicators were

applied, including Mean Bias Error (MBE), Root
Mean Squared Error (RMSE), and the Correlation
Coefficient (R?). These indicators are commonly
used to measure the difference between predicted
values and observed measurements. A model is
considered more reliable when it produces lower
MBE and RMSE values, while a higher R? value
preferably approaching unity, indicates a stronger
agreement between the predicted and measured
results. The mathematical formulations of these
validation metrics are presented below.

Correlation coefficient of the solar radiation: [38]

m 2
RZ =7- 21':1 (H predicted -H, measured) ( 1 1)

—2
Zﬁ ](H 'predicted 'H)

Error analysis of the solar radiation: [38]

Mean Bias Error =

MBE — Z(Hpredicted‘Hmeasured) (12)

m

Root Mean Squared Error of the solar radiation =

RMSE =\/Z(Hpredicted_Hmeasured)2

" (13)
Table 2. Estimated Angles of declination for various
months of a year [41]

Month  drepresents  For the average date of
the day each month
corresponding
tothei"date date Day The solar

of the month of  declination
the angle
year
Jan i 15 15 -21.27
Feb 31+ 16 47 -13.00
Mar 59+ i 17 76 -2.02
Apr 90+ i 15 105 9.41
May 120+ 16 136 19.03
Jun 151+ 15 166 23.31
Jul 181+ 16 197 21.35
Aug 212+ i 17 229 13.12
Sep 243+ 16 259 1.81
Oct 273+ 15 288 -9.60
Nov 304+ i 16 320 -19.38
Dec 334+ i 16 350 -23.37
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Figure 1. A systematic process for estimating solar radiation using sunshine duration and solar geometry
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Figure 2. Monthly average daily sun declination angle for different South Asian zones
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Figure 3. Menstruation box-whisker plot of solar radiation for 2025 in different South Asian zones
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4, Results and Discussion

The clearness index and sunshine duration vary

with the time of year (2025), the sky’s condition and
the geographic location. In this study, each month of
the year is represented by a specific letter code:
January (J), February (F), March (M), April (A),
May (Ma), June (Ju), July (JI), August (Au),
September (S), October (O), November (N),
December (D), Total (T). Similarly, each study
location is denoted by a specific letter code: Kabul
(Ka), Dhaka (Dh), Thimphu (Th), New Delhi (Nd),
Male (MI), Kathmandu (Kt), Islamabad (Id) and
Colombo (Co).
Figure 3 illustrates the monthly variation of solar
radiation intensity across different South Asian
zones from January to December. The periods from
February to June and from July to September,
exhibit high solar radiation with low variability,
indicating consistent and strong solar energy
availability. In contrast, the months from October to
January show lower radiation levels with higher
variability, likely due to increased cloud cover and
atmospheric  fluctuations. Among the selected
locations (Table 1), Male recorded the highest
clearness index values throughout the vyear,
indicating minimal atmospheric interference and
favorable conditions for solar radiation estimation.
Conversely, the lowest clearness index was observed
in Kabul , suggesting heavy cloud cover and reduced
solar radiation availability, as shown in Table 4. Due
to its consistently high and stable clearness index,
Male is identified as the most suitable location for
accurate solar radiation estimation among the eight
analyzed cities (Figure 4).

Figure 6 illustrates the lowest and highest
recorded monthly mean daily solar energy values
received on horizontal surfaces across eight South
Asian locations. The lowest value was observed in
June at Kabul (7.921 KWh/m?/y ), a month
characterized by frequent cloud cover. In contrast,
the highest value was observed in March at Male
(11.207 KWh/m?/y),when clearer sky conditions
prevailed. Among all eight stations, the highest total
annual solar radiation was recorded in Male
(3890.61 KWh/m?/y ), while the lowest was
recorded in Kabul (3146.65 KWh/m?/y), as shown
in Table 3. These findings highlight the combined
influence of geographical location and atmospheric
conditions on solar radiation availability. A
conversion factor of 0.274 was applied to express
solar radiation values in alternative units for
comparison across zones.

The bar graph for the year 2025 (Figure 5) shows
clear seasonal variation in solar radiation. Radiation
intensity increases during March—April and July—
September, corresponding to the sun’s movement
toward the equator. On the other hand, radiation
decreases from October to January, when the sun’s
apparent position shifts farther away (Table 2). A
notable increase in radiation during February and
March, which coincides with the sun’s declination
reaching its minimum (Figure 2). However, this
increase is less observed during July—September.

Table 3. Monthly Average daily Solar radiation on Horizontal Surface (M]/m?2/d)

Mo Ka Dh Th Nd Ml Kt Id Co
J 30.68 34.99 33.69 32.23 38.96 33.60 31.19 38.71
F 32.75 36.74 35.53 35.11 40.41 35.45 33.22 40.19
M 33.74 37.49 36.35 35.96 40.90 36.28 34.18 40.71
A 32.78 36.47 35.36 34.97 39.75 35.28 33.22 39.57
Ma 30.44 34.24 33.10 32.70 37.52 33.02 30.90 37.35
Ju 28.91 32.81 31.65 31.24 36.12 31.57 29.38 35.96
Ji 29.52 33.35 32.20 31.80 36.62 32.12 29.97 36.46
Au 31.74 35.41 34.30 33.92 38.64 34.23 32.17 38.47
S 33.25 36.92 35.81 35.42 40.23 35.73 33.69 40.05
0] 32.91 36.77 35.60 35.19 40.31 35.52 33.37 40.10
N 31.06 35.26 33.99 33.55 39.13 33.90 31.57 38.89
D 29.91 34.32 32.99 32.52 38.37 32.90 30.44 38.12
T 1148414 12916.19  12484.27 12333.40  14199.30 12454.77 11654.78 14126.94
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Table 4. Monthly average Clearness index (K7 = g)

Hn
Mo Ka Dh Th Nd Ml Kt Id Co
J 1.076 1.079 1.078 1.078 1.082 1.078 1.077 1.081
F 1.079 1.080 1.080 1.080 1.082 1.080 1.079 1.082
M 1.082 1.082 1.082 1.082 1.082 1.082 1.082 1.082
A 1.085 1.084 1.084 1.084 1.083 1.084 1.085 1.083
Ma 1.087 1.085 1.086 1.086 1.083 1.086 1.087 1.083
Ju 1.088 1.086 1.087 1.087 1.083 1.087 1.088 1.084
J 1.088 1.086 1.087 1.087 1.083 1.087 1.088 1.083
Au 1.086 1.085 1.085 1.085 1.083 1.085 1.086 1.083
S 1.083 1.083 1.083 1.083 1.082 1.083 1.083 1.082
0] 1.080 1.081 1.080 1.080 1.082 1.080 1.080 1.082
N 1.077 1.079 1.078 1.078 1.082 1.078 1.077 1.081
D 1.076 1.078 1.077 1.077 1.082 1.077 1.076 1.081
1.089 T 1.003
1.087
ME_ 1.085
w 1.001
< Los3f-
£ rosif
z 0.999
= 1079
o
1.077
1.075 1 1 1 1 1 1 1 1 1 1 1 1 0.997
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month
|—o— Clearness index (Kj) - o - Relative sunshine duration (SIS,,)I
(a - Kabul)
1.087 T L0025
1.0855
g - 1.0015
4 LOB4|
Z
=
; 1.0825 = L.0005
g
= 10811
o
C = 0.9995
1.0795 |-
1.078 1 1 1 1 1 1 1 1 1 1 1 1 $(.9985
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

I—o— Clearness index (Kp) - o - Relative sunshine duration (SIS.,)I

(b -Dhaka)
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Figure 4. Zone-wise comparison of sunshine duration and day length with respect to the clearness index
2735

Relative sunshine duration, S/S,

Relative sunshine duration, S/S,

Relative sunshine duration, S/S,



Mazumder and Deb/Journal of Solar Energy Research Volume 10 Number 4 Autumn (2025) 2726-2740

= = NN W W R R
S . S W S h =S N 2

th

Estimated global solar radiation, H (MJ m? day™)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

Figure 5. Monthly estimated solar radiation for 1 year (2025) in different South Asian zones
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Figure 6. Annual solar radiation potential in different South Asian zones

Overall, the monthly average solar radiation values Table 5. Verification of model outcomes among
across the eight South Asian locations provide Mean Bias Error (MBE),Root Mean Square Error
valuable insights into regional solar energy potential (RMSE), and the Correlation Coefficient (R?) for
and highlight the role of atmospheric conditions and different South Asian Zones

solar geometry. Generally, all stations show a Locat R MBE RMSE Ref Period
uniform  monthly average radiation pattern ions

throughout the year 2025. The annual average of Dh 0.889 0.018 0.240 [42] 1961-
solar radiation values were calculated as 3146.65 4 2013
KWh/m?/y for Kabul, 3539.04 KWh/m?/y for

Dhaka, 3420.69 KWh/m?/y for Thimphu, 3379.35 Nd 0.91 004  [43] 1980-
KWh/m?/y for New Delhi , 3890.61 KWh/m?/ - 2020
y for Male, 3412.61 KWh/m?/y for Kathmandu,

KWh/m?/y for Colombo. Based on these results,
the regions with the most key potential are ranked as
follows: Male > Colombo > Dhaka > Thimphu >
Kathmandu > New Delhi > Islamabad >

Kabul (Figure 6).

2005

Id 0007 0 672 [23] 2022
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In the statistical assessment, Kathmandu exhibited a
relatively high coefficient of determination (R? =
0.991), indicating strong agreement with the
observed data, as shown in Table 5. In contrast,
other regions recorded comparatively lower R2
values, suggesting weaker predictive accuracy
compared to the mean of the measured observations.
Therefore, the Angstrom-type empirical model for
Kathmandu vyielded the lowest RMSE and MBE
values, confirming its superior  predictive
performance among the South Asian locations
investigated.

5. Limitations of the study and the future work

Solar energy has become one of the leading
renewable energy sources in South Asia.
Improvements in high-efficiency Solar panels, low-
cost materials, and better energy storage systems are
expected to further support this growth. Additionally,
the integration of machine learning techniques for
solar radiation forecasting can improve prediction
accuracy, enhance grid stability, and assist in
designing efficient solar energy systems. Despite
these advancements, challenges such as seasonal
fluctuations, irregular sunlight, limited land
availability, inadequate infrastructure, and financial
limitations persist. Besides, climate change may also
impact solar radiation patterns, underscoring the
need for continuous monitoring and regular model
updates.To build a sustainable solar-based energy
system in the region, these barriers must be
addressed through innovation, proper planning, and
supportive policies.

6. Conclusion

Energy plays a fundamental role in life for both
individuals and nations. Yet, the world is currently
facing a severe energy crisis. Among the alternative
solutions, solar energy appears exceptional promise,
however, its performance varies with time and
geographical location. This study demonstrates that
solar radiation exhibits clear seasonal variations
influenced by the day of the year and the altitude of a
given location. The amount of solar energy reaching
the Earth’s surface is essential for various fields,
including hydrology, agriculture, climatology, and
meteorological modeling. Because solar energy is
more variable than other energy sources, solar power
systems must be installed in optimal locations to
maximize efficiency and output. Among the eight
analyzed locations, Male received the highest
amount of annual solar energy at 3890.61 MJ/mz,
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while Kabul recorded the lowest amount of solar
energy over the year at 3146.65 MJ/m2. Significantly,
this research demonstrates that the Angstrom based
linear regression model is efficiently applicable to
solar radiation data measurements for the eight South
Asian cities studied. Statistically, Kathmandu
demonstrated the best model performance, recording
the highest R? value (0.991) and the lowest error
indices (MBE =-0.033, RMSE = 0.225). In contrast,
the three countries( Dhaka, New Delhi, Islamabad)
exhibited comparatively lower R? values and higher
RMSE and MBE scores, indicating weaker model
performance.The remaining four countries could not
be reliably estimated using the Angstrom empirical
model. Hence, their corresponding MBE, RMSE, R?
values were not obtained.This is significant because
it demonstrates the potential for estimating solar
energy availability even when direct measurements
are not always available, which is essential for
designing and sizing solar systems.Based on the
model measured data , solar radiation increased from
July to September (36.12 to 40.23KWh/m?/d) for
Male, (28.91 to 33.25 KWh/m?/d) for Kabul and in
most other regions. Among the eight locations
studied, Male showed the most significant solar
energy potential, followed by: Male > Colombo >
Dhaka > Thimphu > Kathmandu > New Delhi >
Islamabad > Kabul.
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Nomenclature

a Angstrom empirical constant (-)
b Angstrom empirical constant (-)
H Monthly mean daily solar radiation on a

horizontal surface (MJ/m?/d)

H, Monthly mean extraterrestrial radiation on a
horizontal surface (MJ/m?/d)
Hé Monthly mean clearness index (-)
0
Hyeasured Measured value of solar radiation(M] /m?/
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d)
Hpredicted Predicted value of solar radiation(MJ/m?/
d)
Isc Solar constant (W/m2)
Kr Clearness index (-)
m Total number of observation points (-)
n Day of the year
S Bright sunshine duration(hour)
So Maximum sunshine duration(hour)
S Monthly mean hours of bright
sunshine(hour)
So Monthly mean of the maximum possible
daily sunshine duration or day length(hour)
% Monthly mean proportion of potential
sunshine hours (-)
1) Declination angle(® )
1) The sunset hour angle (° )
1) Latitude (° )
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