Triple-Layer Photovoltaic Module with Radiative Cooling and Photocatalytic Air Purification

Document Type : Research Article

Authors

1 Department of Electronics and Communication Engineering, Mohan Babu University (Erstwhile Sree Vidyanikethan Engineering College), Tirupati, India.

2 Department of Electrical and Electronics Engineering, Ballari Institute of Technology and Management, Ballari, India.

3 Department of Electrical and Electronics Engineering, S. A. Engineering college, Chennai, India.

4 Department of Electrical and Electronics Engineering Mother Theresa Institute of Engineering and Technology, Palamaner, India.

5 Department of Electrical and Electronics Engineering, P. T. Lee. Chengalvaraya Naicker College of Engineering and Technology, Oovery, India.

Abstract

We present a vertically stacked triple-layer rooftop module that integrates a SiO₂–TiO₂ radiative-cooling film, a TiO₂–ZnO photocatalytic coating, and a perovskite–silicon tandem photovoltaic device. Outdoor field experiments (n = 4 prototype and n = 4 control modules; rooftop tests in Chandragiri, Andhra Pradesh, India) showed a mean surface temperature reduction of 6.5 ± 0.8 °C and a 2.1% relative increase in PV power output under AM1.5G-equivalent conditions. Simultaneously, the photocatalytic layer achieved 72.4% removal efficiency for volatile air pollutants over a 6-hour test window. Real-time monitoring used an ESP32 microcontroller, K-type thermocouples, calibrated gas sensors, and MQTT-based telemetry to a Grafana dashboard. Statistical analysis confirmed significant differences (p < 0.01) in both cooling and pollutant removal compared with controls. The proposed architecture offers a reproducible and scalable pathway to multifunctional PV modules that enhance energy yield, reduce thermal stress, and actively contribute to urban air quality improvement addressing both environmental and energy challenges in a single integrated solution.

Keywords

  1. Xia, Z., Wang, N., Shen, L., Sha, Y., & Liu, S. (2025). Passive radiative cooling films doped with of different particle sizes with excellent solar reflectivity and high infrared emissivity. Solar Energy Materials and Solar Cells, 292, 113812.https://doi.org/10.1016/j.solmat.2025.113812
  2. Jing, W., Ji, Y., Xie, Y., Lai, Q., Wu, G., Xie, B., et al. (2024). Enhancing thermoelectric generation: Integrating passive radiative cooling and concentrated solar heating with consideration of parasitic heat conduction. Case Studies in Thermal Engineering, 62, 105232. https://doi.org/10.1016/j.csite.2024.105232
  3. Mehta, P., Patel, V., & Kumar, S. (2025). Performance assessment of thermal energy storage system for solar thermal applications. Scientific Reports, 15(13876). https://doi.org/10.1038/s41598-025-92458-y
  4. Das, U., Dar, T. H., & Nandi, C. (2025). Processing Carbon Dioxide into Ethanol Based on Thermal Energy Supported by Solar Energy. Thermal Engineering, 72, 144–156. https://doi.org/10.1134/S0040601524700770
  5. Kumar, M. M., Rajesh, S., Gnanaraj, S. J. P., et al. (2025). Enhanced thermal management in solar still-pond systems for sustainable infrastructure and water purification. International Journal of Energy for a Clean Water Age. https://doi.org/10.1007/s42108-025-00357-9
  6. Gao, Z., Yu, S., Li, Z., Pan, D., Xu, Z., & Zhao, T. (2023). Ultra-Broadband Spectrally Selective Absorber for Solar Thermal Absorption Based on Square-Ring Meta-Structure. IEEE Photonics Journal, 15(1), 4600207. https://doi.org/10.1109/JPHOT.2022.3228580
  7. Saint-Andre, S., Barrera, M. P., & Rey-Stolle, I. (2022). Thermal Load in Thinned -Based Multijunction Space Solar Cells. IEEE Journal of Photovoltaics, 12(2), 646–651. https://doi.org/10.1109/JPHOTOV.2021.3138830
  8. de Arrieta, I. G., Echániz, T., Fuente, R., & López, G. A. (2024). Angle-Resolved Direct Emissivity Measurements on Unencapsulated Solar Cells for Passive Thermal Control. IEEE Journal of Photovoltaics, 14(3), 459–465. https://doi.org/10.1109/JPHOTOV.2024.3372329
  9. Tallent, R. J., & Oman, H. (1962). Solar-cell performance with concentrated sunlight. Transactions of the American Institute of Electrical Engineers, Part II: Applications and Industry, 81(1), 30–33. https://doi.org/10.1109/TAI.1962.6371786
  10. Martínez, J. F., Steiner, M., Wiesenfarth, M., Glunz, S. W., & Dimroth, F. (2019). Thermal Analysis of Passively Cooled Hybrid Module Using Cell as Heat Distributor. IEEE Journal of Photovoltaics, 9(1), 160–166. https://doi.org/10.1109/JPHOTOV.2018.2877004
  11. Johnson, C. M., Woo, S., & Conibeer, G. J. (2014). Limiting Efficiency of Erbium-Based Up-Conversion for Generalized Realistic Solar Cells. IEEE Journal of Photovoltaics, 4(3), 799–806.https://doi.org/10.1109/JPHOTOV.2014.2303645
  12. Oliveto, V. J., Boyd, C., Smith, D., Hughes, M., & Borca-Tasciuc, D.-A. (2022). Luminescent Solar Concentrators: A Review of Nanoengineering Opportunities for Reducing Surface Losses. IEEE Transactions on Nanotechnology, 21, 360–366. https://doi.org/10.1109/TNANO.2022.3188962
  13. Verma, A., Priyadarshini, U., & Remya, N. (2025). Solar photocatalytic degradation of ciprofloxacin using biochar supported zinc oxide-tungsten oxide photocatalyst. Environmental Science and Pollution Research, 32, 9412–9428. https://doi.org/10.1007/s11356-024-33764-2
  14. Deepthi, V., Sebastian, A., Vidhya, B., et al. (2024). Deposition and characterization of ternary thin film based photocatalyst for an enhanced visible light-driven photodegradation of model pollutants. Journal of Sol-Gel Science and Technology, 109, 362–375. https://doi.org/10.1007/s10971-023-06268-7
  15. Arunprasad, V., Rapur, P., Hemanand, D., et al. (2025). Design and fabrication of nanoarchitectures of -decorated hybrid photocatalyst for high-efficiency solar fuel generation. Journal of Materials Science: Materials in Electronics, 36, 192. https://doi.org/10.1007/s10854-025-14285-1
  16. Dufner, L., Hofmann, P., Dobslaw, D., et al. (2025). Degradation of bacteria for water purification in a -coated photocatalytic reactor illuminated by solar light. Applied Water Science, 15, 101. https://doi.org/10.1007/s13201-025-02453-x
  17. Chou, H.-T., Liu, H.-C., Hsu, H.-C., Chen, C.-Y., & Lai, C.-H. (2018). Investigation of Deformed Aggregates Doped Nanoparticles Photoanode Applied for Dye-Sensitized Solar Cells. IEEE Journal of Photovoltaics, 8(3), 763–768.https://doi.org/10.1109/JPHOTOV.2018.2806307
  18. Opoku, F., Agorku, E. S., Oppong, S. O.-B., Kwaansa-Ansah, E. E., Asare-Donkor, N. K., & Govender, P. P. (2025). Visible-light-driven photocatalyst for solar-to-hydrogen efficiency via a Type-II van der Waals heterostructure. Applied Surface Science, 703, 163433. https://doi.org/10.1016/j.apsusc.2025.163433
  19. Gebremariam, T. T., Longchin, P., Thoumrungroj, A., Sutthiphong, T., & Hunsom, M. (2025). Solar-light-driven hydrogen production via noble-metal-free heterostructure photocatalyst. Materials Today Energy, 53, 102021.https://doi.org/10.1016/j.mtener.2025.102021
  20. Palusamy, S., Inbasekaran, M., Anbazhagan, S., Balu, K., Durai, M., Ganesamoorthy, T., et al. (2025). photocatalyst for photocatalytic degradation of ciprofloxacin under solar light irradiation. Journal of Molecular Structure, 1339, 142352. https://doi.org/10.1016/j.molstruc.2025.142352
  21. Jia, Z., Guo, X., Yin, X., et al. (2025). Efficient near-infrared harvesting in perovskite-organic tandem solar cells. Nature, 643, 104–110. https://doi.org/10.1038/s41586-025-09181-x
  22. Yang, M., Tian, R., Sun, K., et al. (2025). Achieving efficient all-perovskite tandem solar cells through the modulation of crystallization in perovskite solar cells. Science China Chemistry. https://doi.org/10.1007/s11426-025-2649-y
  23. Yang, G., Deng, C., Li, C., et al. (2025). Towards efficient, scalable and stable perovskite/silicon tandem solar cells. Nature Photonics, 19, 913–924. https://doi.org/10.1038/s41566-025-01732-y
  24. Hu, C., Shi, C., Qian, H., et al. (2025). Theoretical Analysis of Perovskite/Ultrathin Silicon Tandem Solar Cells with Nanocone Plasmonics. Plasmonics, 20, 5847–5856. https://doi.org/10.1007/s11468-025-02975-9
  25. Takeda, Y., Yamanaka, K., & Kato, N. (2025). Voltage-Matched All-Perovskite Double- and Triple-Junction Solar Modules for Building-Integrated Photovoltaics. IEEE Journal of Photovoltaics, 15(5), 672–685. https://doi.org/10.1109/JPHOTOV.2025.3577361
  26. Zhen, Z., Taoyun, X., Yanping, S., Wang, L., Jia, P., & Yu, J. (2016). A Method to Test Operating Cell Temperature for Modules. IEEE Journal of Photovoltaics, 6(1), 272–277. https://doi.org/10.1109/JPHOTOV.2015.2501716
  27. Saw, M. H., Singh, J. P., Wang, Y., Birgersson, K. E., & Khoo, Y. S. (2020). Electrical Performance Study of Colored Building-Integrated Modules. IEEE Journal of Photovoltaics, 10(4), 1027–1034. https://doi.org/10.1109/JPHOTOV.2020.2981829
  28. Chandran, B., Oh, J. K., Lee, S. W., et al. (2024). Solar-Driven Sustainability: III-V Semiconductor for Green Energy Production Technologies. Nano-Micro Letters, 16, 244. https://doi.org/10.1007/s40820-024-01412-6
  29. Meng, X., Xing, Z., & Hu, X. (2022). Large-area Flexible Organic Solar Cells: Printing Technologies and Modular Design. Chinese Journal of Polymer Science, 40, 1522–1566. https://doi.org/10.1007/s10118-022-2803-4
  30. Guo, S., Kurban, A., He, Y., Wu, F., Pei, H., & Song, G. (2023). Multi-Objective Sizing of Solar-Wind-Hydro Hybrid Power System with Doubled Energy Storages Under Optimal Coordinated Operational Strategy. CSEE Journal of Power and Energy Systems, 9(6), 2144–2155. https://doi.org/10.17775/CSEEJPES.2021.00190
  31. Alzahrani, A., et al. (2023). A Strategy for Multi-Objective Energy Optimization in Smart Grid Considering Renewable Energy and Batteries Energy Storage System. IEEE Access, 11, 33872–33886. https://doi.org/10.1109/ACCESS.2023.3263261
  32. Wang, Z., Luo, Y., & Wu, W., et al. (2025). Multi-objective optimization models for power load balancing in distributed energy systems. Energy Informatics, 8, 104. https://doi.org/10.1186/s42162-025-00526-4
  33. Guan, J., Liu, J., & Mo, W., et al. (2025). On-chip solar power source for self-powered smart microsensors in bulk process. Communications Engineering, 4, 23. https://doi.org/10.1038/s44172-025-00358-w
  34. Liang, H., Zhang, X., Wang, F., et al. (2024). Bio-inspired micropatterned thermochromic hydrogel for concurrent smart solar transmission and rapid visible-light stealth at all-working temperatures. Light: Science & Applications, 13, 202. https://doi.org/10.1038/s41377-024-01525-y
  35. Makita, K., et al. (2022). Three-Junction Solar Cells With 28.06% Efficiency Fabricated Using a Bonding Technique Involving Nanoparticles and an Adhesive. IEEE Journal of Photovoltaics, 12(2), 639–645. https://doi.org/10.1109/JPHOTOV.2021.3132895
  36. Makita, K., et al. (2023). Multijunction Solar Cells Fabricated via Mechanical Stack Technology Using Nanoparticles and Metal-Assisted Chemical Etching. IEEE Journal of Photovoltaics, 13(1), 105–112. https://doi.org/10.1109/JPHOTOV.2022.3215263
  37. Lu, J., Kovalgin, A. Y., van der Werf, K. H. M., Schropp, R. E. I., & Schmitz, J. (2011). Integration of Solar Cells on Top of Chips Part I: Solar Cells. IEEE Transactions on Electron Devices, 58(7), 2014–2021. https://doi.org/10.1109/TED.2011.2143716
  38. Ren, Z., et al. (2018). Ultra-Thin Double-Junction Solar Cell with Carbon-Doped Emitter. IEEE Journal of Photovoltaics, 8(6), 1627–1634. https://doi.org/10.1109/JPHOTOV.2018.2870720
  39. Kumar, K. S., Vasanthi, R., & Shakir, M., et al. (2025). Experimental investigation to enhancing the energy efficiency of a solar-powered Visi cooler. Scientific Reports, 15, 18327. https://doi.org/10.1038/s41598-025-01620-z
  40. Liller, J., Goel, R., & Aziz, A., et al. (2025). Development of a battery free, solar powered, and energy aware fixed wing unmanned aerial vehicle. Scientific Reports, 15, 6141. https://doi.org/10.1038/s41598-025-90729-2
  41. Prentice, G. S. K., Brent, A. C., & de Kock, I. H. (2021). A Strategic Management Framework for the Commercialization of Multi technology Renewable Energy Systems: The Case of Concentrating Solar Power in South Africa. IEEE Transactions on Engineering Management, 68(6), 1690–1702. https://doi.org/10.1109/TEM.2020.3039941
  42. Kaler, S., & Yazdani, A. (2025). An Isolated Modular Multiport Converter for the Integration of Photovoltaic Energy Sources and Battery Storage in Networks. IEEE Transactions on Energy Conversion, 40(3), 1726–1735. https://doi.org/10.1109/TEC.2024.3488594
  43. Kulothungan, G. S., Rathore, A. K., Rodriguez, J., & Srinivasan, D. (2020). Fundamental Device Switching Frequency Control of Current-Fed Nine-Level Inverter for Solar Application. IEEE Transactions on Industry Applications, 56(2), 1839–1849. https://doi.org/10.1109/TIA.2019.2957714