Techno-agroecological Potential of Integrated Agrivoltaic Systems in Olive Trees located in Southern Spain

Document Type : Research Article

Authors

Advances in Photovoltaic Technology(AdPVTech), CEACTEMA, University of Jaén(UJA), Las Lagunillas Campus, Jaén 23071, Spain.

10.22059/jser.2025.401820.1630

Abstract

Olivoltaics, the integration of photovoltaic (PV) systems within olive groves, offers a promising pathway to reconcile renewable energy expansion with Mediterranean agriculture. This study evaluates the techno-agroecological potential of olivoltaic systems in southern Spain, combining a structured literature synthesis with a regional case study. Scenarios for Andalusia, the world’s leading olive-producing region, considering system design variables (module transparency, tilt, and height), land allocation fractions, and cultivar light responses are assessed. Results indicate that deploying olivoltaic systems on 80,000 ha of intensive and super-intensive olive groves could generate ~15 TWh/year of electricity, reduce CO₂ emissions by 3.8 Mt/year, save 12–30% of irrigation water, and create over 24,000 jobs, while maintaining land equivalent ratios above 1.3. However, uncertainties remain regarding long-term yield stability, olive oil quality, pest dynamics, and ecological effects, underscoring the need for multi-year pilot projects. The findings demonstrate the potential of olivoltaics as a regional climate adaptation and mitigation strategy, while also providing a roadmap for future empirical research and policy development.

Keywords

[1]         Mouhib, E., Fernández-Solas, Á., Pérez-Higueras, P. J., Fernández-Ocaña, A. M., Micheli, L., Almonacid, F., & Fernández, E. F. (2024). Enhancing Land Use: Integrating Bifacial PV and Olive Trees in Agrivoltaic Systems. Appl. Energy, 359. DOI:10.1016/j.apenergy.2024.122660
[2]         IEA PVPS Task 13, 2025, Dual Land Use for Agriculture and Solar Power Production: Overview and Performance of Agrivoltaic Systems. Report.
[3]         Adeh, E. H., Good, S. P., Calaf, M., & Higgins, C. W. (2019). Solar PV Power Potential Is Greatest Over Croplands. Sci. Rep., 9(1), pp. 1–6. DOI:10.1038/s41598-019-47803-3
[4]         Fernández, J. E., Perez-Martin, A., Torres-Ruiz, J. M., Cuevas, M. V., Rodriguez-Dominguez, C. M., Elsayed-Farag, S., Morales-Sillero, A., García, J. M., Hernandez-Santana, V., & Diaz-Espejo, A. (2013). A Regulated Deficit Irrigation Strategy for Hedgerow Olive Orchards with High Plant Density. Plant Soil, 372(1–2). DOI:10.1007/s11104-013-1704-2
[5]         Martins, S., Pereira, S., Dinis, L. T., & Brito, C. (2024). Enhancing Olive Cultivation Resilience: Sustainable Long-Term and Short-Term Adaptation Strategies to Alleviate Climate Change Impacts. Horticulturae, 10(10). DOI:10.3390/horticulturae10101066
[6]         Ministerio de Agricultura, MAPA. (2024). Estadísticas de Superficies y Producciones Agrícolas. Retrieved June 12,2025,from https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/agricultura/superficies-producciones-anuales-cultivos/.
[7]         Fernández, E. F., Villar-Fernández, A., Montes-Romero, J., Ruiz-Torres, L., Rodrigo, P. M., Manzaneda, A. J., & Almonacid, F. (2022). Global Energy Assessment of the Potential of Photovoltaics for Greenhouse Farming. Appl. Energy, 309. DOI:10.1016/j.apenergy.2021.118474.
[8]         Schindele, S., Trommsdorff, M., Schlaak, A., Obergfell, T., Bopp, G., Reise, C., Braun, C., Weselek, A., Bauerle, A., Högy, P., Goetzberger, A., & Weber, E. (2020). Implementation of Agrophotovoltaics: Techno-Economic Analysis of the Price-Performance Ratio and Its Policy Implications. Appl. Energy, 265. DOI:10.1016/j.apenergy.2020.114737
[9]         Zainali, S., Lu, S. M., Fernández-Solas, Á., Cruz-Escabias, A., Fernández, E. F., Zidane, T. E. K., Honningdalsnes, E. H., Nygård, M. M., Leloux, J., Berwind, M., Trommsdorff, M., Amaducci, S., Gorjian, S., & Campana, P. E. (2025). Modelling, Simulation, and Optimisation of Agrivoltaic Systems: A Comprehensive Review. Appl. Energy, 386. DOI:10.1016/j.apenergy.2025.125558.
[10]       Trommsdorff, M., Dhal, I. S., Özdemir, Ö. E., Ketzer, D., Weinberger, N., & Rösch, C. (2022). Agrivoltaics: Solar Power Generation and Food Production. Solar Energy Advancements in Agriculture and Food Production Systems. DOI:10.1016/B978-0-323-89866-9.00012-2.
[11]       Barron-Gafford, G. A., Pavao-Zuckerman, M. A., Minor, R. L., Sutter, L. F., Barnett-Moreno, I., Blackett, D. T., Thompson, M., Dimond, K., Gerlak, A. K., Nabhan, G. P., & Macknick, J. E. (2019). Agrivoltaics Provide Mutual Benefits across the Food–Energy–Water Nexus in Drylands. Nat. Sustain., 2(9), pp. 848–855. DOI:10.1038/s41893-019-0364-5.
[12]       Fernández-Solas, A., Fernández-Ocaña, A. M., Almonacid, F., & Fernández, E. F. (2023). Potential of Agrivoltaics Systems into Olive Groves in the Mediterranean Region. Appl. Energy, 352(March). DOI:10.1016/j.apenergy.2023.121988
[13]       Ciocia, A., Enescu, D., Amato, A., Malgaroli, G., Polacco, R., Amico, F., & Spertino, F. (2022). Agrivoltaic System: A Case Study of PV Production and Olive Cultivation in Southern Italy. (2022) 57th Int. Univ. Power Eng. Conf. Big Data Smart Grids, UPEC 2022 - Proc., pp. 1–6. DOI:10.1109/UPEC55022.2022.9917595
[14]       Casares de la Torre, F. J., Varo-Martinez, M., López-Luque, R., Ramírez-Faz, J., & Fernández-Ahumada, L. M. (2022). Design and Analysis of a Tracking / Backtracking Strategy for PV Plants with Horizontal Trackers after Their Conversion to Agrivoltaic Plants. Renew. Energy, 187, pp. 537–550.DOI:10.1016/j.renene.2022.01.081
[15]       Varo-Martínez, M., López-Bernal, A., Fernández de Ahumada, L. M., López-Luque, R., & Villalobos, F. J. (2024). Simulation Model for Electrical and Agricultural Productivity of an Olive Hedgerow Agrivoltaic System. J. Clean. Prod.,477(February). DOI:10.1016/j.jclepro.2024.143888
[16]       Goetzberger, A., & Zastrow, A. (1982). On the Coexistence of Solar-Energy Conversion and Plant Cultivation. Int. J. Sol. Energy, 1(1), pp. 55-69. DOI:10.1080/01425918208909875.
[17]       Pascaris, A. S., Schelly, C., & Pearce, J. M. (2020). A First Investigation of Agriculture Sector Perspectives on the Opportunities and Barriers for Agrivoltaics. Agronomy, 10(12). DOI:10.3390/agronomy10121885
[18]       Dupraz, C., Marrou, H., Talbot, G., Dufour, L., Nogier, A., & Ferard, Y. (2011). Combining Solar Photovoltaic Panels and Food Crops for Optimising Land Use: Towards New Agrivoltaic Schemes. Renew. Energy, 36(10), pp. 2725–2732. DOI:10.1016/j.renene.2011.03.005.
[19]       Trommsdorff, M., Hopf, M., Hörnle, O., Berwind, M., Schindele, S., & Wydra, K. (2023). Can Synergies in Agriculture through an Integration of Solar Energy Reduce the Cost of Agrivoltaics? An Economic Analysis in Apple Farming. Appl. Energy, 350(August). DOI:10.1016/j.apenergy.2023.121619.
[20]       Gorjian, S., Bousi, E., Özdemir, Ö. E., Trommsdorff, M., Kumar, N. M., Anand, A., Kant, K., & Chopra, S. S. (2022). Progress and Challenges of Crop Production and Electricity Generation in Agrivoltaic Systems Using Semi-Transparent Photovoltaic Technology. Renew. Sustain. Energy Rev., 158 (May 2021). DOI:10.1016/j.rser.2022.112126.
[21]       Lu, L., Effendy Ya’acob, M., Shamsul Anuar, M., & Nazim Mohtar, M. (2022). Comprehensive Review on the Application of Inorganic and Organic Photovoltaics as Greenhouse Shading Materials. Sustain. Energy Technol. Assessments, 52(January). DOI:10.1016/j.seta.2022.102077.
[22]       Xin, P., Li, B., Zhang, H., & Hu, J. (2019). Optimization and Control of the Light Environment for Greenhouse Crop Production. Sci. Rep., 9(1), pp. 1–13. DOI:10.1038/s41598-019-44980-z.
[23]       Wang, M., Tao, S., Zhang, J., Li, J., Ding, H., & Sun, Y. (2021). Research on Shading Effect inside Photovoltaic Greenhouses and Its Optimization Method Based on Parametric Modeling. 4th Int. Conf. Energy, Electr. Power Eng. CEEPE 2021, pp. 1172–1177. DOI:10.1109/CEEPE51765.2021.9475684.
[24]       Fraunhofer ISE (2020). Agrivoltaics: Opportunities for Agriculture and the Energy Transition. Retrieved from www.ise.fraunhofer.de/en.
[25]       Ma Lu, S., Amaducci, S., Gorjian, S., Haworth, M., Hägglund, C., Ma, T., Zainali, S., & Campana, P. E. (2024). Wavelength-Selective Solar Photovoltaic Systems to Enhance Spectral Sharing of Sunlight in Agrivoltaics. Joule. DOI:10.1016/j.joule.2024.08.006.
[26]       Wu, B. Sen, Rufyikiri, A. S., Orsat, V., & Lefsrud, M. G. (2019). Re-Interpreting the Photosynthetically Action Radiation (PAR) Curve in Plants. Plant Sci., 289. DOI:10.1016/j.plantsci.2019.110272.
[27]       Ma Lu, S., Zainali, S., Stridh, B., Avelin, A., Amaducci, S., Colauzzi, M., & Campana, P. E. (2022). Photosynthetically Active Radiation Decomposition Models for Agrivoltaic Systems Applications. Sol. Energy, 244(February), pp. 536–549. DOI:10.1016/j.solener.2022.05.046.
[28]       Farquhar, G. D., von Caemmerer, S., & Berry, J. A. (1980). A Biochemical Model of Photosynthetic CO2 Assimilation in Leaves of C3 Species. Planta, 149(1), pp. 78–90. DOI:10.1007/BF00386231.
[29]       Ravilla, A., Shirkey, G., Chen, J., Jarchow, M., Stary, O., & Celik, I. (2024). Techno-Economic and Life Cycle Assessment of Agrivoltaic System (AVS) Designs. Sci. Total Environ., 912(October 2023), p. 169274. DOI:10.1016/j.scitotenv.2023.169274.
[30]       Fraga, H., Moriondo, M., Leolini, L., & Santos, J. A. (2021). Mediterranean Olive Orchards under Climate Change: A Review of Future Impacts and Adaptation Strategies. Agronomy, 11(1), pp. 1–15. DOI:10.3390/agronomy11010056.
[31]       Agromillora. (2024).Del Olivar Tradicional Al Superintensivo: La Senda Del Azar. Retrieved June 12,2025,from https://www.agromillora.com/es/del-olivar-tradicional-al-superintensivo-la-senda-del-azar/.
[32]       Allalout, A., Krichène, D., Methenni, K., Taamalli, A., Oueslati, I., Daoud, D., & Zarrouk, M. (2009). Characterization of Virgin Olive Oil from Super Intensive Spanish and Greek Varieties Grown in Northern Tunisia. Sci. Hortic., 120(1), pp. 77–83. DOI:10.1016/j.scienta.2008.10.006.
[33]       Pérez-Ruiz, M., Rallo, P., Jiménez, M. R., Garrido-Izard, M., Suárez, M. P., Casanova, L., Valero, C., Martínez-Guanter, J., & Morales-Sillero, A. (2018). Evaluation of Over-the-Row Harvester Damage in a Super-High-Density Olive Orchard Using on-Board Sensing Techniques. Sensors, 18(4), pp. 1–16. DOI:10.3390/s18041242
[34]       Gómez-del-Campo, M., Trentacoste, E. R., & Connor, D. J. (2020). Long-Term Effects of Row Spacing on Radiation Interception, Fruit Characteristics and Production of Hedgerow Olive Orchard (Cv. Arbequina). Sci. Hortic., 272(June), p. 109583. DOI:10.1016/j.scienta.2020.109583.
[35]       Chiesi, M., Costafreda-Aumedes, S., Argenti, G., Battista, P., Fibbi, L., Leolini, L., Moriondo, M., Rapi, B., Sabatini, F., & Maselli, F. (2022). Estimating the GPP of Olive Trees with Variable Canopy Cover by the Use of Sentinel-2 MSI Images. Eur. J. Agron., 141(September), p. 126618. DOI:10.1016/j.eja.2022.126618.
[36]       Lodolini, E. M., Polverigiani, S., Giorgi, V., Famiani, F., & Neri, D. (2023). Time and Type of Pruning Affect Tree Growth and Yield in High-Density Olive Orchards. Sci. Hortic., 311, p. 111831. DOI:10.1016/j.scienta.2023.111831.
[37]       Cherbiy-Hoffmann, S. U., Hall, A. J., & Rousseaux, M. C. (2013). Fruit, Yield, and Vegetative Growth Responses to Photosynthetically Active Radiation during Oil Synthesis in Olive Trees. Sci. Hortic., 150, pp. 110–116. DOI:10.1016/j.scienta.2012.10.027.
[38]       Filippucci, M., Rinchi, G., Brunori, A., Nasini, L., Regni, L., & Proietti, P. (2016). Architectural Modelling of an Olive Tree. Generative Tools for the Scientific Visualization of Morphology and Radiation Relationships. Ecol. Inform., 36, pp. 84–93. DOI:10.1016/j.ecoinf.2016.09.004.
[39]       Chartzoulakis, K., Patakas, A., & Bosabalidis, A. M. (1999). Changes in Water Relations, Photosynthesis and Leaf Anatomy Induced by Intermittent Drought in Two Olive Cultivars. Environ. Exp. Bot., 42(2), pp. 113–120. DOI:10.1016/S0098-8472(99)00024-6.
[40]       De Casas, R. R., Vargas, P., Pérez-Corona, E., Manrique, E., García-Verdugo, C., & Balaguer, L. (2011). Sun and Shade Leaves of Olea Europaea Respond Differently to Plant Size, Light Availability and Genetic Variation. Funct. Ecol., 25(4), pp. 802–812. DOI:10.1111/j.1365-2435.2011.01851
[41]       Juan Vilar (2024).Consideraciones Sobre La Busqueda de Ventajas Competitivas En Olivicultura. El Caso Particular de La Provincia de Jaén. Report.
[42]       Red Eléctrica de España. (2021). Andalusia Is the Second Region with the Highest Installed Power Capacity of Renewable Generation. Retrieved June 12,2025,from  https://www.ree.es/sites/default/files/07_SALA_PRENSA/Documentos/2021/20210312_PR_Andalusia_ENGW.pdf.
[43]       Instituto Nacional de Estadística. (2022). Estadística Sobre El Suministro y Saneamiento Del Agua. Retrieved June 12,2025,from https://www.ine.es/dyngs/Prensa/es/ESSA2022.pdf.
[44]       Aguas de Benahavis. Tarifas. Retrieved June 12,2025,from https://www.aguasdebenahavis.es/tarifas.