[1] Mouhib, E., Fernández-Solas, Á., Pérez-Higueras, P. J., Fernández-Ocaña, A. M., Micheli, L., Almonacid, F., & Fernández, E. F. (2024). Enhancing Land Use: Integrating Bifacial PV and Olive Trees in Agrivoltaic Systems. Appl. Energy, 359. DOI:10.1016/j.apenergy.2024.122660
[2] IEA PVPS Task 13, 2025, Dual Land Use for Agriculture and Solar Power Production: Overview and Performance of Agrivoltaic Systems. Report.
[3] Adeh, E. H., Good, S. P., Calaf, M., & Higgins, C. W. (2019). Solar PV Power Potential Is Greatest Over Croplands. Sci. Rep., 9(1), pp. 1–6. DOI:10.1038/s41598-019-47803-3
[4] Fernández, J. E., Perez-Martin, A., Torres-Ruiz, J. M., Cuevas, M. V., Rodriguez-Dominguez, C. M., Elsayed-Farag, S., Morales-Sillero, A., García, J. M., Hernandez-Santana, V., & Diaz-Espejo, A. (2013). A Regulated Deficit Irrigation Strategy for Hedgerow Olive Orchards with High Plant Density. Plant Soil, 372(1–2). DOI:10.1007/s11104-013-1704-2
[5] Martins, S., Pereira, S., Dinis, L. T., & Brito, C. (2024). Enhancing Olive Cultivation Resilience: Sustainable Long-Term and Short-Term Adaptation Strategies to Alleviate Climate Change Impacts. Horticulturae, 10(10). DOI:10.3390/horticulturae10101066
[6] Ministerio de Agricultura, MAPA. (2024). Estadísticas de Superficies y Producciones Agrícolas. Retrieved June 12,2025,from https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/agricultura/superficies-producciones-anuales-cultivos/.
[7] Fernández, E. F., Villar-Fernández, A., Montes-Romero, J., Ruiz-Torres, L., Rodrigo, P. M., Manzaneda, A. J., & Almonacid, F. (2022). Global Energy Assessment of the Potential of Photovoltaics for Greenhouse Farming. Appl. Energy, 309. DOI:10.1016/j.apenergy.2021.118474.
[8] Schindele, S., Trommsdorff, M., Schlaak, A., Obergfell, T., Bopp, G., Reise, C., Braun, C., Weselek, A., Bauerle, A., Högy, P., Goetzberger, A., & Weber, E. (2020). Implementation of Agrophotovoltaics: Techno-Economic Analysis of the Price-Performance Ratio and Its Policy Implications. Appl. Energy, 265. DOI:10.1016/j.apenergy.2020.114737
[9] Zainali, S., Lu, S. M., Fernández-Solas, Á., Cruz-Escabias, A., Fernández, E. F., Zidane, T. E. K., Honningdalsnes, E. H., Nygård, M. M., Leloux, J., Berwind, M., Trommsdorff, M., Amaducci, S., Gorjian, S., & Campana, P. E. (2025). Modelling, Simulation, and Optimisation of Agrivoltaic Systems: A Comprehensive Review. Appl. Energy, 386. DOI:10.1016/j.apenergy.2025.125558.
[10] Trommsdorff, M., Dhal, I. S., Özdemir, Ö. E., Ketzer, D., Weinberger, N., & Rösch, C. (2022). Agrivoltaics: Solar Power Generation and Food Production. Solar Energy Advancements in Agriculture and Food Production Systems. DOI:10.1016/B978-0-323-89866-9.00012-2.
[11] Barron-Gafford, G. A., Pavao-Zuckerman, M. A., Minor, R. L., Sutter, L. F., Barnett-Moreno, I., Blackett, D. T., Thompson, M., Dimond, K., Gerlak, A. K., Nabhan, G. P., & Macknick, J. E. (2019). Agrivoltaics Provide Mutual Benefits across the Food–Energy–Water Nexus in Drylands. Nat. Sustain., 2(9), pp. 848–855. DOI:10.1038/s41893-019-0364-5.
[12] Fernández-Solas, A., Fernández-Ocaña, A. M., Almonacid, F., & Fernández, E. F. (2023). Potential of Agrivoltaics Systems into Olive Groves in the Mediterranean Region. Appl. Energy, 352(March). DOI:10.1016/j.apenergy.2023.121988
[13] Ciocia, A., Enescu, D., Amato, A., Malgaroli, G., Polacco, R., Amico, F., & Spertino, F. (2022). Agrivoltaic System: A Case Study of PV Production and Olive Cultivation in Southern Italy. (2022) 57th Int. Univ. Power Eng. Conf. Big Data Smart Grids, UPEC 2022 - Proc., pp. 1–6. DOI:10.1109/UPEC55022.2022.9917595
[14] Casares de la Torre, F. J., Varo-Martinez, M., López-Luque, R., Ramírez-Faz, J., & Fernández-Ahumada, L. M. (2022). Design and Analysis of a Tracking / Backtracking Strategy for PV Plants with Horizontal Trackers after Their Conversion to Agrivoltaic Plants. Renew. Energy, 187, pp. 537–550.DOI:10.1016/j.renene.2022.01.081
[15] Varo-Martínez, M., López-Bernal, A., Fernández de Ahumada, L. M., López-Luque, R., & Villalobos, F. J. (2024). Simulation Model for Electrical and Agricultural Productivity of an Olive Hedgerow Agrivoltaic System. J. Clean. Prod.,477(February). DOI:10.1016/j.jclepro.2024.143888
[16] Goetzberger, A., & Zastrow, A. (1982). On the Coexistence of Solar-Energy Conversion and Plant Cultivation. Int. J. Sol. Energy, 1(1), pp. 55-69. DOI:10.1080/01425918208909875.
[17] Pascaris, A. S., Schelly, C., & Pearce, J. M. (2020). A First Investigation of Agriculture Sector Perspectives on the Opportunities and Barriers for Agrivoltaics. Agronomy, 10(12). DOI:10.3390/agronomy10121885
[18] Dupraz, C., Marrou, H., Talbot, G., Dufour, L., Nogier, A., & Ferard, Y. (2011). Combining Solar Photovoltaic Panels and Food Crops for Optimising Land Use: Towards New Agrivoltaic Schemes. Renew. Energy, 36(10), pp. 2725–2732. DOI:10.1016/j.renene.2011.03.005.
[19] Trommsdorff, M., Hopf, M., Hörnle, O., Berwind, M., Schindele, S., & Wydra, K. (2023). Can Synergies in Agriculture through an Integration of Solar Energy Reduce the Cost of Agrivoltaics? An Economic Analysis in Apple Farming. Appl. Energy, 350(August). DOI:10.1016/j.apenergy.2023.121619.
[20] Gorjian, S., Bousi, E., Özdemir, Ö. E., Trommsdorff, M., Kumar, N. M., Anand, A., Kant, K., & Chopra, S. S. (2022). Progress and Challenges of Crop Production and Electricity Generation in Agrivoltaic Systems Using Semi-Transparent Photovoltaic Technology. Renew. Sustain. Energy Rev., 158 (May 2021). DOI:10.1016/j.rser.2022.112126.
[21] Lu, L., Effendy Ya’acob, M., Shamsul Anuar, M., & Nazim Mohtar, M. (2022). Comprehensive Review on the Application of Inorganic and Organic Photovoltaics as Greenhouse Shading Materials. Sustain. Energy Technol. Assessments, 52(January). DOI:10.1016/j.seta.2022.102077.
[22] Xin, P., Li, B., Zhang, H., & Hu, J. (2019). Optimization and Control of the Light Environment for Greenhouse Crop Production. Sci. Rep., 9(1), pp. 1–13. DOI:10.1038/s41598-019-44980-z.
[23] Wang, M., Tao, S., Zhang, J., Li, J., Ding, H., & Sun, Y. (2021). Research on Shading Effect inside Photovoltaic Greenhouses and Its Optimization Method Based on Parametric Modeling. 4th Int. Conf. Energy, Electr. Power Eng. CEEPE 2021, pp. 1172–1177. DOI:10.1109/CEEPE51765.2021.9475684.
[24] Fraunhofer ISE (2020). Agrivoltaics: Opportunities for Agriculture and the Energy Transition. Retrieved from www.ise.fraunhofer.de/en.
[25] Ma Lu, S., Amaducci, S., Gorjian, S., Haworth, M., Hägglund, C., Ma, T., Zainali, S., & Campana, P. E. (2024). Wavelength-Selective Solar Photovoltaic Systems to Enhance Spectral Sharing of Sunlight in Agrivoltaics. Joule. DOI:10.1016/j.joule.2024.08.006.
[26] Wu, B. Sen, Rufyikiri, A. S., Orsat, V., & Lefsrud, M. G. (2019). Re-Interpreting the Photosynthetically Action Radiation (PAR) Curve in Plants. Plant Sci., 289. DOI:10.1016/j.plantsci.2019.110272.
[27] Ma Lu, S., Zainali, S., Stridh, B., Avelin, A., Amaducci, S., Colauzzi, M., & Campana, P. E. (2022). Photosynthetically Active Radiation Decomposition Models for Agrivoltaic Systems Applications. Sol. Energy, 244(February), pp. 536–549. DOI:10.1016/j.solener.2022.05.046.
[28] Farquhar, G. D., von Caemmerer, S., & Berry, J. A. (1980). A Biochemical Model of Photosynthetic CO2 Assimilation in Leaves of C3 Species. Planta, 149(1), pp. 78–90. DOI:10.1007/BF00386231.
[29] Ravilla, A., Shirkey, G., Chen, J., Jarchow, M., Stary, O., & Celik, I. (2024). Techno-Economic and Life Cycle Assessment of Agrivoltaic System (AVS) Designs. Sci. Total Environ., 912(October 2023), p. 169274. DOI:10.1016/j.scitotenv.2023.169274.
[30] Fraga, H., Moriondo, M., Leolini, L., & Santos, J. A. (2021). Mediterranean Olive Orchards under Climate Change: A Review of Future Impacts and Adaptation Strategies. Agronomy, 11(1), pp. 1–15. DOI:10.3390/agronomy11010056.
[31] Agromillora. (2024).Del Olivar Tradicional Al Superintensivo: La Senda Del Azar. Retrieved June 12,2025,from https://www.agromillora.com/es/del-olivar-tradicional-al-superintensivo-la-senda-del-azar/.
[32] Allalout, A., Krichène, D., Methenni, K., Taamalli, A., Oueslati, I., Daoud, D., & Zarrouk, M. (2009). Characterization of Virgin Olive Oil from Super Intensive Spanish and Greek Varieties Grown in Northern Tunisia. Sci. Hortic., 120(1), pp. 77–83. DOI:10.1016/j.scienta.2008.10.006.
[33] Pérez-Ruiz, M., Rallo, P., Jiménez, M. R., Garrido-Izard, M., Suárez, M. P., Casanova, L., Valero, C., Martínez-Guanter, J., & Morales-Sillero, A. (2018). Evaluation of Over-the-Row Harvester Damage in a Super-High-Density Olive Orchard Using on-Board Sensing Techniques. Sensors, 18(4), pp. 1–16. DOI:10.3390/s18041242
[34] Gómez-del-Campo, M., Trentacoste, E. R., & Connor, D. J. (2020). Long-Term Effects of Row Spacing on Radiation Interception, Fruit Characteristics and Production of Hedgerow Olive Orchard (Cv. Arbequina). Sci. Hortic., 272(June), p. 109583. DOI:10.1016/j.scienta.2020.109583.
[35] Chiesi, M., Costafreda-Aumedes, S., Argenti, G., Battista, P., Fibbi, L., Leolini, L., Moriondo, M., Rapi, B., Sabatini, F., & Maselli, F. (2022). Estimating the GPP of Olive Trees with Variable Canopy Cover by the Use of Sentinel-2 MSI Images. Eur. J. Agron., 141(September), p. 126618. DOI:10.1016/j.eja.2022.126618.
[36] Lodolini, E. M., Polverigiani, S., Giorgi, V., Famiani, F., & Neri, D. (2023). Time and Type of Pruning Affect Tree Growth and Yield in High-Density Olive Orchards. Sci. Hortic., 311, p. 111831. DOI:10.1016/j.scienta.2023.111831.
[37] Cherbiy-Hoffmann, S. U., Hall, A. J., & Rousseaux, M. C. (2013). Fruit, Yield, and Vegetative Growth Responses to Photosynthetically Active Radiation during Oil Synthesis in Olive Trees. Sci. Hortic., 150, pp. 110–116. DOI:10.1016/j.scienta.2012.10.027.
[38] Filippucci, M., Rinchi, G., Brunori, A., Nasini, L., Regni, L., & Proietti, P. (2016). Architectural Modelling of an Olive Tree. Generative Tools for the Scientific Visualization of Morphology and Radiation Relationships. Ecol. Inform., 36, pp. 84–93. DOI:10.1016/j.ecoinf.2016.09.004.
[39] Chartzoulakis, K., Patakas, A., & Bosabalidis, A. M. (1999). Changes in Water Relations, Photosynthesis and Leaf Anatomy Induced by Intermittent Drought in Two Olive Cultivars. Environ. Exp. Bot., 42(2), pp. 113–120. DOI:10.1016/S0098-8472(99)00024-6.
[40] De Casas, R. R., Vargas, P., Pérez-Corona, E., Manrique, E., García-Verdugo, C., & Balaguer, L. (2011). Sun and Shade Leaves of Olea Europaea Respond Differently to Plant Size, Light Availability and Genetic Variation. Funct. Ecol., 25(4), pp. 802–812. DOI:10.1111/j.1365-2435.2011.01851
[41] Juan Vilar (2024).Consideraciones Sobre La Busqueda de Ventajas Competitivas En Olivicultura. El Caso Particular de La Provincia de Jaén. Report.
[42] Red Eléctrica de España. (2021). Andalusia Is the Second Region with the Highest Installed Power Capacity of Renewable Generation. Retrieved June 12,2025,from https://www.ree.es/sites/default/files/07_SALA_PRENSA/Documentos/2021/20210312_PR_Andalusia_ENGW.pdf.
[43] Instituto Nacional de Estadística. (2022). Estadística Sobre El Suministro y Saneamiento Del Agua. Retrieved June 12,2025,from https://www.ine.es/dyngs/Prensa/es/ESSA2022.pdf.
[44] Aguas de Benahavis. Tarifas. Retrieved June 12,2025,from https://www.aguasdebenahavis.es/tarifas.