An Investigation for the Best-Performing Design of Box-Type Solar Cooker for Commercialisation: A Comprehensive Review

Document Type : Review Article

Authors

1 Department of Ocean Engineering and Naval Architecture, Indian Institute of Technology Kharagpur, India

2 Centre for Technology Alternatives for Rural Areas, Indian Institute of Technology Bombay, Powai, Mumbai, India

Abstract

Solar energy is the cleanest way of cooking food using a solar cooker. But it is inefficient, takes a long time to cook, relies on the weather, doesn't transmit heat well, has a restricted temperature range, is bulky, degrades with time, needs maintenance, and is not very popular with users. Numerous researchers devised new ways to make box-shaped solar cookers to overcome these difficulties and tested them. Henceforth, it is hard to find the latest, most energy-efficient design of a box-shaped solar cooker so that it can be improved further to bring it to the commercial level. This work presents a state-of-the-art review of box-type solar cookers to find the most energy-efficient design. Based on this review, a box-type solar cooker with energy storage is investigated as the best-performing design with figures of merit F1=0.23 and F2=0.27. The size of the absorber plate is the most crucial factor in figuring out how much a solar cooker will cost. To deal with this difficulty, a regression equation has been estimated to be "Absorber area (sq. m) = -1.134 + 0.00227 Max temperature (°C) + 0.0313 Cooking mass (kg) + 0.001541 Solar Irradiation (W per sq. m)."

Keywords

[1]         Albala K. Food: A Cultural Culinary History. 1st ed. Virginia: THE GREAT COURSES; 2013.
[2]         Khatod KJ, Katekar VP, Deshmukh SS. Energy security challenges of developing countries: a pragmatic assessment. In: Asif M, editor. Handb. Energy Environ. Secur. 1st ed., 2022, p. 127–66. https://doi.org/https://doi.org/10.1016/B978-0-12-824084-7.00009-6.
[3]         Linda Civitello. Cusine and Culture. 2nd ed. New Jersey: John Wiley & Sons, Inc.; 2008.
[4]         Wrangham R. Catching Fire: How Cooking Made Us Human. 1st ed. First Trade Paper Edition: Basic Books; 2010.
[5]         Green S. Food and cooking. 2006. https://doi.org/10.4324/9780203825143.
[6]         Vilgis TA. Evolution – Culinary Culture – Cooking Technology. Culin Turn 2017;9:149–60. https://doi.org/10.14361/9783839430316-023.
[7]         Theisen M. Picturing Frana. 1st ed. Washington: National Gallery of Art; 2011. https://doi.org/10.1484/m.sga-eb.1.100576.
[8]         de St. Maurice G. Cuisine and Empire: Cooking in World History: By Rachel Laudan. Food, Cult Soc 2015;18:187–9. https://doi.org/10.2752/175174415x14101814954007.
[9]         Collins K. Cooking Class: The Rise of the ‘Foodie’ and the Role of Mass Media. CUNY Acad Work Publ 2015;1:1–25.
[10]       Avakian AV, Haber B. Feminist food studies: A brief history. From Betty Crocker to Fem Food Stud Crit Perspect Women Food 2005;1:1–26.
[11]       Katekar VP, Deshmukh SS. Energy-Drinking Water-Health Nexus in Developing Countries. In: Asif M, editor. Energy Environ. Secur. Dev. Countries. Adv. Sci. Technol. Secur. Appl. Springer, Cham., 2021, p. 411–45. https://doi.org/https://doi.org/10.1007/978-3-030-63654-8_17.
[12]       Birzer C, Medwell P, MacFarlane G, Read M, Wilkey J, Higgins M, et al. A biochar-producing, dung-burning cookstove for humanitarian purposes. Procedia Eng 2014;78:243–9. https://doi.org/10.1016/j.proeng.2014.07.063.
[13]       Jambhulkar G, Nitnaware V, Pal M, Fuke N, Khandelwal P, Sonule P, et al. Performance Evaluation of Cooking Stove Working on Spent Cooking Oil. Int J Emerg Sci Eng 2015.
[14]       Katekar V, Deshmukh SS. En Route for the Accomplishment of SDG-7 in South Asian Countries : A Retrospective Study. Strateg Plan Energy Environ 2021;40:195–230. https://doi.org/10.13052/spee1048-4236.4031.
[15]       Hashemian N, Noorpoor A. Thermo-eco-environmental Investigation of a Newly Developed Solar/wind Powered Multi-Generation Plant with Hydrogen and Ammonia Production Options. J Sol Energy Res 2023;8:1728–37. https://doi.org/10.22059/jser.2024.374028.1388.
[16]       Hashemian N, Noorpoor A. Assessment and multi-criteria optimization of a solar and biomass-based multi-generation system: Thermodynamic, exergoeconomic and exergoenvironmental aspects. Energy Convers Manag 2019;195:788–97. https://doi.org/10.1016/j.enconman.2019.05.039.
[17]       Katekar V, Deshmukh S. Assessment of Socioeconomic Development of the Aspirational District in Central India : A Methodological Comparison. J Asian Afr Stud 2022;1:1–29. https://doi.org/10.1177/00219096221124937.
[18]       Katekar VP, Rao AB, Sardeshpande VR. The optimum nanomaterial coating for solar thermal device absorber plates: an experimental investigation. Int J Nano Biomater 2024;10:270–300. https://doi.org/10.1504/IJNBM.2024.143831.
[19]       Veeraboina P, Yesuratnam Guduri G. Analysis of yearly solar radiation by using correlations based on ambient temperature: India. Sustain Cities Soc 2014;11:16–21. https://doi.org/10.1016/j.scs.2013.11.004.
[20]       Todmal AP, Mali AD, Kale SD, More G V, Katekar VP. Solar Devices:-Solar Water Heater, Solar Still, Solar Cooker and Solar Dryer: A Review. Int Res J Eng Technol 2023:1649–57.
[21]       Kerr and Cole. The expanding world of solar box cookers. 1st ed. Toylor AZ: Kerr and Cole; 1991.
[22]       Katekar VP, Asif M, Deshmukh SS. Energy and Environmental Scenario of South Asia. In: Asif M, editor. Energy Environ. Secur. Dev. Countries, Adv. Sci. Technol. Secur. Appl. 1st ed., Springer Nature, Switzerland: Springer Nature, Switzerland; 2021, p. 1–33. https://doi.org/https://doi.org/10.1007/978-3-030-63654-8_4.
[23]       Katekar V, Deshmukh S. Electrification and Energy Transition in Sub- Saharan Africa Status, Issues and Effects, from a Source- to- Household Perspective. 2022. https://doi.org/10.1201/9781003315353-27.
[24]       Angappan G, Pandiaraj S, Alruabie AJ, Muthusamy S, Said Z, Panchal H, et al. Investigation on solar still with integration of solar cooker to enhance productivity: Experimental, exergy, and economic analysis. J Water Process Eng 2023;51:103470. https://doi.org/10.1016/j.jwpe.2022.103470.
[25]       Ambade S, Tikhe S, Sharma P, Katekar V. Cram of Novel Designs of Solar Cooker. Int J Mech Eng Res 2017;7:109–17.
[26]       Katekar VP, Deshmukh SS, Elsheikh AH. Assessment and Way Forward for Bangladesh on SDG-7 : Affordable and Clean Energy. Int Energy J 2020;20:421–38.
[27]       Zayed ME, Katekar VP, Tripathy RK, Deshmukh SS, Elsheikh AH. Predicting the yield of stepped corrugated solar distiller using kernel-based machine learning models. Appl Therm Eng 2022;213:118759. https://doi.org/10.1016/j.applthermaleng.2022.118759.
[28]       Katekar VP, Deshmukh SS. Techno-economic review of solar distillation systems: A closer look at the recent developments for commercialisation. J Clean Prod 2021;294:126289. https://doi.org/10.1016/j.jclepro.2021.126289.
[29]       Bhaisare A, Wasnik U, Sakhare A, Thakur P, Nimje A, Hiwarkar A, et al. Performance Assessment of Improved Solar Still Design with Stepped-Corrugated Absorber Plate. In: Reddy A., Marla D., Favorskaya M.N. SSC, editor. Intell. Manuf. Energy Sustain. Smart Innov. Syst. Technol., Springer, Singapore; 2021, p. 667–74. https://doi.org/https://doi.org/10.1007/978-981-33-4443-3_64.
[30]       Katekar VP, Deshmukh SS. A review of the use of phase change materials on performance of solar stills. J Energy Storage 2020;30:1–28. https://doi.org/https://doi.org/10.1016/j.est.2020.101398.
[31]       Olivkar PR, Katekar VP, Deshmukh SS, Palatkar S V. Effect of sensible heat storage materials on the thermal performance of solar air heaters: State-of-the-art review. Renew Sustain Energy Rev 2022;157:112085. https://doi.org/10.1016/j.rser.2022.112085.
[32]       Bhaisare A, Hiwarkar A, Sakhare A, Ukey S, Purty S, Wasnik U, et al. Brackish water distillation for Gorewada water treatment Plant using solar energy-Case study. World J Eng Res Technol 2019;5:198–215.
[33]       Katekar VP, Deshmukh SS. A review on research trends in solar still designs for domestic and industrial applications. J Clean Prod 2020;257:120544. https://doi.org/10.1016/j.jclepro.2020.120544.
[34]       Ukey AA, Katekar VP. An Experimental Investigation of Thermal Performance of an Octagonal Box Type Solar Cooker. Smart Technol. Energy, Environ. Sustain. Dev. Lect. Notes Multidiscip. Ind. Eng., Springer, Singapore; 2019, p. 769–77. https://doi.org/10.1007/978-981-13-6148-7.
[35]       Katekar VP, Rao AB, Sardeshpande VR. A cleaner and ecological rosewater production technology based on solar energy for rural livelihood. Clean Circ Bioeconomy 2022;1:1–42. https://doi.org/10.1016/j.clcb.2022.100022.
[36]       Craig OO, Dobson RT. Parabolic solar cooker: Cooking with heat pipe vs direct spiral copper tubes. AIP Conf Proc 2016;1734. https://doi.org/10.1063/1.4949245.
[37]       Elprocus. How to Make a Solar Cooker and Its Working? Elprocus 2025:1–3. https://www.elprocus.com/steps-to-make-solar-cooker/ (accessed August 13, 2025).
[38]       Fandom. Solar panel cooker designs. Sol Cookers Int 2025:1–7. Solar panel cooker designs (accessed August 13, 2025).
[39]       Lentswe K, Mawire A, Owusu P, Shobo A. A review of parabolic solar cookers with thermal energy storage. Heliyon 2021;7:e08226. https://doi.org/10.1016/j.heliyon.2021.e08226.
[40]       Molly C. Parabolic solar cooker. Sci Photo Libr 2025:1–8. https://www.sciencephoto.com/media/341431/view/parabolic-solar-cooker (accessed August 13, 2025).
[41]       Inside FB. Solar Cooker Market Report. Pune: 2021.
[42]       Lindgren SA. Clean cooking for all? A critical review of behavior, stakeholder engagement, and adoption for the global diffusion of improved cookstoves. Energy Res Soc Sci 2020;68:101539. https://doi.org/10.1016/j.erss.2020.101539.
[43]       Murugan M, Saravanan A, Elumalai P V., Kumar P, Ahamed Saleel C, Samuel OD, et al. An overview on energy and exergy analysis of solar thermal collectors with passive performance enhancers. Alexandria Eng J 2022;61:8123–47. https://doi.org/10.1016/j.aej.2022.01.052.
[44]       Muthusivagami RM, Velraj R, Sethumadhavan R. Solar cookers with and without thermal storage-A review. Renew Sustain Energy Rev 2010;14:691–701. https://doi.org/10.1016/j.rser.2008.08.018.
[45]       Nkhonjera L, Bello-Ochende T, John G, King’ondu CK. A review of thermal energy storage designs, heat storage materials and cooking performance of solar cookers with heat storage. Renew Sustain Energy Rev 2017;75:157–67. https://doi.org/10.1016/j.rser.2016.10.059.
[46]       El Moussaoui N, Talbi S, Atmane I, Kassmi K, Schwarzer K, Chayeb H, et al. Feasibility of a new design of a Parabolic Trough Solar Thermal Cooker (PSTC). Sol Energy 2020;201:866–71. https://doi.org/10.1016/j.solener.2020.03.079.
[47]       Khatri R, Goyal R, Sharma RK. Advances in the developments of solar cooker for sustainable development: A comprehensive review. Renew Sustain Energy Rev 2021;145:111166. https://doi.org/10.1016/j.rser.2021.111166.
[48]       Harmim A, Merzouk M, Boukar M, Amar M. Solar cooking development in Algerian Sahara: Towards a socially suitable solar cooker. Renew Sustain Energy Rev 2014;37:207–14. https://doi.org/10.1016/j.rser.2014.05.028.
[49]       Arunachala UC, Kundapur A. Cost-effective solar cookers: A global review. Sol Energy 2020;207:903–16. https://doi.org/10.1016/j.solener.2020.07.026.
[50]       Gorjian A, Rahmati E, Gorjian S, Anand A, Jathar LD. A comprehensive study of research and development in concentrating solar cookers (CSCs): Design considerations, recent advancements, and economics. Sol Energy 2022;245:80–107. https://doi.org/10.1016/j.solener.2022.08.066.
[51]       Padonou EA, Akabassi GC, Akakpo BA, Sinsin B. Importance of solar cookers in women’s daily lives: A review. Energy Sustain Dev 2022;70:466–74. https://doi.org/10.1016/j.esd.2022.08.015.
[52]       Lahkar PJ, Samdarshi SK. A review of the thermal performance parameters of box type solar cookers and identification of their correlations. Renew Sustain Energy Rev 2010;14:1615–21. https://doi.org/10.1016/j.rser.2010.02.009.
[53]       Saxena A, Varun, Pandey SP, Srivastav G. A thermodynamic review on solar box type cookers. Renew Sustain Energy Rev 2011;15:3301–18. https://doi.org/10.1016/j.rser.2011.04.017.
[54]       Shoeibi S, Kargarsharifabad H, Mirjalily SAA, Sadi M, Arabkoohsar A. A comprehensive review of nano-enhanced phase change materials on solar energy applications. J Energy Storage 2022;50:104262. https://doi.org/10.1016/j.est.2022.104262.
[55]       Collares-Pereira M, Cavaco A, Tavares A. Figures of merit and their relevance in the context of a standard testing and performance comparison methods for solar box – Cookers. Sol Energy 2018;166:21–7. https://doi.org/10.1016/j.solener.2018.03.040.
[56]       Iessa L, De Vries YA, Swinkels CE, Smits M, Butijn CAA. What’s cooking? Unverified assumptions, overlooking of local needs and pro-solution biases in the solar cooking literature. Energy Res Soc Sci 2017;28:98–108. https://doi.org/10.1016/j.erss.2017.04.007.
[57]       Sikiru S, Oladosu TL, Amosa TI, Kolawole SY, Soleimani H. Recent advances and impact of phase change materials on solar energy: A comprehensive review. J Energy Storage 2022;53:105200. https://doi.org/10.1016/j.est.2022.105200.
[58]       Indora S, Kandpal TC. Institutional cooking with solar energy: A review. Renew Sustain Energy Rev 2018;84:131–54. https://doi.org/10.1016/j.rser.2017.12.001.
[59]       Panwar NL, Kaushik SC, Kothari S. State of the art of solar cooking: An overview. Renew Sustain Energy Rev 2012;16:3776–85. https://doi.org/10.1016/j.rser.2012.03.026.
[60]       Aramesh M, Ghalebani M, Kasaeian A, Zamani H, Lorenzini G, Mahian O, et al. A review of recent advances in solar cooking technology. Renew Energy 2019;140:419–35. https://doi.org/10.1016/j.renene.2019.03.021.
[61]       Sharma A, Chen CR, Murty VVS, Shukla A. Solar cooker with latent heat storage systems: A review. Renew Sustain Energy Rev 2009;13:1599–605. https://doi.org/10.1016/j.rser.2008.09.020.
[62]       Yettou F, Azoui B, Malek A, Gama A, Panwar NL. Solar cooker realizations in actual use: An overview. Renew Sustain Energy Rev 2014;37:288–306. https://doi.org/10.1016/j.rser.2014.05.018.
[63]       Kadhim SA, Ibrahim OAAM, Al-Ghezi MKS, Ashour AM, Omle I, Bouabidi A. Influence of the steel fibers amount inside the box on the solar cooker performance: An experimental approach. Results Eng 2025;26:105659. https://doi.org/10.1016/j.rineng.2025.105659.
[64]       Rahbar Jamal M, Samdarshi SK, Singh M, Sagade AA, Panja PS, Ullah Ansari A. Improvement in the opto-thermal performance of Indian standard solar box cooker by novel internal retrofit radiative control. Sol Energy 2024;274:112564. https://doi.org/10.1016/j.solener.2024.112564.
[65]       Paneru B, Paneru B, Alexander V, Nova S, Bhattarai N, Poudyal R, et al. Solar energy for operating solar cookers as a clean cooking technology in South Asia: A review. Sol Energy 2024;283:113004. https://doi.org/10.1016/j.solener.2024.113004.
[66]       Shaaban FM, Abdel-Salam MF, Farroh KY, Wang H, Atia MF. Thermal Performance Analysis of an Indirect Solar Cooker Using a Graphene Oxide Nanofluid. Sustain  2024;16. https://doi.org/10.3390/su16062539.
[67]       Zhang T, Abdelhamid MA, Ahmed MEAE, Shaaban F, Makram SO, Zhang Z, et al. Energy, exergy, environmental, and economic (4E) analysis of an indirect solar cooker. Case Stud Therm Eng 2025;71:1–18. https://doi.org/10.1016/j.csite.2025.106249.
[68]       Nébié J, Zongo S, C. Tubreoumya G, S. Zongo A, Konkobo I, Bagré B, et al. Performance Assessment of a Box Type Solar Cooker Using Jatropha Oil as a Heat Storage Material. Energy Power Eng 2022;14:124–32. https://doi.org/10.4236/epe.2022.142005.
[69]       Chaudhari RH, Bhavsar S. Hybrid solar box type dryer cum cooker of chilly drying for domestic usage. Int J Sci Res 2017;6:1614–8.
[70]       Aremu AK, Awotunde OS. Thermal Performance Evaluations , Energy Savings and Payback Periods of a Box-Type Solar Cooker in Ibadan , Nigeria. CONSOLFOOD 2018_Internation Conf Adv Sol Therm Food Process 2018:22–4.
[71]       Nahar NM. Performance and testing of a hot box storage solar cooker. Energy Convers Manag 2003;44:1323–31. https://doi.org/10.1016/S0196-8904(02)00113-9.
[72]       Mahavar S, Sengar N, Rajawat P, Verma M, Dashora P. Design development and performance studies of a novel Single Family Solar Cooker. Renew Energy 2012;47:67–76. https://doi.org/10.1016/j.renene.2012.04.013.
[73]       Mahavar S, Rajawat P, Punia RC, Sengar N, Dashora P. Evaluating the optimum load range for box-type solar cookers. Renew Energy 2015;74:187–94. https://doi.org/10.1016/j.renene.2014.08.003.
[74]       Okonkwo UC, Onokwai AO, Okafor CE. THERMAL PERFORMANCE OF A DEVELOPED SOLAR BOX COOKER FOR AWKA METROPOLIS Nnamdi Azikiwe University , Awka , Anambra State , Nigeria Landmark University , Omu-Aran , Kwara State , Nigeria Nnamdi Azikiwe University , Awka , Anambra State , Nigeria Correspond 2018;12:64–75.
[75]       Chatelain T, Mauree D, Taylor S, Bouvard O, Fleury J, Burnier L, et al. Solar cooking potential in Switzerland: Nodal modelling and optimization. Sol Energy 2019;194:788–803. https://doi.org/10.1016/j.solener.2019.10.071.
[76]       Ali BSM. Design and testing of Sudanese solar box cooker. Renew Energy 2000;21:573–81. https://doi.org/10.1016/S0960-1481(00)00089-6.
[77]       Chaudhari RH, Modi VM, Gora A, Desai NN, Chaudhary HS, Bhavsar S, et al. Performance Evaluation and Cost Economics of Developed Box Type Solar Cooker. Int J Curr Microbiol Appl Sci 2018;7:1788–95. https://doi.org/10.20546/ijcmas.2018.712.208.
[78]       Hadi M, Assistance A. Studying & Evaluating the Performance of Solar Box Cookers (Untracked). ISSN || Int J Comput Eng Res 2015;08:2250–3005.
[79]       Ogunwale OA, Ramonu JAL, Adewumi SD, Adeleke AA, Yahaya T. Exergy analysis of a multiple reflector solar box cooker. Int J Eng Res Technol 2019;12:3056–60.
[80]       Aremu AK, Ogunlade CA, Oladapo AD. Design And Experimental Testing For A Building Integrated Box Type Solar Cooker. J Multidiscip Eng Sci Stud 2019;5:2518–25.
[81]       Submission P. Thermal Performance of a Reflector Based Solar Box Cooker Implemented in 2 . Description of the Solar Box Cooker 3 . Performance Testing 2015;5:2–6. https://doi.org/10.5923/j.ijee.20150505.02.
[82]       Farooqui SZ. Angular optimization of dual booster mirror solar cookers - Tracking free experiments with three different aspect ratios. Sol Energy 2015;114:337–48. https://doi.org/10.1016/j.solener.2015.01.030.
[83]       Ademe Z, Hameer S. Design, construction and performance evaluation of aBox type solar cooker with a glazing wiper mechanism. AIMS Energy 2018;6:146–69. https://doi.org/10.3934/energy.2018.1.146.
[84]       Saravanan K, Janarathanan B. Comparative study of single and double exposure  Box-type solar cooker 2014;5:620–4.
[85]       Amer EH. Theoretical and experimental assessment of a double exposure solar cooker. Energy Convers Manag 2003;44:2651–63. https://doi.org/10.1016/S0196-8904(03)00022-0.
[86]       Adetifa BO, Aremu AK. Investigating the effect of different heat storage media on the thermal performances of double exposure box-type solar cookers. Int J Renew Energy Res 2016;6:1109–18.
[87]       Sathish T, Giri J, Saravanan R, Said Z, Al-lehaibi M. MWCNT/SiO2 Hybrid Nano-PCM for Ultrafast Solar Cookers: An Experimental Study. Eng Reports 2025;7. https://doi.org/10.1002/eng2.13102.
[88]       Soni P, Chourasiya BK. A water white glazed box type solar cooker: Performance testing and analysis. Glob J Eng Sci Res 2015;2:43–9.
[89]       Folaranmi J. Performance Evaluation of a Double-Glazed Box-Type Solar Oven with Reflector. J Renew Energy 2013;2013:1–8. https://doi.org/10.1155/2013/184352.
[90]       Ekechukwu O V., Ugwuoke NT. Design and measured performance of a plane reflector augmented box-type solar-energy cooker. Renew Energy 2003;28:1935–52. https://doi.org/10.1016/S0960-1481(03)00004-1.
[91]       Kahsay MB, Paintin J, Mustefa A, Haileselassie A, Tesfay M, Gebray B. Theoretical and experimental comparison of box solar cookers with and without internal reflector. Energy Procedia 2014;57:1613–22. https://doi.org/10.1016/j.egypro.2014.10.153.
[92]       Guidara Z, Souissi M, Morgenstern A, Maalej A. Thermal performance of a solar box cooker with outer reflectors: Numerical study and experimental investigation. Sol Energy 2017;158:347–59. https://doi.org/10.1016/j.solener.2017.09.054.
[93]       Poonia S, Singh AK, Santra P, Jain D. Development and Performance Evaluation of High Insulation Box Type Solar Cooker. Agric Eng Today 2019;43:1–10. https://doi.org/10.52151/aet2019431.1490.
[94]       El-Sebaii AA, Ibrahim A. Experimental testing of a box-type solar cooker using the standard procedure of cooking power. Renew Energy 2005;30:1861–71. https://doi.org/10.1016/j.renene.2005.01.007.
[95]       Purohit I, Purohit P. Instrumentation error analysis of a box-type solar cooker. Energy Convers Manag 2009;50:365–75. https://doi.org/10.1016/j.enconman.2008.09.030.
[96]       Kumar S. Natural convective heat transfer in trapezoidal enclosure of box-type solar cooker. Renew Energy 2004;29:211–22. https://doi.org/10.1016/S0960-1481(03)00193-9.
[97]       k.Saravanan BJ. Energy and Exergy Analysis of Double Exposure Box-Type Solar Cooker. Int J Innov Res Sci Eng Technol (An 2014;3:13104–13.
[98]       Katekar V, Vithalkar A, Kale B. Enhancement of convective heat transfer coefficient in solar air heater of roughened absorber plate. 2009 2nd Int. Conf. Emerg. Trends Eng. Technol. ICETET 2009, 2009, p. 1042–6. https://doi.org/10.1109/ICETET.2009.90.
[99]       Katekar VP, Rao AB, Sardeshpande VR. Performance enhancement of solar distillation system with hemispherical projections and low-cost coating on absorber plate. Proc Inst Mech Eng Part N J Nanomater Nanoeng Nanosyst 2024. https://doi.org/10.1177/23977914241259114.
[100]     Vengadesan E, Senthil R. Experimental investigation of the thermal performance of a box type solar cooker using a finned cooking vessel. Renew Energy 2021;171:431–46. https://doi.org/10.1016/j.renene.2021.02.130.
[101]     Sethi VP, Pal DS, Sumathy K. Performance evaluation and solar radiation capture of optimally inclined box type solar cooker with parallelepiped cooking vessel design. Energy Convers Manag 2014;81:231–41. https://doi.org/10.1016/j.enconman.2014.02.041.
[102]     Vinay Prakash E. Performance Evaluation of Box Type Solar Cooker using PCM. Int J Res Advent Technol 2019;7:25–8. https://doi.org/10.32622/ijrat.76201955.
[103]     Bhavani S, Shanmugan S, Chithambaram V, Essa FAE, Kabeel AE, Selvaraju P. Simulation study on thermal performance of a Solar box Cooker using nanocomposite for natural Food invention. Environ Sci Pollut Res 2021;28:50649–67. https://doi.org/10.1007/s11356-021-14194-w.
[104]     Cuce E. Improving thermal power of a cylindrical solar cooker via novel micro/nano porous absorbers: A thermodynamic analysis with experimental validation. Sol Energy 2018;176:211–9. https://doi.org/10.1016/j.solener.2018.10.040.
[105]     Saxena A, Cuce E, Tiwari GN, Kumar A. Design and thermal performance investigation of a box cooker with flexible solar collector tubes: An experimental research. Energy 2020;206:118144. https://doi.org/10.1016/j.energy.2020.118144.
[106]     Palanikumar G, Shanmugan S, Vengatesan C, Selvaraju P. Evaluation of fuzzy inference in box type solar cooking food image of thermal effect. Environ Sustain Indic 2019;1–2:100002. https://doi.org/10.1016/j.indic.2019.100002.
[107]     Talbi S, Kassmi K, Lamkaddem A, Malek R. Design and realization of a box type solar cooker with thermal storage dedicated to the rural regions of the oriental district. J Mater Environ Sci 2018;9:1266–84.
[108]     Sharma SD, Buddhi D, Sawhney RL, Sharma A. Design, development and performance evaluation of a latent heat storage unit for evening cooking in a solar cooker. Energy Convers Manag 2000;41:1497–508. https://doi.org/10.1016/S0196-8904(99)00193-4.
[109]     Nath Shrestha J, Ram Byanjankar M. Thermal Performance Evaluation of Box Type Solar Cooker using Stone Pebbles for Thermal Energy Storage. Int J Renew Energy 2007;2.
[110]     Farooqui SZ. A gravity based tracking system for box type solar cookers. Sol Energy 2013;92:62–8. https://doi.org/10.1016/j.solener.2013.02.024.
[111]     Tawfik MA, Sagade AA, Palma-Behnke R, El-Shal HM, Abd Allah WE. Solar cooker with tracking-type bottom reflector: An experimental thermal performance evaluation of a new design. Sol Energy 2021;220:295–315. https://doi.org/10.1016/j.solener.2021.03.063.
[112]     Al-Nehari HA, Mohammed MA, Odhah AA, Al-attab KA, Mohammed BK, Al-Habari AM, et al. Experimental and numerical analysis of tiltable box-type solar cooker with tracking mechanism. Renew Energy 2021;180:954–65. https://doi.org/10.1016/j.renene.2021.08.125.
[113]     Weldu A, Zhao L, Deng S, Mulugeta N, Zhang Y, Nie X, et al. Performance evaluation on solar box cooker with reflector tracking at optimal angle under Bahir Dar climate. Sol Energy 2019;180:664–77. https://doi.org/10.1016/j.solener.2019.01.071.
[114]     Kadhim SA. Evaluation Performance of a Solar Box Cooker in Baghdad 2018:208–16.
[115]     Jawale K. EXPERIMENTAL INVESTIGATION OF BOX TYPE SOLAR COOKER WITH FRESNEL LENS & MIRROR REFLECTOR n.d.;2:336–48.
[116]     Nayak J, Sahoo SS, Swain RK, Mishra A, Chakrabarty S. Construction of Box Type Solar Cooker and Its Adaptability to Industrialized Zone. Mater Today Proc 2017;4:12565–70. https://doi.org/10.1016/j.matpr.2017.10.062.
[117]     Kumar N, Agravat S, Chavda T, Mistry HN. Design and development of efficient multipurpose domestic solar cookers/dryers. Renew Energy 2008;33:2207–11. https://doi.org/10.1016/j.renene.2008.01.010.
[118]     Harmim A, Merzouk M, Boukar M, Amar M. Performance study of a box-type solar cooker employing an asymmetric compound parabolic concentrator. Energy 2012;47:471–80. https://doi.org/10.1016/j.energy.2012.09.037.
[119]     Joshi SB, Jani AR. Design, development and testing of a small scale hybrid solar cooker. Sol Energy 2015;122:148–55. https://doi.org/10.1016/j.solener.2015.08.025.
[120]     Harmim A, Merzouk M, Boukar M, Amar M. Design and experimental testing of an innovative building-integrated box type solar cooker. Sol Energy 2013;98:422–33. https://doi.org/10.1016/j.solener.2013.09.019.
[121]     Nahar NM. Design, development and testing of a double reflector hot box solar cooker with a transparent insulation material. Renew Energy 2001;23:167–79. https://doi.org/10.1016/S0960-1481(00)00178-6.
[122]     Negi BS, Purohit I. Experimental investigation of a box type solar cooker employing a non-tracking concentrator. Energy Convers Manag 2005;46:577–604. https://doi.org/10.1016/j.enconman.2004.04.005.
[123]     Kumar S. Estimation of design parameters for thermal performance evaluation of box-type solar cooker. Renew Energy 2005;30:1117–26. https://doi.org/10.1016/j.renene.2004.09.004.
[124]     Harmim A, Belhamel M, Boukar M, Amar M. Experimental investigation of a box-type solar cooker with a finned absorber plate. Energy 2010;35:3799–802. https://doi.org/10.1016/j.energy.2010.05.032.
[125]     Coccia G, Di Nicola G, Pierantozzi M, Tomassetti S, Aquilanti A. Design, manufacturing, and test of a high concentration ratio solar box cooker with multiple reflectors. Sol Energy 2017;155:781–92. https://doi.org/10.1016/j.solener.2017.07.020.