Performance Enhancement of Photovoltaic System Using Nature Inspired Optimization Algorithms

Document Type : Review Article

Authors

1 Department of Electrical and Electronics Engineering, Karunya Institute of Technology and Sciences, Coimbatore, India

2 Department of Electrical and Electronics Engineering, SRM TRP Engineering College, Trichy - 621105.

Abstract

In recent times, consumption of non-renewable energy sources has been growing, because of the rise in population. The persistent exploitation of the conventional energy sources like fossil fuels, etc. led to insufficiency in the energy sources.Thus, the researchers detected an extra energy sourcenamed Renewable Energy Source, which serve as a best alternative for the conventional energy sources. Solar is considered to be the efficient one, because of its easy availability and pollution free nature among the Renewable Energy Sourceslike. The usage of power electronic converters is required due to it is hard to obtain constant voltage from Photovoltaic system because of its sporadic nature. Thus, the paper develops a comprehensive analysis of distinct nature inspired optimization algorithm utilized to improve the performance of Photovoltaic system. Detecting the difficulties faced by the sporadic nature of solar energy and limitations of conventional maximum power point tracking approaches under dynamic and partial shading conditions, the research evaluates many optimization algorithms. Moreover, the integration of advanced algorithms, serves as a development of more effective and adaptive optimization approaches. Additionally, the paper deliberates the benefits, limits and potential areas for future research of each optimization algorithm in the circumstance of Photovoltaic system performance improvement.

Keywords

  1. Ukoba, K., Olatunji, K. O., Adeoye, E., Jen, T. C., & Madyira, D. M. (2024). Optimizing renewable energy systems through artificial intelligence: Review and future prospects. Energy & Environment35(7), 3833-3879. https://doi.org/10.1177/0958305X241256293
  2. Sakouvogui, A., Diarra, A., Oulare, F., Camara, E. O., Barry, S., & Keita, M. (2021). Multidisciplinary TechnovationNature3(4). https://doi.org/10.34256/irjmt2142
  3. Dharmarajan, R., & Ramachandran, R. (2019). PV module parameters estimation using Newton Raphson. International Research Journal of Multidisciplinary Technovation1(4), 28-40. https://doi.org/10.34256/irjmt19219
  4. Priyadarshi, N., Padmanaban, S., Hiran, K. K., Holm-Nielson, J. B., & Bansal, R. C. (Eds.). (2021). Artificial intelligence and internet of things for renewable energy systems(Vol. 12). Walter de Gruyter GmbH & Co KG. https://doi.org/10.1515/9783110714043-202
  5. Gunapriya, B., Abinaya, I., Karthik, M., & Vidhya, H. (2020). Anti-wind up PI controller with tracking for motor drive system: Modelling, simulation and implementation in lab view based FPGA. International Journal of Recent technology and Engineering, 8(5). DOI:10.35940/ijrte.D9510.018520
  6. Munir, S. (2022). Estimator Torsi Beban Sistem Servo Modular MS150 DC Berbasis Jaringan Syaraf Tiruan. CYCLOTRON5(2). https://doi.org/10.30651/cl.v5i2.12936
  7. Vijayan, V., Mohapatra, A., Singh, S. N., & Dewangan, C. L. (2023). An efficient modular optimization scheme for unbalanced active distribution networks with uncertain EV and PV penetrations. IEEE Transactions on Smart Grid14(5), 3876-3888. https://doi.org/10.1109/TSG.2023.3234551
  8. Wang, H., Binti Mansor, N. N., & Mokhlis, H. B. (2024). Novel hybrid optimization technique for solar photovoltaic output prediction using Improved Hippopotamus Algorithm. Applied Sciences, 14(17), 7803. https://doi.org/10.3390/app14177803.
  9. Kavin, K. S., & Subha Karuvelam, P. (2023). PV-based grid interactive PMBLDC electric vehicle with high gain interleaved DC-DC SEPIC Converter. IETE Journal of Research69(7), 4791-4805. https://doi.org/10.1080/03772063.2021.1958070
  10. Nafeh, A. E. S. A., Omran, A. E. F. A., Elkholy, A., & Yousef, H. M. (2024). Optimal economical sizing of a PV-battery grid-connected system for fast charging station of electric vehicles using modified snake optimization algorithm. Results in Engineering21, 101965. https://doi.org/10.1016/j.rineng.2024.101965
  11. Kavin, K. S., (2020). Energy Management of AC Grid by the Solar PV System Using Landsman Converter. https://dx.doi.org/10.2139/ssrn.3668766
  12. Abdulla, H., Sleptchenko, A., & Nayfeh, A. (2024). Photovoltaic systems operation and maintenance: A review and future directions. Renewable and Sustainable Energy Reviews195, 114342. https://doi.org/10.1016/j.rser.2024.114342
  13. Saxena, A., Kumar, R., Sagade, A. A., Singh, D. B., Tyagi, V. V., Cuce, E., & Goel, V. (2024). A state-of-art review on photovoltaic systems: Design, performance, and progress. Process Safety and Environmental Protection190, 1324-1354. https://doi.org/10.1016/j.psep.2024.07.111
  14. Nezhad, M. A., & Bevrani, H. (2023). μ and H∞ optimization control based on optimal oxygen excess ratio for the Proton Exchange Membrane Fuel Cell (PEMFC). Journal of Industrial &Management Optimization19(6). DOI: 10.3934/jimo.2022116
  15. Antarasee, P., Premrudeepreechacharn, S., Siritaratiwat, A., & Khunkitti, S. (2022). Optimal design of electric vehicle fast-charging station’s structure using metaheuristic algorithms. Sustainability15(1), 771. https://doi.org/10.3390/su15010771
  16. Kraiem, H., Flah, A., Mohamed, N., Alowaidi, M., Bajaj, M., Mishra, S., & Sharma, S. K. (2021). Increasing electric vehicle autonomy using a photovoltaic system controlled by particle swarm optimization. IEEE Access9, 72040-72054. https://doi.org/10.1109/ACCESS.2021.3077531
  17. Singh, B., Verma, A., Chandra, A., & Al-Haddad, K. (2020). Implementation of solar PV-battery and diesel generator based electric vehicle charging station. IEEE Transactions on Industry Applications56(4), 4007-4016. https://doi.org/10.1109/TIA.2020.2989680
  18. Elshara, R., Hançerlioğullari, A., Rahebi, J., & Lopez-Guede, J. M. (2024). PV cells and modules parameter estimation using coati optimization algorithm. Energies17(7), 1716. https://doi.org/10.3390/en17071716
  19. Habib, H. U. R., Waqar, A., Junejo, A. K., Elmorshedy, M. F., Wang, S., Büker, M. S., & Kim, Y. S. (2021). Optimal planning and EMS design of PV based standalone rural microgrids. IEEE Access9, 32908-32930. https://doi.org/10.1109/ACCESS.2021.3060031
  20. Irshad, A. S., Ludin, G. A., Masrur, H., Ahmadi, M., Yona, A., Mikhaylov, A., & Senjyu, T. (2023). Optimization of grid-photovoltaic and battery hybrid system with most technically efficient PV technology after the performance analysis. Renewable Energy207, 714-730. https://doi.org/10.1016/j.renene.2023.03.062
  21. Golroodbari, S. Z., & Van Sark, W. (2020). Simulation of performance differences between offshore and land‐based photovoltaic systems. Progress in Photovoltaics: Research and Applications28(9), 873-886. https://doi.org/10.1002/pip.3276
  22. Arandian, B., Eslami, M., Khalid, S. A., Khan, B., Sheikh, U. U., Akbari, E., & Mohammed, A. H. (2022). An effective optimization algorithm for parameters identification of photovoltaic models. IEEE Access10, 34069-34084. https://doi.org/10.1109/ACCESS.2022.3161467
  23. Long, W., Wu, T., Xu, M., Tang, M., & Cai, S. (2021). Parameters identification of photovoltaic models by using an enhanced adaptive butterfly optimization algorithm. Energy229, 120750. https://doi.org/10.1016/j.energy.2021.120750
  24. Mubaarak, S., Zhang, D., Chen, Y., Liu, J., Wang, L., Yuan, R., & Li, M. (2020). Techno-economic analysis of grid-connected PV and fuel cell hybrid system using different PV tracking techniques. Applied Sciences10(23), 8515. https://doi.org/10.3390/app10238515
  25. Abdolrasol, M. G., Ayob, A., Mutlag, A. H., & Ustun, T. S. (2023). Optimal fuzzy logic controller based PSO for photovoltaic system. Energy Reports9, 427-434. https://doi.org/10.1016/j.egyr.2022.11.039
  26. Diab, A. A. Z., Sultan, H. M., Aljendy, R., Al-Sumaiti, A. S., Shoyama, M., & Ali, Z. M. (2020). Tree growth based optimization algorithm for parameter extraction of different models of photovoltaic cells and modules. IEEE Access8, 119668-119687. https://doi.org/10.1109/ACCESS.2020.3005236
  27. Ernst, M., Liu, X., Asselineau, C. A., Chen, D., Huang, C., & Lennon, A. (2024). Accurate modelling of the bifacial gain potential of rooftop solar photovoltaic systems. Energy Conversion and Management300, 117947. https://doi.org/10.1016/j.enconman.2023.117947
  28. Liu, H., Zhang, Y., Ge, S., Gu, C., & Li, F. (2019). Day-ahead scheduling for an electric vehicle PV-based battery swapping station considering the dual uncertainties. IEEE Access7, 115625-115636. https://doi.org/10.1109/ACCESS.2019.2935774
  29. Naser, A. T., Mohammed, K. K., Ab Aziz, N. F., binti Kamil, K., & Mekhilef, S. (2024). Improved coot optimizer algorithm-based MPPT for PV systems under complex partial shading conditions and load variation. Energy Conversion and Management: X22, 100565. https://doi.org/10.1016/j.ecmx.2024.100565
  30. Ibrahim, A. W., Shafik, M. B., Ding, M., Sarhan, M. A., Fang, Z., Alareqi, A. G., & Al-Rassas, A. M. (2020). PV maximum power-point tracking using modified particle swarm optimization under partial shading conditions. Chinese Journal of Electrical Engineering6(4), 106-121. https://doi.org/10.23919/CJEE.2020.000035
  31. Wu, A., Gong, R., Mao, J., Yu, X., He, J., & Li, E. X. (2024). Voltage Feed-Forward Control of Photovoltaic-Battery DC Microgrid Based on Improved Seeker Optimization Algorithm. IEEE Access12, 46067-46080. https://doi.org/10.1109/ACCESS.2024.3382134
  32. Bollipo, R. B., Mikkili, S., & Bonthagorla, P. K. (2020). Critical review on PV MPPT techniques: classical, intelligent and optimisation. IET Renewable Power Generation14(9), 1433-1452. https://doi.org/10.1049/iet-rpg.2019.1163
  33. Hanzaei, S. H., Gorji, S. A., & Ektesabi, M. (2020). A scheme-based review of MPPT techniques with respect to input variables including solar irradiance and PV arrays’ temperature. IEEE Access8, 182229-182239. https://doi.org/10.1109/ACCESS.2020.3028580
  34. Hussaian Basha, C. H., & Rani, C. (2020). Performance analysis of MPPT techniques for dynamic irradiation condition of solar PV. International Journal of Fuzzy Systems22(8), 2577-2598. https://doi.org/10.1007/s40815-020-00974-y
  35. Lopez, L., Lopez, I., Gomez-Cornejo, J., Aranzabal, I., & Eguia, P. (2025). Analysis of impact for PV-BES strategies in low-voltage distribution system. Electrical Engineering107(2), 2147-2162. https://doi.org/10.1007/s00202-024-02620-4
  36. Motahhir, S., Chouder, A., El Hammoumi, A., Benyoucef, A. S., El Ghzizal, A., Kichou, S., & Silvestre, S. (2020). Optimal energy harvesting from a multistrings PV generator based on artificial bee colony algorithm. IEEE Systems Journal15(3), 4137-4144. https://doi.org/10.1109/JSYST.2020.2997744
  37. Zaghba, L., Borni, A., Benbitour, M. K., Fezzani, A., Alwabli, A., Bajaj, M., & Ghoneim, S. S. (2024). Enhancing grid-connected photovoltaic system performance with novel hybrid MPPT technique in variable atmospheric conditions. Scientific Reports14(1), 8205. https://doi.org/10.1038/s41598-024-59024-4
  38. Shaheen, A. M., Ginidi, A. R., El-Sehiemy, R. A., & Ghoneim, S. S. (2020). A forensic-based investigation algorithm for parameter extraction of solar cell models. IEEE Access9, 1-20. https://doi.org/10.1109/ACCESS.2020.3046536
  39. Liu, H., Wang, S., Liu, G., Zhang, J., & Wen, S. (2020). SARAP algorithm of multi-objective optimal capacity configuration for WT-PV-DE-BES stand-alone microgrid. IEEE access8, 126825-126838. https://doi.org/10.1109/ACCESS.2020.3008553
  40. Premkumar, M., Jangir, P., Ramakrishnan, C., Nalinipriya, G., Alhelou, H. H., & Kumar, B. S. (2021). Identification of solar photovoltaic model parameters using an improved gradient-based optimization algorithm with chaotic drifts. IEEE Access9, 62347-62379. https://doi.org/10.1109/ACCESS.2021.3073821
  41. Pradhan, C., Senapati, M. K., Malla, S. G., Nayak, P. K., & Gjengedal, T. (2020). Coordinated power management and control of standalone PV-hybrid system with modified IWO-based MPPT. IEEE Systems Journal15(3), 3585-3596. https://doi.org/10.1109/JSYST.2020.3020275
  42. Angadi, S., Yaragatti, U. R., Suresh, Y., & Raju, A. B. (2021). System parameter based performance optimization of solar PV systems with perturbation based MPPT algorithms. Energies14(7), 2007. https://doi.org/10.3390/en14072007
  43. Revathy, S. R., Kirubakaran, V., Rajeshwaran, M., Balasundaram, T., Sekar, V. C., Alghamdi, S., & Anbese, E. M. (2022). Design and analysis of ANFIS–based MPPT method for solar photovoltaic applications. International Journal of Photoenergy2022(1), 9625564. https://doi.org/10.1155/2022/9625564
  44. Babu, D. V. S., Jayavani, L., Bhuvaneswari, T. R., Mageswaran, R., Kavin, K. S., & Kaliappan, K. (2024). IoT interfaced improved smart P&O MPPT assisted PV-wind based smart grid monitoring system. In 2024 7th International Conference on Circuit Power and Computing Technologies (ICCPCT), 1, 1078-1084. https://doi.org/10.1109/ICCPCT61902.2024.10673150
  45. Saberi, A., Niroomand, M., & Dehkordi, B. M. (2023). An improved P&O based MPPT for PV systems with reduced steady‐state oscillation. International Journal of Energy Research2023(1), 4694583. https://doi.org/10.1155/2023/4694583
  46. Moyo, R. T., Tabakov, P. Y., & Moyo, S. (2021). Design and modeling of the ANFIS-based MPPT controller for a solar photovoltaic system. Journal of Solar Energy Engineering143(4), 041002. https://doi.org/10.1115/1.4048882
  47. Ahmed, M., Abdelrahem, M., Harbi, I., & Kennel, R. (2020). An adaptive model-based MPPT technique with drift-avoidance for grid-connected PV systems. Energies13(24), 6656. https://doi.org/10.3390/en13246656
  48. Abdel-Rahim, O., & Wang, H. (2020). A new high gain DC-DC converter with model-predictive-control based MPPT technique for photovoltaic systems. CPSS Transactions on Power Electronics and Applications5(2), 191-200. https://doi.org/10.24295/CPSSTPEA.2020.00016
  49. Kavin, K. S., Subha Karuvelam, P., Devesh Raj, M., & Sivasubramanian, M. (2024). A novel KSK converter with machine learning MPPT for PV applications. Electric power components and systems, 1-19. https://doi.org/10.1080/15325008.2024.2346806
  50. Kavin, K. S., Karuvelam, P. S., Kumar, R. T., Sivasubramanian, M., Kavitha, P., & Priyadharsini, S. (2023, July). GWO Optimized PI Controller Fed PV Based Interleaved Luo Converter for EV Applications. In 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT)(pp. 1-6). IEEE. https://doi.org/10.1109/ICCCNT56998.2023.10307340
  51. Alshabi, M., Ghenai, C., Bettayeb, M., & Ahmad, F. F. (2021). Estimating one-diode-PV model using autonomous groups particle swarm optimization. IAES International Journal of Artificial Intelligence10(1), 166. DOI: 10.11591/ijai.v10.i1.pp166-174
  52. Singh, A., Sharma, A., Rajput, S., Bose, A., & Hu, X. (2022). An investigation on hybrid particle swarm optimization algorithms for parameter optimization of PV cells. Electronics11(6), 909. https://doi.org/10.3390/electronics11060909
  53. El Hariz, Z., Hicham, A., & Mohammed, D. (2022). A novel optimiser of MPPT by using PSO-AG and PID controller. International Journal of Ambient Energy43(1), 5199-5206. https://doi.org/10.1080/01430750.2021.1934116
  54. Han, F., Abdelaziz, I. I. M., Ghazali, K. H., Zhao, Y., & Li, N. (2023). Optimized range-free localization scheme using autonomous groups particles swarm optimization for anisotropic wireless sensor networks. IEEE Access11, 26906-26920. https://doi.org/10.1109/ACCESS.2023.3257567
  55. Shehata, A. A., Refaat, A., Ahmed, M. K., & Korovkin, N. V. (2021). Optimal placement and sizing of FACTS devices based on Autonomous Groups Particle Swarm Optimization technique. Archives of Electrical Engineering70(1), 161-172. DOI 10.24425/aee.2021.136059
  56. David, M., Boland, J., Cirocco, L., Lauret, P., & Voyant, C. (2021). Value of deterministic day-ahead forecasts of PV generation in PV+ Storage operation for the Australian electricity market. Solar Energy224, 672-684. https://doi.org/10.1016/j.solener.2021.06.011
  57. Georgiou, G. S., Christodoulides, P., & Kalogirou, S. A. (2020). Optimizing the energy storage schedule of a battery in a PV grid-connected nZEB using linear programming. Energy208, 118177. https://doi.org/10.1016/j.energy.2020.118177
  58. Sangaiah, A. K., Tirkolaee, E. B., Goli, A., & Dehnavi-Arani, S. (2020). Robust optimization and mixed-integer linear programming model for LNG supply chain planning problem. Soft computing24(11), 7885-7905. https://doi.org/10.1007/s00500-019-04010-6
  59. Ramli, S. P., Mokhlis, H., Wong, W. R., Muhammad, M. A., Mansor, N. N., & Hussain, M. H. (2021). Optimal coordination of directional overcurrent relay based on combination of improved particle swarm optimization and linear programming considering multiple characteristics curve. Turkish Journal of Electrical Engineering and Computer Sciences29(3), 1765-1780. Doi: 10.3906/elk-2008-23
  60. Daqaq, F., Ouassaid, M., Kamel, S., Ellaia, R., & El-Naggar, M. F. (2022). A novel chaotic flower pollination algorithm for function optimization and constrained optimal power flow considering renewable energy sources. Frontiers in Energy Research10, 941705. https://doi.org/10.3389/fenrg.2022.941705
  61. Daqaq, F., Ellaia, R., & Ouassaid, M. (2020, November). A constrained chaotic flower pollination algorithm for solving ORPD problem. In 2020 international symposium on advanced electrical and communication technologies (ISAECT)(pp. 1-6). IEEE. https://doi.org/10.1109/ISAECT50560.2020.9523712
  62. Mergos, P. E., & Yang, X. S. (2021). Flower pollination algorithm parameters tuning. Soft computing25(22), 14429-14447. https://doi.org/10.1007/s00500-021-06230-1
  63. Khluabwannarat, P., & Puangdownreong, D. (2021). Optimal fractional-order PID controller design for BLDC motor speed control system by using parallel flower pollination algorithm. An International Journal of Research and Surveys15(2). Doi: 10.24507/icicel.15.02.165
  64. Dhivya, S., & Arul, R. (2021, April). Improved flower pollination algorithm-based optimal placement and sizing of DG for practical indian 52 bus system. In 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), 1-5. https://doi.org/10.1109/IEMTRONICS52119.2021.9422562
  65. Cortes-Vega, D., Alazki, H., & Rullan-Lara, J. L. (2022). Current sensorless MPPT control for PV systems based on robust observer. Applied Sciences12(9), 4360. https://doi.org/10.3390/app12094360
  66. Endiz, M. S. (2024). Design and implementation of microcontroller-based solar charge controller using modified incremental conductance MPPT algorithm. Journal of Radiation Research and Applied Sciences17(2), 100938. https://doi.org/10.1016/j.jrras.2024.100938
  67. Harrison, A., Alombah, N. H., & de Dieu Nguimfack Ndongmo, J. (2023). A new hybrid MPPT based on incremental conductance‐integral back stepping controller applied to a PV system under fast‐changing operating conditions. International Journal of Photo energy2023(1), 9931481. https://doi.org/10.1155/2023/9931481
  68. Shang, L., Guo, H., & Zhu, W. (2020). An improved MPPT control strategy based on incremental conductance algorithm. Protection and Control of Modern Power Systems5(2), 1-8. https://doi.org/10.1186/s41601-020-00161-z
  69. Feroz Mirza, A., Mansoor, M., Ling, Q., Khan, M. I., & Aldossary, O. M. (2020). Advanced variable step size incremental conductance MPPT for a standalone PV system utilizing a GA-tuned PID controller. Energies13(16), 4153. https://doi.org/10.3390/en13164153
  70. Krishnan G, S., Kinattingal, S., Simon, S. P., & Nayak, P. S. R. (2020). MPPT in PV systems using ant colony optimisation with dwindling population. IET Renewable Power Generation14(7), 1105-1112. https://doi.org/10.1049/iet-rpg.2019.0875
  71. González-Castaño, C., Restrepo, C., Kouro, S., & Rodriguez, J. (2021). MPPT algorithm based on artificial bee colony for PV system. IEEE Access9, 43121-43133. https://doi.org/10.1109/ACCESS.2021.3066281
  72. Chao, K. H., & Rizal, M. N. (2021). A hybrid MPPT controller based on the genetic algorithm and ant colony optimization for photovoltaic systems under partially shaded conditions. Energies14(10), 2902. https://doi.org/10.3390/en14102902
  73. Xia, K., Li, Y., & Zhu, B. (2024). Improved photovoltaic MPPT algorithm based on ant colony optimization and fuzzy logic under conditions of partial shading. IEEE Access12, 44817-44825. https://doi.org/10.1109/ACCESS.2024.3381345
  74. Huang, K. H., Chao, K. H., & Lee, T. W. (2023). An improved photovoltaic module array global maximum power tracker combining a genetic algorithm and ant colony optimization. Technologies11(2), 61. https://doi.org/10.3390/technologies11020061
  75. Charfeddine, S., Alharbi, H., Jerbi, H., Kchaou, M., Abbassi, R., & Leiva, V. (2022). A stochastic optimization algorithm to enhance controllers of photovoltaic systems. Mathematics10(12), 2128. https://doi.org/10.3390/math10122128
  76. Rezk, H., & Fathy, A. (2020). Stochastic fractal search optimization algorithm based global MPPT for triple-junction photovoltaic solar system. Energies13(18), 4971. https://doi.org/10.3390/en13184971
  77. Fu, C., Zhang, L., & Dong, W. (2022). Research and application of Mppt control strategy based on improved slime mold algorithm in shaded conditions. Electronics11(14), 2122. https://doi.org/10.3390/electronics11142122
  78. Srinivasan, R., & Ramalingam Balamurugan, C. (2022). Deep neural network based MPPT algorithm and PR controller based SMO for grid connected PV system. International Journal of Electronics109(4), 576-595. https://doi.org/10.1080/00207217.2021.1914192
  79. Ramadan, A., Kamel, S., & Ibrahim, A. (2021). Parameters estimation of photovoltaic cells using self-adaptive multi-population Rao optimization algorithm. Aswan University Journal of Sciences and Technology1(1), 26-40.
  80. Rao, R. V., & Pawar, R. B. (2020). Self-adaptive multi-population Rao algorithms for engineering design optimization. Applied Artificial Intelligence34(3), 187-250. https://doi.org/10.1080/08839514.2020.1712789
  81. Federici, L., Benedikter, B., & Zavoli, A. (2020, July). EOS: a parallel, self-adaptive, multi-population evolutionary algorithm for constrained global optimization. In 2020 IEEE congress on evolutionary computation (CEC)(pp. 1-10). IEEE. https://doi.org/10.1109/CEC48606.2020.9185800
  82. Kumar, V., & Yadav, S. M. (2020). Self-adaptive multi-population-based Jaya algorithm to optimize the cropping pattern under a constraint environment. Journal of Hydro informatics22(2), 368-384. https://doi.org/10.2166/hydro.2019.087
  83. Fathy, A., Rezk, H., & Yousri, D. (2020). A robust global MPPT to mitigate partial shading of triple-junction solar cell-based system using manta ray foraging optimization algorithm. Solar Energy207, 305-316. https://doi.org/10.1016/j.solener.2020.06.108
  84. Aly, M., & Rezk, H. (2021). A MPPT based on optimized FLC using manta ray foraging optimization algorithm for thermo‐electric generation systems. International Journal of Energy Research45(9), 13897-13910. https://doi.org/10.1002/er.6728
  85. Mahmoud, M. M., Atia, B. S., Abdelaziz, A. Y., & Aldin, N. A. N. (2022). Dynamic performance assessment of PMSG and DFIG-based WECS with the support of manta ray foraging optimizer considering MPPT, pitch control, and FRT capability issues. Processes10(12), 2723. https://doi.org/10.3390/pr10122723
  86. Xie, R., Wu, S., & Yang, B. (2023, July). MPPT design for hybrid PV-TEG system under partial shading condition via Manta Ray Foraging Optimization. In 2023 5th International Conference on Power and Energy Technology (ICPET)(pp. 765-770). IEEE. https://doi.org/10.1109/ICPET59380.2023.10367668
  87. Alturki, F. A., Omotoso, H. O., Al-Shamma’a, A. A., Farh, H. M., & Alsharabi, K. (2020). Novel manta rays foraging optimization algorithm based optimal control for grid-connected PV energy system. IEEE Access8, 187276-187290. https://doi.org/10.1109/ACCESS.2020.3030874
  88. Saadaoui, D., Elyaqouti, M., Assalaou, K., & Lidaighbi, S. (2021). Parameters optimization of solar PV cell/module using genetic algorithm based on non-uniform mutation. Energy Conversion and Management: X12, 100129. https://doi.org/10.1016/j.ecmx.2021.100129
  89. Zhao, J., He, K., Kang, L., & Wang, X. (2025). Genetic algorithm with enhanced non-uniform mutation strategy for high-order polynomial optimization in temperature drift compensation of quartz flexible accelerometers. Sensors and Actuators A: Physical387, 116371. https://doi.org/10.1016/j.sna.2025.116371
  90. Hassan, A., Bass, O., & Masoum, M. A. (2023). An improved genetic algorithm based fractional open circuit voltage MPPT for solar PV systems. Energy Reports9, 1535-1548. https://doi.org/10.1016/j.egyr.2022.12.088
  91. de Oliveira, F. M., Brandt, M. H. M., Salvadori, F., Izquierdo, J. E. E., Cavallari, M. R., & Ando Junior, O. H. (2024). Development of an MPPT-based genetic algorithm for photovoltaic systems versus classical MPPT techniques in scenarios with partial shading. Inventions9(3), 64. https://doi.org/10.3390/inventions9030064
  92. Hilali, A., Mardoude, Y., Essahlaoui, A., Rahali, A., & El Ouanjli, N. (2022). Migration to solar water pump system: Environmental and economic benefits and their optimization using genetic algorithm Based MPPT. Energy Reports8, 10144-10153. https://doi.org/10.1016/j.egyr.2022.08.017
  93. Eltamaly, A. M. (2021). A novel musical chairs algorithm applied for MPPT of PV systems. Renewable and Sustainable Energy Reviews146, 111135. https://doi.org/10.1016/j.rser.2021.111135
  94. Eltamaly, A. M., & Rabie, A. H. (2023). A novel musical chairs optimization algorithm. Arabian Journal for Science and Engineering48(8), 10371-10403. https://doi.org/10.1007/s13369-023-07610-5
  95. Alshareef, M. J. (2025). An enhanced fractional open circuit voltage MPPT method for rapid and precise MPP tracking in standalone photovoltaic systems. IEEE Access. https://doi.org/10.1109/ACCESS.2025.3543327
  96. Eltamaly, A. M., & Almutairi, Z. A. (2025). A novel star-nosed mole optimization algorithm applied for MPPT of PV systems. Scientific Reports15(1), 17807. https://doi.org/10.1038/s41598-025-02938-4
  97. Eltamaly, A. M., & Almutairi, Z. A. (2025). Synergistic Coordination Between PWM Inverters and DC-DC Converters for Power Quality Improvement of Three-Phase Grid-Connected PV Systems. Sustainability17(8), 3748. https://doi.org/10.3390/su17083748
  98. Ramadan, A. E., Kamel, S., Khurshaid, T., Oh, S. R., & Rhee, S. B. (2021). Parameter extraction of three diode solar photovoltaic model using improved grey wolf optimizer. Sustainability13(12), 6963. https://doi.org/10.3390/su13126963
  99. Hou, Y., Gao, H., Wang, Z., & Du, C. (2022). Improved grey wolf optimization algorithm and application. Sensors22(10), 3810. https://doi.org/10.3390/s22103810
  100. Liu, J., Wei, X., & Huang, H. (2021). An improved grey wolf optimization algorithm and its application in path planning. IEEE Access9, 121944-121956. https://doi.org/10.1109/ACCESS.2021.310897.
  101. Taha, S. A., Al-Sagar, Z. S., Abdulsada, M. A., Alruwaili, M., & Ibrahim, M. A. (2025). Design of an efficient MPPT topology based on a grey wolf optimizer-particle swarm optimization (GWO-PSO) algorithm for a grid-tied solar inverter under variable rapid-change irradiance. Energies18(8), 1997. https://doi.org/10.3390/en18081997
  102. Naserbegi, A., Aghaie, M., & Zolfaghari, A. (2020). Implementation of Grey Wolf Optimization (GWO) algorithm to multi-objective loading pattern optimization of a PWR reactor. Annals of Nuclear Energy148, 107703. https://doi.org/10.1016/j.anucene.2020.107703
  103. Eltamaly, A. M., Al-Saud, M. S., & Abokhalil, A. G. (2020). A novel scanning bat algorithm strategy for maximum power point tracker of partially shaded photovoltaic energy systems. Ain Shams Engineering Journal11(4), 1093-1103. https://doi.org/10.1016/j.asej.2020.02.015
  104. Ge, X., Ahmed, F. W., Rezvani, A., Aljojo, N., Samad, S., & Foong, L. K. (2020). Implementation of a novel hybrid BAT-Fuzzy controller based MPPT for grid-connected PV-battery system. Control engineering practice98, 104380. https://doi.org/10.1016/j.conengprac.2020.104380
  105. de Jesús Rubio, J. (2023). Bat algorithm based control to decrease the control energy consumption and modified bat algorithm based control to increase the trajectory tracking accuracy in robots. Neural Networks161, 437-448. https://doi.org/10.1016/j.neunet.2023.02.010
  106. Amalo, K. A., Birninkudu, S. I., Bukata, B. B., Salawudeen, A. T., & Ahmad, A. A. (2020, March). Cultured bat algorithm for optimized MPPT tracking under different shading conditions. In 2020 International Conference in mathematics, computer engineering and computer science (ICMCECS)(pp. 1-8). IEEE. https://doi.org/10.1109/ICMCECS47690.2020.246985
  107. Kadhim, K. H. Solar PV System for Water Pumping Incorporating an MPPT based Bat Optimization Circuits and Systems. Doi: 10.5373/JARDCS/V12SP1/20201130
  108. Gao, B., Yang, H., Lin, H. C., Wang, Z., Zhang, W., & Li, H. (2022). A hybrid improved whale optimization algorithm with support vector machine for short-term photovoltaic power prediction. Applied Artificial Intelligence36(1), 2014187. https://doi.org/10.1080/08839514.2021.2014187
  109. Percin, H. B., & Caliskan, A. (2023). Whale optimization algorithm based MPPT control of a fuel cell system. International journal of hydrogen energy48(60), 23230-23241. https://doi.org/10.1016/j.ijhydene.2023.03.180
  110. Rana, N., Latiff, M. S. A., Abdulhamid, S. I. M., & Chiroma, H. (2020). Whale optimization algorithm: a systematic review of contemporary applications, modifications and developments. Neural Computing and Applications32(20), 16245-16277. https://doi.org/10.1007/s00521-020-04849-z
  111. Tiwari, A., & Agarwal, R. (2023). Optimal control for a photovoltaic integrated grid system using PSO and modified whale optimization to enhance power quality. Engineering Research Express5(2), 025001. Doi:1088/2631-8695/acc929
  112. Liu, Y. W., Feng, H., Li, H. Y., & Li, L. L. (2021). An improved whale algorithm for support vector machine prediction of photovoltaic power generation. Symmetry13(2), 212. https://doi.org/10.3390/sym13020212
  113. Kashefi, H., Sadegheih, A., Mostafaeipour, A., & Mohammadpour Omran, M. (2021). Parameter identification of solar cells and fuel cell using improved social spider algorithm. COMPEL-The international journal for computation and mathematics in electrical and electronic engineering40(2), 142-172. https://doi.org/10.1108/COMPEL-12-2019-0495
  114. Koshkarbay, N., Mohammed, K. K., Mekhilef, S., Kuttybay, N., Almen, D., Saymbetov, A., & Nurgaliyev, M. (2025). Improved MPPT technology for PV systems using Social Spider optimization (SSO): Efficient handling of partial shading and load variations. Electric Power Systems Research247, 111822. https://doi.org/10.1016/j.epsr.2025.111822
  115. Fathy, A., Kaaniche, K., & Alanazi, T. M. (2020). Recent approach based social spider optimizer for optimal sizing of hybrid PV/wind/battery/diesel integrated microgrid in aljouf region. IEEE Access8, 57630-57645. https://doi.org/10.1109/ACCESS.2020.2982805
  116. Adhvaryyu, S., & Adhvaryyu, P. K. (2020). Application of bio-inspired social spider algorithm in multi-area economic emission dispatch of solar, wind and CHP-based power system. Soft Computing24(13), 9611-9624. https://doi.org/10.1007/s00500-019-04468-4
  117. Pappu, S. L., & Janamala, V. (2023). A multi-objective hunter-prey optimization for optimal integration of capacitor banks and photovoltaic distribution generation units in radial distribution systems. ITEGAM-JETIA9(43), 42-53. https://doi.org/10.5935/jetia.v9i43.907
  118. Li, Z., & Fu, C. (2024). Critical Analysis and Application of Enhanced Hunter-Prey Algorithm for MPPT in Photovoltaic Systems under Complex Partial Shading Conditions. http://dx.doi.org/10.21203/rs.3.rs-4460931/v1
  119. Ranga, M. R., RaoBathina, V., & Kotni, S. (2024, July). A review of solar cell parameters extraction using metaheuristic optimization methods based on various diode models. In 2024 International Conference on Computational Intelligence for Green and Sustainable Technologies (ICCIGST)(pp. 1-6). IEEE. https://doi.org/10.1109/ICCIGST60741.2024.10717470
  120. Li, Z., Fu, C., Zhang, L., & Zhao, J. (2024). Comprehensive Analysis of Improved Hunter–Prey Algorithms in MPPT for Photovoltaic Systems Under Complex Localized Shading Conditions. Electronics13(21), 4148. https://doi.org/10.3390/electronics13214148
  121. Bousselamti, L., Ahouar, W., & Cherkaoui, M. (2020, September). Mono-objective optimization of PV-CSP system using PSO algorithm. In 2020 IEEE 4th International Conference on Intelligent Energy and Power Systems (IEPS)(pp. 186-189). IEEE. https://doi.org/10.1109/IEPS51250.2020.9263232
  122. Pervez, I., Shams, I., Mekhilef, S., Sarwar, A., Tariq, M., & Alamri, B. (2021). Most valuable player algorithm based maximum power point tracking for a partially shaded PV generation system. IEEE Transactions on Sustainable Energy12(4), 1876-1890. https://doi.org/10.1109/TSTE.2021.3069262
  123. Liu, H., Shi, Y., & Zhang, W. (2021, August). A MPPT Control Method Based on the Improved Wind-Driven Optimization. In 2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA),995-1000. https://doi.org/10.1109/ICIEA51954.2021.9516244
  124. Diab, A. A. Z., Sultan, H. M., Do, T. D., Kamel, O. M., & Mossa, M. A. (2020). Coyote optimization algorithm for parameters estimation of various models of solar cells and PV modules. IEEE Access8, 111102-111140. https://doi.org/10.1109/ACCESS.2020.3000770
  125. Priyadarshi, N., Padmanaban, S., Holm-Nielsen, J. B., Blaabjerg, F., & Bhaskar, M. S. (2019). An experimental estimation of hybrid ANFIS–PSO-based MPPT for PV grid integration under fluctuating sun irradiance. IEEE Systems Journal14(1), 1218-1229. https://doi.org/10.1109/JSYST.2019.2949083
  126. Eltamaly, A. M., & Alotaibi, M. A. (2021). Novel fuzzy-swarm optimization for sizing of hybrid energy systems applying smart grid concepts. IEEE Access9, 93629-93650. https://doi.org/10.1109/ACCESS.2021.3093169
  127. Moshksar, E., Ghanbari, T., Samet, H., & Guay, M. (2018). Estimation-based extremum-seeking control: A real-time approach for improving energy efficiency in photovoltaic systems. IEEE systems journal13(3), 3141-3152. https://doi.org/10.1109/JSYST.2018.2868125
  128. Guo, K., Cui, L., Mao, M., Zhou, L., & Zhang, Q. (2020). An improved gray wolf optimizer MPPT algorithm for PV system with BFBIC converter under partial shading. IEEE Access, 8, 103476-103490. https://doi.org/10.1109/ACCESS.2020.2999311
  129. Senapati, M. K., Pradhan, C., Padmanaban, S., & Al Zaab, O. (2025). Photovoltaic MPPT performance adaptability to partial shading resilience and load variations with modified adaptive jaya optimization. IEEE Transactions on Consumer Electronics. https://doi.org/10.1109/TCE.2025.3532660
  130. Eltamaly, A. M., Al-Saud, M. S., & Abokhalil, A. G. (2020). A novel bat algorithm strategy for maximum power point tracker of photovoltaic energy systems under dynamic partial shading. IEEE Access, 8, 10048-10060. https://doi.org/10.1109/ACCESS.2020.2964759