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 In recent times, consumption of non-renewable energy sources has 

been growing, because of the rise in population. The persistent 

exploitation of the conventional energy sources like fossil fuels, etc. 

led to insufficiency in the energy sources.Thus, the researchers 

detected an extra energy sourcenamed Renewable Energy Source, 

which serve as a best alternative for the conventional energy sources. 

Solar is considered to be the efficient one, because of its easy 

availability and pollution free nature among the Renewable Energy 

Sourceslike. The usage of power electronic converters is required due 

to it is hard to obtain constant voltage from Photovoltaic system 

because of its sporadic nature.Thus, the paper develops a 

comprehensive analysis of distinct nature inspired optimization 

algorithm utilized to improve the performance of Photovoltaic system. 

Detecting the difficulties faced by the sporadic nature of solar energy 

and limitations of conventional maximum power point tracking 

approaches under dynamic and partial shading conditions, the research 

evaluates many optimization algorithms. Moreover, the integration of 

advanced algorithms, serves as a development of more effective and 

adaptive optimization approaches.Additionally, the paper deliberates 

the benefits, limits and potential areas for future research of each 

optimization algorithm in the circumstance of Photovoltaic system 

performance improvement. 

 

Received: 2025.03.07 

Accepted in revised 

form:2025.08.04 
 

Keywords:  

Renewable Energy Source; 

Solar; 

Photovoltaic; 

Optimization techniques; 

Comparative analysis 

 

https://doi.org/10.22059/jser.2025.391680.1540


Rahiman et al./Journal of Solar Energy Research Volume 10 Number 2 Spring (2025) 2415-2436 

2416 
 

1. Introduction 

The demand for electrical energy has been 

continually increasing since the industrial period, 

which is due to the vast usage of conventional fuel 

technologies and its impacts. This leads to research 

moving towards renewable energy technologies that 

offer pollution-free energy, which are also free of 

cost [1-3]. Many different Renewable Energy Source 

(RES) exists and among them Solar is considered to 

be the optimal one, due to its availability and 

cleanliness [4-6]. Normally, the solar power attained 

from the irradiation of sun is converted into 

electrical power with the aid of Photovoltaic (PV) 

system and is fed to the grid or load [7-9]. With the 

goal of achieving, the optimal energy from PV 

system, many different PV models, which relies on 

voltage and current are modelled [10]. Moreover, in 

real time applications, the PV with single and double 

diode models are mostly employed, which are 

depicted in Figure 1. Besides, the appropriate 

modelling of PV module relies on the parameter 

models that are normally changing with respect to 

the climatic conditions and the unstable running 

conditions namely faults and the aging [11-13]. 

In case of large scale energy generation, if local 

conditions are taken into consideration when 

arranging the PV modules, then it is possible to 

achieve clean and efficient energy, which is further 

used for meeting the utility grid demands or for the 

Electric vehicles [14-16]. The great reduction in the 

material cost of PV, as well as the sustainability of 

PV, led to the widespread of PV system in real life 

conditions. Nevertheless, the major concerns related 

with the practical implementation of photovoltaic 

system are its short life cycle and the reduced energy 

efficiency, which are formed due to the hot spots 

and power losses generated because of the partial 

conditions [17-19]. Moreover, based on classical 

techniques, better MPPT performance is attained by 

PV system beneath uniform irradiation levels. 

Additionally, when the PV system operates in partial 

shadow conditions, different local maximum points 

occur because bypass diodes that are primarily 

employed to reduce the impact of hot spots are 

present [20-22]. 

One of the main problems with power quality 

while using photovoltaic (PV) technology is voltage 

violation, which is particularly noticeable in LV 

distribution networks during the peak PV generating 

time [23-24].  The PV output's probability 

distributions, varies according to the type of day and 

time [25]. 

Grid connected solar systems frequently use 

central inverters with dc-dc converters to obtain 

electricity from the entire PV array. However, due to 

PV array's partial shadow generation and topology's 

sensitivity to mismatches, where significant power 

losses may occur and these conditions may exist. 

Utilizing distributed dc-dc converters and the 

multistring topologies are another method of 

configuring a PV array. This technique reduces 

power losses and allows for maintenance costs of a 

complete PV array [26-29]. An efficient extraction 

of a full power is possible by the connection of each 

PV string to different DC-DC converter with a 

modified MPPT. DC-DC converters can be formed 

with either a series output configuration or a parallel 

output configuration in a multistring PV system [30-

31]. Nevertheless, it may experience a cross 

coupling issue in the system with a series 

configuration, where the malfunction of one 

converter prevents the operation of the others [32-

33]. Figure 2 illustrates the electrical energy flow in 

PV system. 

 

Figure 1. Structural modelling of PV Module 
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Figure 2. Illustration of Electrical energy flow in photovoltaic grid system 

The extraction of parameters and precise 

modelling that accurately capture the non-linear 

features of solar cell current and voltage are the most 

crucial difficulties faced in development of PV 

technology. These factors were heavily considered 

when simulating, assessing and maximising the 

quantity of energy obtained from PV systems [34-

36]. The solar PV model's parameters are influenced 

by temperature and irradiation. Consequently, 

accurate parameter estimation is required to model 

solar PV [37-38]. Various approaches have been 

presented to figure out the variables of different 

designs, whether they involve experimental samples 

or data from data sheets. The three categories of 

approaches include heuristic methods, analytical 

methods and numerical methods [39-41]. 

To overcome specific drawbacks of the previous 

methods, such as convexity, high sensitivity and 

differentiability to its beginning parameter values, 

the heuristic procedures to approximation model 

parameters are typically inspired by biological 

processes [42-44]. Because of its accuracy, 

dependability and independence from initial values, 

heuristic approaches often yield superior outcomes 

than other approaches [45-46]. Many scholars have 

been working very hard currently to employ 

algorithm based metaheuristic to solve these kinds of 

challenges. Natural occurrences like swarming 

activity, systems that take into account on nature and 

physics have an impact on these structures [47-50]. 

It is evident that every strategy has benefits and 

limitations of its own, and thus insufficient learning 

algorithm solve every complicated problem. 

Therefore, it is possible to extract utmost power 

from a PV system by implementing specific 

optimization techniques. It improves the 

performance of PV system by maintaining a constant 

DC link voltage. A numerous PV system 

optimization methods are compared to classify the 

most effective approach. Henceforth, the primary 

contribution of this article is presented below, 

 The paper offers a comprehensive comparative 

study of various nature-inspired optimization 

algorithms utilized for increasing performance 

of PV systems. This analysis delivers valued 

insights into relative benefits and drawbacks of 

each algorithm in optimizing different aspects 

of PV system performance. 

 Through emphasizing the advantages, 

limitations and potential areas for future 

research of each optimization algorithm, the 

paper provides valuable insights to 

researchers. By optimizing energy generation, 

system efficiency, and economic viability, the 

paper contributes to advancing the feasibility 

and scalability of solar energy solutions. 

2. Review on Recent Optimization Algorithms 

used in PV Fed Systems 

Numerous methods have been implemented to 

enhance the efficacy of PV system to obtain the 

most possible electricity from PV system and a 

constant DC link voltage. The methods subsequently 

employed to enhance PV performance are explained 

in the following paragraphs. 

2.1 Autonomous Groups PSO (PSOAG) 

The PSOAG algorithm has better convergence 

speed and improved capability to escape local 

optima that is critical for accurately modeling the 

nonlinear characteristics of PV systems. It explores 

the application of the one-diode PV model, assessing 

it over experimental characteristic curves data. This 

estimation is attained utilizing a novel variant of the 

PSO algorithm known as PSOAG. This approach 

improves PSO's performance by enabling quicker 

convergence rates and improved avoidance of local 

minima/maxima. The study presents six variations of 

the PSOAG algorithm, thereby extending the pool to 

nine versions, including the previously reported 

three iterations of PSOAG. This diversity allows for 

a comprehensive exploration of social behaviors 

within the optimization process. Analysis of the 

outcomes validates important improvements attained 

by the proposed method. Moreover, there is a 

notable enhancement of up to 20% in the 

convergence rate. These findings underscore the 
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efficacy of the developed PSOAG algorithms in 

optimizing the one-diode model of PV solar cells, 

showcasing their potential for advancing 

optimization techniques in this domain. Autonomous 

groups may struggle to adapt to dynamic 

environments or problem landscapes. Changes in the 

problem structure or resource availability may 

render predefined group configurations ineffective, 

necessitating frequent reconfiguration and 

potentially disrupting optimization performance [51-

55]. 

2.2 Linear Programming (LP) Optimization 

LP has the capability to deliver fast, globally 

optimal solutions under linear constraints, making it 

perfect for real-time energy controlling in PV-fed 

systems. For all cost function and the restrictions, 

the LP model of the optimization issue reduces to 

linear connections. This simplicity results from 

presuming a linear battery behavior and continuous 

efficacy of converter connected to ESS. As a result, 

the suggested optimization issue stays linear. There 

are five variables that need to be considered when 

making a decision: the energy produced via PV plant

pv   Eis the energy obtained or inserted into the grid is

gridE  the energy discharge of the batteries is dis

essE , 

and State of Charge of the ESS is  SOC . Equation 

(1) states objective of maximizing revenue from 

energy exported from grid. Maximizing the proceeds 

from the energy delivered to grid is the goal, which 

is stated as follows: 

     
T

dis cha

pv ess ess grid grid grid

t 1

R E ,E ,E ,E ,SOC C t E t


  (1) 

Where𝑇 is the amount of time steps that are taken 

into consideration, and
gridC  is the spot price of 

energy. We optimize at a temporal granularity  t  

of 30 minutes for the next three days in our case 

study. Notably, one of the choice variables is the 

energy produced via PV plant. In situations where it 

would be more cost-effective to reduce PV 

production—such as when the spot price is negative 

this strategy gives the operator that option. As a 

result, the PV plant's ability to produce electricity is 

limited by its maximum output. The boundaries of 

the decision variables are, 

pv0 E max

pvE    (2) 

dis

ess0 E dis

maxP t     (3) 

cha

ess0 E cha

maxP t     (4) 

gridE       (5) 

SOCmin maxSOC SOC    (6) 

Conservation equations (2) to (6) deliver 

operational constraints for the PV generation, the 

battery charging/discharging, SOC limits, and grid 

exports. The framework's equilibrium of energy, as 

determined by: 

0dis cha

pv ess ess gridE E E E     (7) 

The difference in SOC between two time 

phases, which is correspond to the energy entering 

and leaving the ESS is, 

    cha ess

ess

E
( 1 E

dis

cha

capa ess dis dis

dis

SOC t SOC t ESS  


      (8) 

Here,  0SOC stands initial SOC. LP model 

aims to minimalize the COE by optimally 

scheduling the energy flow while assuring energy 

balance that aids to diminish operational cost and 

enhance economic viability. Equations (7) and (8) 

are used to reflect energy balance and the battery 

SOC flux through time. LP is primarily suited for 

linear objective functions and may not adequately 

represent complex optimization goals, such as 

maximizing energy yield while minimizing costs or 

considering multiple conflicting objectives 

simultaneously. This limitation restricts the ability to 

capture diverse optimization criteria effectively [56-

59]. 

2.3 Chaotic Flower Pollination Algorithm 

(CFPA) 

The CFPA has improved global search capability 

and earlier convergence, attained via the 

incorporation of chaos theory into the traditional 

FPA approach. The presented CFPA is a hybrid 

technique that modifies the FPA variable by 

substituting chaotic variables for random values. 

Furthermore, the local pollination and switch 

probability  p are manipulated through the 

application of chaos. In a typical FPA, this 

parameter is regarded as only one variable. 

However, p  signifies inversely reduced via growing 

number of iterations; the result is a modified version 

that looks like this, 

max min

max
T

 
 


    (9) 

Here t denotes actual iteration number and T

represents maximum value of iterations. Equation 

(9) defines switch probability 𝑝 in the CFPA. The 

lowest and greatest values of p are shown by 
min  = 

0.6 and 
max = 0.8, correspondingly. CFPA involves 

several parameters, including the chaotic maps' 

parameters and algorithm-specific parameters. The 
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performance of CFPA can be sensitive to these 

parameters, and selecting appropriate values may 

require extensive tuning, which can be time-

consuming and computationally expensive [60-64]. 

2.4 Incremental Conductance (INC) MPPT 

Algorithm  

INC method utilized P-V curve’s slope to trace 

MPP via locating peak of the curve. By looking at 

the connection among conductance values, which 

can be described as follows, one can ascertain where 

PV module's operation is in the P-V curve: 

dI I

dV V
    (10) 

dI I

dV V
    (11) 

dI I

dV V
    (12) 

These equations (10)–(12) are based on P-V 

curve's slope at MPP equals zero, which suggests: 

0
dP

dV
    (13) 

Since P = V I,  

0
dI

I V
dV

        (14) 

The DC-DC converter's duty cycle decreases if 

equation (10) is satisfied; on the other hand, if 

equation (11) is accurate, the duty cycle increases. In 

the meantime, when equation (12) meets the criteria, 

the duty cycle stays unaltered. At MPP, the slope 

defined in the power voltage relation (13) leads to 

current and duty cycle of the converter express on 

equation (14). Figure 3 shows how the INC 

algorithm functions in its entirety. 

 

Figure 3. Flowchart of INC algorithm 

Partial shading conditions where some PV 

cells/modules are shaded while others are 

illuminated, the IncCond algorithm may struggle to 

accurately track the global MPP. This results in 

suboptimal power output and reduced efficiency, as 

the algorithm may mistakenly settle at a local MPP 

as a replacement of the global MPP. In partial 

shading and dynamic conditions, the INC-MPPT 

algorithm face difficulties to precisely locating 

global MPP because of occurrence of many peaks in 

P-V curve. The algorithm relies on expression to 

find the MPP that function well in unchanging 

irradiance but mislead the controller in to settling at 

local MPP in partial conditions. Dynamic variations 

in irradiance and temperature also produce 

oscillations in the operating point, necessitating 

quick adjustments in the duty cycle. While INC 

adaptively responds to these changes, its 

performance declines in complex shading situations, 

often leading to suboptimal energy harvesting. [65-

69] 

2.5 Ant Colony Optimization (ACO) Algorithm 

The ACO algorithm has robust ability to track 

global MPP in complex, multi-modal P-V curves, 

particularly under varying circumstance. In PV 

power generation systems using Power Conditioning 

Systems (PSCs), this study offering an improved 

ACO method for MPPT. With this new algorithm, 

the more successful ants those who can find 

significant food sources continue to search, and the 

less successful ones are progressively eliminated 

from the ant colony. Comprehensive simulations and 

actual results show that this technique reduces 

computing costs and improves convergence 

characteristics. Initially, ants are scattered randomly 

across the solution space, with the total ant 

population denoted as N. Following with calculates 

the PV power corresponding to each ant's position. 

Moving forward, the algorithm identifies ant 

location, which produces highest PV power, 

marking it as the Elite ant location. This 

distinguished ant is visually distinguished, often by 

being depicted in a larger size, while the proportions 

of other ants are adjusted relative to the PV power 

they've uncovered. Then the ant positioned 

optimally remains stationary, while all other ants 

converge towards this location. This pruning process 

sets the stage for the optimization of the ant colony. 

The optimization loop continues reiterated until the 

population size decreases to a predetermined value, 

𝑀. Finally, from the remaining M ant positions, the 

one yielding the highest PV power is selected, 

signaling the termination of the program. This 

method efficiently directs solution space, leveraging 



Rahiman et al./Journal of Solar Energy Research Volume 10 Number 2 Spring (2025) 2415-2436 

2420 
 

the collective intelligence of ant colony to optimize 

the MPPT process effectively. This method 

optimizes the MPPT process efficiently, leveraging 

the collective intelligence of the ant colony to 

navigate the solution space effectively. ACO may 

encounter challenges in handling complex 

constraints, especially in PV system optimization 

problems with nonlinear constraints or discrete 

decision variables. Ensuring feasibility while 

exploring the solution space can be non-trivial and 

may require additional problem-specific 

modifications or constraint handling techniques. The 

ACO algorithm effectively explores the multi-modal 

P-V and complex characteristics to detect the global 

MPP. By allowing only the most successful ants to 

continue searching and pruning the less effective 

ones, the algorithm evades premature convergence 

to local peaks produced by shading. The elite ant 

approach assures that the global best solution is 

preserved, whereas others adaptively converge 

toward it. This collective search behavior enables 

ACO to respond efficiently to rapidly varying 

irradiance and temperature conditions, though 

managing nonlinear constraints still need 

modifications. [70-74] 

2.6 Sequential Minimal Optimization (SMO) 

Algorithm 

SMO has fast and effective parameter tuning by 

diminishing RMSE, making it appropriate for 

controller gain optimization in PV systems. The goal 

of applying SMO to the PV cell designs' variable 

selection is to reduce the RMSE value. The cost 

function is modified in each iteration in accordance 

with the experimental results derived from the 

inductor-voltage characteristic; hence, obtaining the 

parameters requires minimization. The fitness 

parameter of the algorithm determines how quickly 

and efficiently the PV system parameters are 

optimized. As a result, we recommend using the 

stochastic SMO approach to determine the PV 

system's controller gains. The discrepancy between 

each measured and approximated pair is evaluated 

using the RMSE, expressed as follows, 

2

1

1
( )

q

i

RMSE f parameter
q 

   (15) 

The suggested method looks for the smallest 

RMSE, as shown by equation (15), where q stands 

number of experimental data points or sample size. 

The SMO method is utilized for approximating the 

model's parameters according to a rule that is 

indicative of the solution vector throughout the 

process. However, it needs extra adaptations to 

manage non-linearities, increasing complexity. 

While SMO is effective for solving linearly 

separable problems, its performance can degrade for 

non-linearly separable problems commonly 

encountered in PV system optimization. Adapting 

SMO to handle non-linearities may require 

additional techniques, such as kernel methods, 

which can increase computational complexity and 

memory requirements [75-78]. 

2.7 Self-Adaptive Multi-Population RAO 

Algorithm  

SAP-RAO algorithm has advantages of 

simplicity, parameter-free nature and capability to 

dynamically adjust population size, making it highly 

adaptive for PV system optimization. RAO is a 

straightforward approach for optimization that 

requires no parameters. The RAO method's primary 

concept is that each iteration's updated solutions are 

determined by the best and worse solutions 

According to the determined goal function, the 

population size is adjusted in for each iteration of 

SAP-RAO algorithm.  

 1new old best worstX X r X X    (16) 

Equation (16) relates the update of each solution 

to the difference between the best and worst 

solutions to finding a better solution. SAMRA's self-

adaptive mechanisms for managing multiple 

populations may not always led to effective 

exploration and exploitation of solution space. If 

subpopulations are not efficiently handled, the 

algorithm converge prematurely or get stuck in 

suboptimal regions, especially when tackling multi-

modal or highly nonlinear PV system behaviors. In 

some cases, suboptimal population management 

strategies may hinder the algorithm's capability to 

converge high-quality solutions, especially in 

complex or dynamic optimization landscapes [79-

82]. 

2.8 Manta Ray Foraging Optimization (MRFO) 

MRFO has global search capability, mainly 

suitable for extracting the Global MPP in complex, 

multi-peaked P-V curves of shaded PV arrays. This 

work presents a new Global MPPT that makes use of 

the recently developed MRFO. The GMPP of a 

Triple-Junction solar array that operates under 

shadow is extracted using the suggested MRFO-

based MPPT. MRFO, a metaheuristic method of 

optimization based by manta rays' foraging behavior 

for collecting prey. Three forage operators are used 

in this method: chain, cyclone, and somersault 

foraging. Manta rays view locations with a high 

concentration of plankton as attractive during the 

chain foraging phase, since they represent the best 

solution. As a result, they arrange themselves into a 
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chain for foraging. Every individual advances in the 

direction of the food supply, adjusting its position in 

response to the position of person in front of it and 

ideal solution found in each iteration. 

Mathematically, this chain foraging method stated 

as: 

 

           
           

1

1

.        1

. 2, ,

t t t t t

i best i best i
t

i
t t t t t

i i i best i

x r x x x x i
x

x r x x x x i N









     


 
     



(17) 

 2 r log r      (18) 

The MRFO is described in Equations (17) and 

(18), where each individual follows the one in front 

of it before moving toward the best-found solution. 

MRFO's adaptability to dynamic environments or 

changing problem conditions may be limited. Since 

MRFO relies on fixed population size and 

predefined strategies for exploration and 

exploitation, it may struggle to dynamically adjust 

its search strategy and adapt to evolving 

optimization requirements or environmental changes 

[83-87]. 

2.9 Genetic Algorithm Based On Non-Uniform 

Mutation (GAMNU) 

GAMNU has enhanced precision in parameter 

estimation and its capability to transition from broad 

exploration to focused local search via non-uniform 

mutation. In order to precisely determine unknown 

variables of single and double diode simulations 

across a range of PV cell and module methods, this 

work presents a novel optimization genetic 

technique. The GAMNU method is an improved 

version of the traditional GA. This strategy involves 

an initial exploration of the entire solution space, 

transitioning to a more focused search as the 

population converges in specific regions. 

Particularly, statistical findings indicate that 

GAMNU works more accurately than other 

optimization techniques, indicating its potential 

application to actual energy-related optimization 

issues. GA-based non-uniform mutation approaches 

may encounter scalability issues when applied to 

large-scale PV system optimization problems with a 

high constraint. As the problem size increases, the 

computational complexity of maintaining the 

mutation rate schedule and updating the population 

may become prohibitive, leading to longer 

optimization times [88-92]. 

2.10 The New Musical Chairs Algorithm  

The NMCA has dynamic balance among 

exploration and exploitation, permitting effective 

tracking of Global Peak (GP) in MPPT applications. 

To attain effective MPPT, it is essential to balance 

exploration and exploitation in the course of 

optimization iterations, as was mentioned in the 

introduction. Initially, a maximum number of search 

agents are deployed to improve exploration and 

prevent premature convergence, akin to players 

circulating chairs while music plays. As iterations 

progress, the number of agents are gradually 

diminished to prioritize exploitation, mirroring the 

gradual removal of chairs in the game's progression. 

In MCA's initialization phase, players (representing 

search agents) are randomly assigned positions, akin 

to the initial placement of players in the musical 

chairs game. Subsequently, fitness values are 

determined based on the PV system performance. 

During each iteration, the loser exits, and chairs with 

the lowest fitness are removed. Optimization 

iterations commence by adjusting player positions 

using Eqn. (19), with fitness values reassessed based 

on the PV system's objective function. Winners 

occupy chairs with higher fitness values, simulating 

players aiming for the nearest or ahead chairs in the 

musical chairs game. 

As iterations progress, the number of chairs and 

players decreases until a single chair remains, 

representing the GP. The performance of MCA as 

corroborated by the simulation and experimental 

results sections, 

 1

1
. .i i i

pk pk best pk

u
d d M d d

v 

    (19) 

 

1

2

1 .sin .
2

1
. .2

2

 


  




 

 
 
 

  
  

  
     

  

 (20) 

Equation (20) measure the fitness of each player 

to find out which player stays based on the 

performance of PV system. Upon convergence, 

players may cluster around the GP, impeding 

detection of any shifts in peak position amidst 

shading pattern changes. Therefore, to identify 

shading pattern changes, it's crucial to detect acute 

changes in generated power. The severe variation in 

PV produced power can be detected using Eqn. (21), 

as follows: 

1

1

i i

i

P P

P





   (21) 

NMCA may be prone to premature convergence, 

where the search process stagnates prematurely, 

resulting in suboptimal solutions. This can occur if 
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the players converge too quickly to local optima, 

preventing the algorithm from exploring other 

potentially better solutions [93-97]. 

2.11 Improved Grey Wolf Optimizer (I-GWO)  

I-GWO has improved global search ability and 

reduced risk of premature convergence via 

randomized initialization and neighbor-based 

learning. In an effort to reduce the possibility of 

entering local optima, Improved GWO was 

developed to improve GWO. This improvement 

comprises a unique search approach including 

phases for choosing and updating, as seen by the 

dashed line in the flowchart. The following is a 

thorough explanation of the enhancement: - 

Extending initialization by dispersing wolves at 

random around the search area, as provided by 

Equation (22). 

  0,1ij j j j jX LB rand UB LB   (22) 

The Dimension Learning-based Hunting (DLH) 

process is used to improve tracking behavior. Every 

wolf in DLH gains knowledge from its neighbors.  

     1i i i GWOR t X t X t    (23) 

Equation (23) support each wolf to learn from its 

neighbors. The optimizer aims to find better 

solutions and avoid being trapped in local optima. 

GWO's exploration strategy may not always 

effectively explore the solution space, especially in 

complex or multimodal optimization landscapes. In 

some cases, the algorithm may converge to 

suboptimal solutions due to inadequate exploration, 

limiting its capability to discovery globally ideal 

solutions in challenging optimization difficulties 

[98-102]. 

2.12 Bat Algorithm (BA) in PV MPPT 

Application 

The BA has fast convergence, simplicity and 

better performance in low-dimensional optimization 

problems. In nature, bats emit pulses with varying 

frequencies and loudness, using the echoes to glean 

information about prey. They also share this 

knowledge within their swarm to aid others in 

finding food. The BA mirrors this behavior, 

leveraging it to search for optimal solutions across 

diverse real-life problems. Recognized for its rapid 

convergence, BA often outperforms other techniques 

such as PSO. BA involves bats navigating a three-

dimensional space by emitting high-frequency 

pulses (typically between 10 and 100 Hz) and 

analyzing the resulting echoes to discern differences 

in sound intensity and delay times. Based on this 

echo recognition, bats adjust their speed and 

orientation and share this information with their 

peers. While BA excels in low-dimensional 

optimization difficulties, it fail to effective in high-

dimensional scenarios due to its tendency to 

converge rapidly during initialization. However, BA 

remains an excellent choice for applications such as 

MPPT in PV systems, where the system typically 

involves only one variable. 
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Figure 4. Flowchart of BA 

BA's scalability to large-scale PV MPPT 

applications may be limited because of its 

population-based nature and the computational 

complexity of maintaining multiple bats. As the 

problem size increases, BA's performance may 

deteriorate, and it may struggle to efficiently 

discover the solution space and converge to high-

quality solutions within a reasonable time frame 

[103-107]. 

2.13 Improved Moth-Flame Whale Optimization 

Algorithm (IMWOA) 

IMWOA has greater convergence speed and 

predictive accuracy in optimizing complex, 

nonlinear models for predicting the PV power. This 

work created a model for predicting for short-term 

PV power forecast utilizing the IMWOA and 

Support Vector Machine (SVM). The approach 

outperformed other models for forecasting PV power 

under both cloudy and bright situations. Significant 

achievements include the effective creation of 

IMWOA and the improvement of its efficiency 

through the optimized use of mutation and adaptive 

variables in the WOA. Across a broad range of 

operations, the IMWOA models fared better than 

other models both in terms of error in prediction and 

convergence speed. With IMWOA, the optimal C 

and σ ratio was successfully identified in SVM, 

further increasing the forecast precision for PV 

output power. Future research directions include 

exploring various weather conditions in real 

environments for more comprehensive analysis and 

advancing long-term PV forecasting to enhance the 

operational safety and stability of power grid 

networks [108-112]. 

2.14 Improved Social Spider Algorithm (SSA) 

The Improved SSA has improved capability to 

avoid local minima over its elimination strategy, 

which confirms broader exploration of the solution 

space. The SSA, although having a fast convergence 

rate, frequently becomes stuck in local minimums 

and is unable to reach the global minimum in 

numerous cases. We provide a revised plan to 

improve the algorithm's performance in order to 

overcome this constraint. In this method, an 

elimination phase is introduced to modify the 

movement of spiders toward desirable solutions. A 

predetermined number of the poorest solutions are 

removed at the beginning of each session, and new 

solutions are added to an updated search space. 

Spiders can now take other routes in search of the 

optimal solution. We can reduce possibility of 

flattering stuck in local minimums and find optimal 

solutions faster by putting these improvements into 

practice. Additionally, to support the memory 

requirements of each spider, memory allocation is 

provided after generating new spiders. The 

execution of this Improved ISSA is showed in 

Figure 4. 

The changes made to the original algorithm, 

graphically indicated by blue blocks. In the 

meantime, Figure 5 provides a summary of the solar 

cell system's properties. The difference between the 

forecast and restrained currents is calculated for 

every algorithm iteration. ISSA algorithm's main 

goal is to reduce this RMSE number. The algorithm 

searches the search space to find and estimate the 

PV cell model's unknown parameters in order to 

accomplish this. Despite its empirical success in 

various applications, SSA lacks a strong theoretical 

foundation compared to some traditional 

optimization techniques. This can make it 

challenging to analyze its convergence properties 

and guarantees of finding the optimal solution [113-

116]. 
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Figure 5. Flowchart of SSA 

2.15Hunter-Prey Optimization (HPO) 

HPO has efficient balance among exploration 

and exploitation, permitting it to direct complex and 

multimodal PV optimization landscapes. This 

algorithm draws inspiration from the hunting and 

protective behaviors, observed across various 

species of flora and fauna to achieve efficient 

optimization. The algorithm operates through three 

distinct steps: Step 1 involves the arbitrary 

initialization of the population, Step 2 computes the 

fitness function to constrain the search area for 

exploration, and Step 3 focuses on exploitation, 

wherein critical operations are performed among the 

entire population to develop prominent individuals. 

The search process unfolds in two stages: 

"exploration" and "exploitation." Exploration refers 

to algorithm's tendency for unpredictable behaviors 

and significant solution deviations, aiding in the 

discovery of unexplored regions with potential. 

Once promising areas are identified, random 

behaviors are minimized to explore the vicinity of 

these advantageous spots, a process known as 

exploitation. Within this algorithm, the hunter 
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discerningly selects prey distanced from the group, 

observing their return before initiating an attack.  

0.98
1

iter

C iter
max

 
   

 
  (24) 

 1 2* * )Z R INX R INX    (25) 

 

Figure 6. Flowchart of HPO 

Equations (24) and (25) are used in HPO to steer 

the search of Equation (24) to support exploration by 

allowing the hunters to move randomly and 

Equation (25) enables exploitation by guiding the 

movement toward the best solutions. Despite its 

empirical success in certain applications, HPO lacks 

a strong theoretical foundation compared to some 

traditional optimization techniques. This can make it 

challenging to analyze its convergence properties 

and provide guarantees of finding the optimal 

solution in all cases [117-120]. 

3. Comparative Analysis 

Table 1 illustrates the comparative analysis 

carried out among the different optimization 

techniques employed in PV system. 

Table 1. Comparative Analysis between distinct algorithms  

Sl. 

No 

Author 

/Year/ 

Reference 

Types of 

Algorithm 
Methodology Advantages Drawbacks 

1. 

Loubna 

Bousselamti 

et al [2020] 

[121] 

Partial Swarm 

Optimization 

method 

To reduce Levelized 

Cost of 

Electricity (LCOE) that 

all things are 

considered as 

restricting the system 

efficacy, the Particle 

Swarm Optimization 

method is employed. 

It is simpler to 

implement, robust to 

control parameters 

and computational 

efficiency. The PSO 

algorithm optimizes 

the parameters of 

system to diminish 

the LCOE, assuring 

maximum energy 

yield at lower cost. 

The major 

drawback is that 

confronting the 

PSO algorithm is 

that they often 

converge to some 

local optimization. 

2. 

Imran 

Pervez et al 

[2021] [122] 

ANN 

(Artificial 

Neural 

network) 

To allow sufficient 

outcome and to reject 

computational load, an 

ANN based MPPT is 

employed. 

It ensures that the 

loads receive 

maximum current to 

be used. 

It offers shorter 

lifespan due to 

more electronic 

components and 

more thermal stress. 

3. 
Liu  et al 

[2021] [123] 

Adaptive 

Wind Driven 

Optimization 

Algorithm(A

WDO) 

To derive unspecified 

criterion of a single 

diode solar PV cell 

model, a new version 

of algorithm named 

AWDO algorithm is 

established. 

Optimisation tool 

with the greatest 

effectiveness and 

superiority. 

Specifically, they 

are incompetent 

when it comes to 

specifying global 

MPPs under P&O 

situations. 

4. 

Ahmed A. 

Zaki Diab et 

al [2020] 

[124] 

Coyote 

Optimization 

Algorithm 

(COA) 

Coyote optimization 

algorithm is executed 

for drawing out the 

unspecified parameters 

presented in PV 

modules and solar cell 

It has very simple 

application with 

only two control 

parameters and 

have better 

tracking 

They will easily get 

trapped in poor 

local optimum and 

low convergence 

speed. 
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various models. Properties. 

5. 

Neeraj 

Priyadarshi 

et al [2019] 

[125] 

PSO 

To attain speedy and 

highest PV power 

along with a zero 

oscillation tracking, an 

ANFIS-PSO is 

launched. 

 

It doesn’t require 

extra sensor for 

measuring of 

irradiance and 

temperature variable. 

Sensitive to a small 

number of fuzzy 

rules at first  

The more fuzzy 

rules there are, the 

harder it is to 

compute. 

6. 

Ali M. 

Eltamal Y et 

al [2021] 

[126] 

Demand 

Response 

Strategy 

(DRS) 

A new DRS is executed 

that finds the tariff of 

electricity based on 

charging/discharging 

state of the battery. 

 

Obtain lower energy 

cost by curtailing 

energy usage at peak 

times when energy is 

more expensive. 

Peak demand 

exceeds maximum 

supply levels that 

the electric power 

industry can 

generate, resulting 

in power outages 

and long shedding. 

7. 

Ehsan 

Moshksar et 

al [2018] 

[127] 

Extremum 

Seeking 

Control 

Algorithm(ES

CA) 

The non-linear and 

uncertain problems like 

strong concavity 

feature of PV power 

output, considered 

measurable signal 

which need to be 

maximal in 

optimization are sorted 

out by using an 

estimation based 

ESCA. 

The gradient of the 

unknown function is 

estimated using a 

perturbation signal.  

It introduces very 

slow perturbation 

signal, which make 

optimization 

process very slow. 

 

8. 
Ke Guo et al 

[2020] [128] 

Improved 

Gray Wolf 

Optimizer 

Algorithm 

(IGWO) 

An IGWO method, 

which is a GMPPT 

control approach, is 

implemented according 

to the topology of the 

converter and external 

environment sudden 

changes considerations. 

Its tracking time is 

only 0.24s and attains 

98.54 % efficiency 

under severe PSCs. 

 

Slow convergence 

speed, imprecise 

solution, and 

susceptibility to 

local optimum. 

9. 

Senapati et 

al [2025] 

[129] 

JAYA 

Algorithm 

For sorting out 

MPPT problem in solar 

PV system under 

partial 

shading conditions 

competently the subtle 

cubic spline guided 

JAYA Algorithm is 

developed. 

It enhances tracking 

efficiency and 

addresses better PV 

MPPT problems and 

converges faster. 

Its implementation 

is not easy as it 

have maximum 

number of iteration. 

10. 

M. S. AL-

SAUD et al 

[2020] [130] 

Bat Algorithm 

The most conventional 

MPPT technique don't 

use GP under partial 

shading conditions. 

Hence bat algorithm, 

the metaheuristic 

technique is used to 

overcome this.  

It uses simple 

concept and structure 

which have good 

exploitation ability. 

 

It requires 

parameter tuning to 

achieve better 

search output and 

improvised method 

to accelerate the 

convergence for 

performance 

enhancement.  

Additionally, a comparison of the various 

optimization algorithms is performed in relation to 
various parameters in Table 2 that has been 

presented below. 
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Table 2. Comparative analysis in terms of different parameters 

Qualities MVPA COA ANFIS-PSO ESCA 

GMPPT Capability Yes Yes Yes Yes 

Efficacy High High High High 

Reliability High High High High 

Tracking Speed High Medium High High 

Steady State Oscillations No No No Low 

Performance complexity Low Low Low Medium 

 

Figure 7. Tracking Efficiency comparison 

According to the evaluation, it is shown that 

ANFIS-PSO algorithm outperforms other methods 

including MVPA, COA, and ECSA in terms of 

reliability, steady state oscillations, and 

effectiveness, tracking speed, performance 

complexity and GMPPT capability.  

Table 3. Evaluation of tracking effectiveness 

MPPT 

controller 

Efficiency 

(%) 

Tracking 

time (s) 

PSO 94.5% 5.3𝑠 

JAYA 96.8% 4.9𝑠 

MVPA 99% 3.2𝑠 

ANFIS-PSO 99.2% 2.1𝑠 

Table 3 denotes the different MPPT controller 

approaches regarding tracking efficiency (%) and 

tracking response(𝑠). According to the Table 3, the 

PSO tuned ANFIS BASED MPPT controller 

achieves maximum tracking efficiency 99.2% with 

fast tracking time 2.1s. Figure 7 illustrates the 

comparative analysis amid the different optimization 

techniques, with respect to tracking efficiency. 

According to the analysis, ANFIS-PSO outperforms 

other techniques including PSO, JAYA, MVPA and 

ANFIS PSO with a tracking efficiency of 99.2%. 

4. Conclusion 

In the present period, the PV system's wide 

availability and pollution-free nature have reached a 

huge height. The PV module typically connects solar 

cells in parallel and series to transform solar energy 

into electricity. Although it is not viable to connect a 

load directly to a PV panel. It is essential to enhance 

systems output because of the intermittent nature of 

PV systems. As a result, DC-AC and DC-DC 

converters are exploited for controlling and 

supplying PV output to grid or load. Furthermore, a 

variety of optimization-based techniques are 

operated to extract most power from PV system and 

to maintain a consistent DC link voltage. A 

comparative analysis has been performed between 

various optimization methods employed in the PV 

system, so as to identify the significant one. The 

comparison of findings indicates that the ANFIS-

PSO method operates better than other methods. 

Therefore, it is probable to significantly improve PV 

system's performance in future by employing unique 

hybrid optimization algorithms and by data mining 

techniques. However, some algorithms have 

complexities under difficult situations such as 

nonlinear and partial shading, diminishing tracking 

efficacy and convergence reliability. Furthermore, 

computational overheads and scalability for high-

dimensional optimization issues are not extremely 

analyzed. The hybrid optimization approach 

incorporating AI based forecasting or adaptive 

control approaches are explored in the future 

research. Furthermore, the multi-objective 

optimization considering economic and 

environmental metrics maybe integrated for 

performance enhancement. 

List of Abbreviations 

Abbreviations Explanation Abbreviations Explanation 

RES Renewable Energy Source  REF Renewable Energy Fraction 

PV Photovoltaic COE Cost of Energy 

RESCA 
Reformed Electric System Cascade 

Analysis 
EGR Energy Generation Ratio 
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MPPT Maximum Power Point Technique DRO 
Distributionally Robust 

Optimization  

HRES Hybrid Renewable Energy System VVPO Volt-VAR Pressure Optimization 

BESS Battery Energy Storage System P&O Perturb and Observe 

NIS Non-intermittent Source MPP Maximum Power Point 

WECS Wind Energy Conversion System RCPSO 
Real Coded Particle Swarm 

Optimization 

FEE Final Excess Energy RECKF 
Robust Extended Complex Kalman 

Filter 

NPC Net Present Cost SPVA Solar Photovoltaic Array 

CFPA 
Chaotic Flower Pollination 

Optimization Algorithm 
GMPP Global Maximum Power Point 

FRA Flow Regime Algorithm PSCs Partially Shaded Circumstances 

STF Search Type Factor LIPO Lipschitz Optimization 

SARAP 

Search Algorithm Referencing 

Adjacent Point Optimization 

Algorithm 

MPSO 

 

Modified PSO 

MRFO 
Manta Rays Foraging Optimization 

Algorithm 
SMO 

Social Mimic Optimization 

Algorithm 

DPVS Distributed Photovoltaic Stations EVCS Electric Vehicle Charging Stations 

SBMPO 
Sampling Based Model Predictive 

Optimization 
EM Energy Management 

 

MFOGI 

Multilayer Fifth Order Generalized 

Integrator 
TGOA 

Team Game Optimization 

Algorithm 

LSTM Long Short Term Memory HPO Human Psychology Optimization 

THD Total Harmonic Distortion DDM Double Diode Model 

SDM Single Diode Model LCOE Levelized Cost of Electricity  

ANN Artificial Neural network AWDO 
Adaptive Wind Driven 

Optimization 

COA Coyote Optimization Algorithm DRS Demand Response Strategy  

BFBIC Boost Full Bridge Isolated Converter SOC State of Charge 
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