[1] Satpute, J.B. and Rajan, A.J. (2018). Recent advancement in cooling technologies of solar Photovoltaic (PV) system. FME Transactions, 46(4), 575–580.
https://doi.org/10.5937/fmet1804575S.
[2] Riffonneau, Y., Bacha, S., Barruel, F. and Ploix, S. (2011). Optimal power flow management for grid connected PV systems with batteries. IEEE Transactions on Sustainable Energy, 2(3), 309–320.
https://doi.org/10.1109/TSTE.2011.2114901.
[3] Ranabhat, K., Patrikeev, L., Revina, A.A., Andrianov, K., Lapshinsky, V. and Sofronova, E. (2016). An introduction to solar cell technology. Journal of Applied Engineering Science, 14(4), 481–491. https://doi.org/10.5937/jaes14-10879.
[4] de Paulo, A.F. and Porto, G.S. (2017). Solar energy technologies and open innovation: A study based on bibliometric and social network analysis. Energy Policy, 108, 228–238.
https://doi.org/10.1016/j.enpol.2017.06.007.
[5] de Paulo, A.F. and Porto, G.S. (2017). Solar energy technologies and open innovation: A study based on bibliometric and social network analysis. Energy Policy, 108, 228–238. https://doi.org/10.1016/j.enpol.2017.06.007.
[6] Grubišić-Čabo, F., Nižetić, S. and Marco, T.G. (2016). Photovoltaic panels: A review of the cooling techniques. Transactions of Famena, 40, 63–74.
[7] Dorobanțu, L., Popescu, M.O., Popescu, C.L. and Crăciunescu, A. (2013). Experimental assessment of PV panels front water cooling strategy. Renewable Energy and Power Quality Journal, 11(1), 1009–1012.
https://doi.org/10.24084/repqj11.510.
[9] Liu, Z., Zhang, L., Gong, G., Li, H. and Tang, G. (2015). Review of solar thermoelectric cooling technologies for use in zero energy buildings. Energy and Buildings, 102, 207–216.
https://doi.org/10.1016/j.enbuild.2015.05.029.
[10] Del Cueto, J.A. (2002). Comparison of energy production and performance from flat-plate photovoltaic module technologies deployed at fixed tilt. Conference Record of the IEEE Photovoltaic Specialists Conference, pp. 1523–1526.
https://doi.org/10.1109/pvsc.2002.1190901.
[11] Hamzat, A.K., Sahin, A.Z., Omisanya, M.I. and Alhems, L.M. (2021). Advances in PV and PVT cooling technologies: A review. Sustainable Energy Technologies and Assessments, 47, 101360. https://doi.org/10.1016/j.seta.2021.101360.
[12] Tan, L., Date, A., Fernandes, G., Singh, B. and Ganguly, S. (2017). Efficiency gains of photovoltaic system using latent heat thermal energy storage. Energy Procedia, 110, 83–88. https://doi.org/10.1016/j.egypro.2017.03.110.
[13] Ho, C.J., Liu, Y.C., Ghalambaz, M. and Yan, W.M. (2020). Forced convection heat transfer of nano-encapsulated phase change material (NEPCM) suspension in a mini-channel heatsink. International Journal of Heat and Mass Transfer, 155, 119858. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119858.
[14] Peng, L., Ni, Z. and Huang, X. (2013). Review on the fire safety of exterior wall claddings in high-rise buildings in China. Procedia Engineering, 62, 663–670. https://doi.org/10.1016/j.proeng.2013.08.112.
[15] Bharadwaj A., Pratah, J. (2019). Future of solar photovoltaic: Deployment, investment, technology, grid integration and socio-economic aspects, International Renewable Energy Agency (IRENA)... Available at: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Oct/IRENA_Future_of_wind_2019.pdf.
[16] Panda, S., Panda, B., Jena, C., Nanda, L. and Pradhan, A. (2021). Investigating the similarities and differences between front and back surface cooling for PV panels. Materials Today: Proceedings, 74, 358–363. https://doi.org/10.1016/j.matpr.2022.08.424.
[17] Ahmad, N., Khandakar, A., El-Tayeb, A., Benhmed, K., Iqbal, A. and Touati, F. (2018). Novel design for thermal management of PV cells in harsh environmental conditions. Energies, 11(11). https://doi.org/10.3390/en11113231.
[18] Chen, W. (2011). Thermal analysis on the cooling performance of a wet porous evaporative plate for building. Energy Conversion and Management, 52(5), 2217–2226. https://doi.org/10.1016/j.enconman.2010.12.029
[19] Karamanis, D., Vardoulakis, E., Kyritsi, E. and Ökte, N. (2012). Surface solar cooling through water vapor desorption from photo-responsive sepiolite nanocomposites. Energy Conversion and Management, 63, 118–122. https://doi.org/10.1016/j.enconman.2012.01.035
[20] Bhakre, S.S., Sawarkar, P.D. and Kalamkar, V.R. (2021). Performance evaluation of PV panel surfaces exposed to hydraulic cooling – A review. Solar Energy. https://doi.org/10.1016/j.solener.2021.06.083.
[21] Haidar, Z.A., Orfi, J. and Kaneesamkandi, Z. (2021). Photovoltaic panels temperature regulation using evaporative cooling principle: Detailed theoretical and real operating conditions experimental approaches. Energies, 14(1). https://doi.org/10.3390/en14010145.
[22] Hasan, I.A., Kareem, I.S. and Attar, D.A. (2019). Effect of evaporative cooling combined with heat sink on PV module performance. Journal of University of Babylon for Engineering Sciences, 27(2), 252–264. https://doi.org/10.29196/jubes.v27i2.2345.
[23] Kadhim, A.M. and Aljubury, I.M.A. (2020). Experimental evaluation of evaporative cooling for enhancing photovoltaic panels efficiency using underground water. Journal of Engineering, 26(8), 14–33. https://doi.org/10.31026/j.eng.2020.08.02
[24] Suresh, M. and Shanmadhi, R. (2020). Studies on the performance of 150W solar photovoltaic module with evaporative cooling. IOP Conference Series: Materials Science and Engineering, 912(4). https://doi.org/10.1088/1757-899X/912/4/042016.
[25] Mohsenzadeh, M. and Hosseini, R. (2015). A photovoltaic/thermal system with a combination of a booster diffuse reflector and vacuum tube for generation of electricity and hot water production. Renewable Energy, 78, 245–252. https://doi.org/10.1016/j.renene.2015.01.010.
[26] Yang, C., Lin, J., Miksik, F., Miyazaki, T. and Thu, K. (2024). Dew-point evaporative cooling of PV panels for improved performance. Applied Thermal Engineering, 236. https://doi.org/10.1016/j.applthermaleng.2023.121695.
[27] Haurant, P., Ménézo, C. and Dupeyrat, P. (2014). The PHOTOTHERM project: Full scale experimentation and modelling of a photovoltaic–thermal (PV-T) hybrid system for domestic hot water applications. Energy Procedia. https://doi.org/10.1016/j.egypro.2014.02.068.
[28] Dimri, N., Tiwari, A. and Tiwari, G.N. (2019). Comparative study of photovoltaic thermal (PVT) integrated thermoelectric cooler (TEC) fluid collectors. Renewable Energy, 134, 343–356. https://doi.org/10.1016/j.renene.2018.10.105.
[29] Sharma, N.K., Gaur, M.K. and Malvi, C.S. (2020). Application of phase change materials for cooling of solar photovoltaic panels: A review. Materials Today: Proceedings, 47, 6759–6765. https://doi.org/10.1016/j.matpr.2021.05.127.
[30] Said, Z., et al. (2024). Nano-enhanced phase change materials: Fundamentals and applications. Progress in Energy and Combustion Science, 104, 101162. https://doi.org/10.1016/j.pecs.2024.101162.
[31] Wahile, G.S., Malwe, P.D. and Aswalekar, U. (2022). Latent heat storage system by using phase change materials and their application. Materials Today: Proceedings, 52, 513–517. https://doi.org/10.1016/j.matpr.2021.09.268.
[32] Wahile, G.S., et al. (2024). Performance analysis of photovoltaic panel using machine learning method. Indonesian Journal of Electrical Engineering and Computer Science. https://doi.org/10.11591/ijeecs.v34.i1.pp19-30.
[33] Wahile, G.S., Malwe, P.D. and Kolhe, A.V. (2020). Waste heat recovery from exhaust gas of an engine by using a phase change material. Materials Today: Proceedings, 28, 2101–2107.
https://doi.org/10.1016/j.matpr.2020.03.247
[34] Malhotra, P,. (2017). Various type of solar cell technologies. Sun in city.
[35] Dunn, A.M., Hofmann, O.S., Waters, B. and Witchel, E. (2011). Cloaking malware with the trusted platform module.
[36] Dwivedi, P., Sudhakar, K., Soni, A., Solomin, E. and Kirpichnikova, I. (2020). Advanced cooling techniques of P.V. modules: A state of art. Case Studies in Thermal Engineering, 21, 100674. https://doi.org/10.1016/j.csite.2020.100674
[37] Sathe, T.M. and Dhoble, A.S. (2017). A review on recent advancements in photovoltaic thermal techniques. https://doi.org/10.1016/j.rser.2017.03.075.
[38] Gang, P., Huide, F., Tao, Z. and Jie, J. (2011). A numerical and experimental study on a heat pipe PV/T system. Solar Energy, 85(5), 911–921. https://doi.org/10.1016/j.solener.2011.02.006.
[39] Popovici, C.G., Hudişteanu, S.V., Mateescu, T.D. and Cherecheş, N.C. (2016). Efficiency improvement of photovoltaic panels by using air cooled heat sinks. Energy Procedia, 85, 425–432. https://doi.org/10.1016/j.egypro.2015.12.223.
[40] Radziemska, E. (2009). Performance analysis of a photovoltaic-thermal integrated system. International Journal of Photoenergy, 2009. https://doi.org/10.1155/2009/732093.
[41] Salameh, W., Castelain, C., Faraj, J., Murr, R., El Hage, H. and Khaled, M. (2021). Improving the efficiency of photovoltaic panels using air exhausted from HVAC systems: Thermal modelling and parametric analysis. Case Studies in Thermal Engineering, 25, 100940. https://doi.org/10.1016/j.csite.2021.100940
[42] Choubineh, N., Jannesari, H. and Kasaeian, A. (2019). Experimental study of the effect of using phase change materials on the performance of an air-cooled photovoltaic system. Renewable and Sustainable Energy Reviews, 101, 103–111. https://doi.org/10.1016/j.rser.2018.11.001.
[43] Valeh-E-Sheyda, P., Rahimi, M., Parsamoghadam, A. and Masahi, M.M. (2014). Using a wind-driven ventilator to enhance a photovoltaic cell power generation. Energy and Buildings, 73, 115–119. https://doi.org/10.1016/j.enbuild.2013.12.052.
[44] Brinkworth, B.J., Cross, B.M., Marshall, R.H. and Yang, H. (1997). Thermal regulation of photovoltaic cladding. Solar Energy, 61(3), 169–178. https://doi.org/10.1016/S0038-092X(97)00044-3.
[45] Mankani, K., Chaudhry, H.N. and Calautit, J.K. (2022). Optimization of an air-cooled heat sink for cooling of a solar photovoltaic panel: A computational study. Energy and Buildings. https://doi.org/10.1016/j.enbuild.2022.112274.
[46] Li, D., King, M., Dooner, M., Guo, S. and Wang, J. (2021). Study on the cleaning and cooling of solar photovoltaic panels using compressed airflow. Solar Energy, 221, 433–444. https://doi.org/10.1016/j.solener.2021.04.050.
[47] Ma, T., Kazemian, A., Habibollahzade, A., Salari, A., Gu, W. and Peng, J. (2022). A comparative study on bifacial photovoltaic/thermal modules with various cooling methods. Energy Conversion and Management, 263, 115555. https://doi.org/10.1016/j.enconman.2022.115555.
[48] Hernandez-Perez, J.G., Carrillo, J.G., Bassam, A., Flota-Banuelos, M. and Patino-Lopez, L.D. (2021). Thermal performance of a discontinuous finned heatsink profile for PV passive cooling. Applied Thermal Engineering, 184, 116238. https://doi.org/10.1016/j.applthermaleng.2020.116238.
[49] Siddiqui, M.U., Siddiqui, O.K., Al-Sarkhi, A., Arif, A.F.M. and Zubair, S.M. (2019). A novel heat exchanger design procedure for photovoltaic panel cooling application: An analytical and experimental evaluation. Applied Energy, 239, 41–56. https://doi.org/10.1016/j.apenergy.2019.01.203.
[50] Bayrak, F., Oztop, H.F. and Selimefendigil, F. (2020). Experimental study for the application of different cooling techniques in photovoltaic (PV) panels. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2020.112789.
[51] Shoeibi, S., Kargarsharifabad, H., Mirjalily, S.A.A. and Zargarazad, M. (2021). Performance analysis of finned photovoltaic/thermal solar air dryer with using a compound parabolic concentrator. Applied Energy, 304, 117778, https://doi.org/10.1016/j.apenergy.2021.117778.
[52] Leary, P. (2019). Design & Evaluation of Cooling Systems for Photovoltaic Modules. Honors Theses, Union College. Available at: https://digitalworks.union.edu/theses/2357.
[53] Rahimi, M., Valeh-E-Sheyda, P., Parsamoghadam, M.A., Masahi, M.M. and Alsairafi, A.A. (2014). Design of a self-adjusted jet impingement system for cooling of photovoltaic cells. Energy Conversion and Management, 83, 48–57. https://doi.org/10.1016/j.enconman.2014.03.053.
[54] Almeshaiei, E., Al-Habaibeh, A., Mina, N. and Akib, S. (2023). Rapid evaluation of the design and manufacture of cooling systems of photovoltaic solar panels. International Journal on Interactive Design and Manufacturing, 17(1), 197–214. https://doi.org/10.1007/s12008-022-01161-z.
[55] Abdallah, R., Haddad, T., Zayed, M., Juaidi, A. and Salameh, T. (2024). An evaluation of the use of air cooling to enhance photovoltaic performance. Thermal Science and Engineering Progress, 47, 102341. https://doi.org/10.1016/j.tsep.2023.102341.
[56] Harmailil, I.O., Sultan, S.M., Tso, C.P., Fudholi, A., Mohammad, M. and Ibrahim, A. (2024). A review on recent photovoltaic module cooling techniques: Types and assessment methods. Results in Engineering, 22, 102225. https://doi.org/10.1016/j.rineng.2024.102225.
[57] Srithar, K., Udhayakumar, P., Sundhar, M.C., Baskar, P.G., Hemakumar, R. and Saravanan, R. (2025). Photovoltaic panel with bottom-mounted air cooling system. Cleaner Engineering and Technology, 24, 100870. https://doi.org/10.1016/j.clet.2024.100870.
[58] Ibrahim, M.F., Misaran, M.S. and Amaludin, N.A. (2022). Simulation of solar PV surface temperature with dimpled fin cooling. IOP Conference Series: Materials Science and Engineering, 1217(1), 012015. doi:10.1088/1757-899X/1217/1/012015.
[59] Ali, K.A.M., Osman, Y.K.O.T., El-wahhab, G.G.A., Abdelwahab, T.A.M. and Fodah, A.E.M. (2025). Improving solar PV performance under bird-dropping conditions with a dual-cooling approach. Scientific Reports, 15(1), 1–12. https://doi.org/10.1038/s41598-024-84932-w.
[60] Nabil, T. and Mansour, T.M. (2024). Enhancing photovoltaic panel efficiency with innovative cooling technologies: An experimental approach. Applied Thermal Engineering, 253, 123846. https://doi.org/10.1016/j.applthermaleng.2024.123846.
[61] Al-Masalha, I., Alsabagh, A.S., Badran, O., Alkawaldeh, N., Abu-Rahmeh, T.M. and Al Alawin, A. (2024). Improving photovoltaic module efficiency using water sprinklers, air fans, and combined cooling systems. EPJ Photovoltaics, 15. https://doi.org/10.1051/epjpv/2024037.
[62] Agyekum, E.B., PraveenKumar, S., Alwan, N.T., Velkin, V.I. and Shcheklein, S.E. (2021). Effect of dual surface cooling of solar photovoltaic panel on the efficiency of the module: experimental investigation. Heliyon, 7(9), e07920. https://doi.org/10.1016/j.heliyon.2021.e07920.
[63] Patil, K.T., Joshi, S.S. and Bhave, N.A. (2018). Performance analysis of an inverted trapezoidal flume shaped photovoltaic thermal system. Applied Solar Energy, 54(6), 413–420. DOI: 10.3103/S0003701X18060129.
[64] Odeh, S. and Behnia, M. (2009). Improving photovoltaic module efficiency using water cooling. Heat Transfer Engineering, 30(6), 499–505. https://doi.org/10.1080/01457630802529214.
[65] Krauter, S. (2004). Increased electrical yield via water flow over the front of photovoltaic panels. Solar Energy Materials and Solar Cells, 82(1–2), 131–137. https://doi.org/10.1016/j.solmat.2004.01.011.
[66] Yildirim, M.A., Cebula, A. and Sułowicz, M. (2022). A cooling design for photovoltaic panels – Water-based PV/T system. Energy. https://doi.org/10.1016/j.energy.2022.124654.
[67] Sutanto, B., Indartono, Y.S., Wijayanta, A.T. and Iacovides, H. (2022). Enhancing the performance of floating photovoltaic system by using thermosiphon cooling method: Numerical and experimental analyses. International Journal of Thermal Sciences, 180, 107727. https://doi.org/10.1016/j.ijthermalsci.2022.107727.
[68] Talebnejad, R., et al. (2022). A new cooling method for photovoltaic panels using brine from reverse osmosis units to increase efficiency and improve productivity. Energy Conversion and Management, 251, 115031. https://doi.org/10.1016/j.enconman.2021.115031.
[69] Menon, G.S., Murali, S., Elias, J., Aniesrani Delfiya, D.S., Alfiya, P.V. and Samuel, M.P. (2022). Experimental investigations on unglazed photovoltaic-thermal (PVT) system using water and nanofluid cooling medium. Renewable Energy, 188, 986–996. https://doi.org/10.1016/j.renene.2022.02.080.
[70] Zaite, A., Belouaggadia, N., Abid, C. and Ezzine, M. (2021). Performance improvement of photovoltaic cells using night radiative cooling technology in a PV/T collector. Journal of Building Engineering, 42, 102843. https://doi.org/10.1016/j.jobe.2021.102843.
[71] Hadipour, A., Rajabi Zargarabadi, M. and Rashidi, S. (2021). An efficient pulsed-spray water cooling system for photovoltaic panels: Experimental study and cost analysis. Renewable Energy. https://doi.org/10.1016/j.renene.2020.09.021.
[72] Abdolzadeh, M. and Ameri, M. (2009). Improving the effectiveness of a photovoltaic water pumping system by spraying water over the front of photovoltaic cells. Renewable Energy, 34(1), 91–96. https://doi.org/10.1016/j.renene.2008.03.024.
[73] Nižetić, S., Čoko, D., Yadav, A. and Grubišić-Čabo, F. (2016). Water spray cooling technique applied on a photovoltaic panel: The performance response. Energy Conversion and Management, 108, 287–296. https://doi.org/10.1016/j.enconman.2015.10.079
[74] Bhatnagar, A., Hegde, A.K., H.S., A., Karanth, K.V. and M.N. (2024). Innovative cooling for PV panels: Energy and exergy assessments of water-induced V-shaped channels. Results in Engineering, 24, 103100. https://doi.org/10.1016/j.rineng.2024.103100.
[75] Hossin, K. and Attia, H. (2024). Water-cooling based approach for PV system performance enhancement towards UAE future energy efficiency policies. International Journal of Energy Economics and Policy, 14(1), 433–440. https://doi.org/10.32479/ijeep.15237.
[76] Kant, K., Shukla, A. and Sharma, A. (2017). Advancement in phase change materials for thermal energy storage applications. Solar Energy Materials and Solar Cells, 172, 82–92. https://doi.org/10.1016/j.solmat.2017.07.023.
[77] Dirbude, S.B. and Shelke, D.S. (2018). Numerical assessment of suitability of phase-change materials in a concentric PCM-module for thermal storage applications. International Journal of Applied Engineering Research, 13(8), 5–11. [Online] Available: http://www.ripublication.com.
[78] Mousavi Baygi, S.R. and Sadrameli, S.M. (2018). Thermal management of photovoltaic solar cells using Polyethylene Glycol1000 (PEG1000) as a phase change material. Thermal Science and Engineering Progress. https://doi.org/10.1016/j.tsep.2018.01.012
[79] Kargaran, M., Graphene Oxide, I.G. and Carbon Nanotubes, C. (2025). Advanced cooling of photovoltaic panels using hybrid nanofluids. [Journal unspecified]. https://doi.org/10.1155/er/4345236
[80] Sornek, K. and Goryl, W. (2023). Improving the performance of photovoltaic panels using a direct water cooling system. Journal of Sustainable Development of Energy, Water and Environment Systems. Volume 11, Issue 4, 1110468. https://doi.org/10.13044/j.sdewes.d11.0468.
[81] Lotfi, M., Shiravi, A.H. and Bahrami, T. (2022). Cooling of PV modules by water, ethylene-glycol and their combination; Energy and environmental evaluation. Journal of Solar Energy Research, Volume 7 Number 2 Spring, 1047-1055.
[82] Satpute, J. et al. (2025). Computational study on water based hybrid photovoltaic systems with different absorber configurations. Scientific Reports volume 15, Article number: 1226.
[83] Al Aboushi, A., Abdelhafez, E. and Hamdan, M. (2022). Finned PV natural cooling using water-based TiO₂ nanofluid. . Sustainability, 14(20), 12987; https://doi.org/10.3390/su142012987.
[84] Khanna, S., Reddy, K.S. and Mallick, T.K. (2018). Climatic behaviour of solar photovoltaic integrated with phase change material. Energy Conversion and Management, 166, 590–601. https://doi.org/10.1016/j.enconman.2018.04.056.
[85] Huang, M.J. (2011). The effect of using two PCMs on the thermal regulation performance of BIPV systems. Solar Energy Materials and Solar Cells, 95(3), 957–963. https://doi.org/10.1016/j.solmat.2010.11.032.
[86] Maiti, S., Banerjee, S., Vyas, K., Patel, P. and Ghosh, P.K. (2011). Self regulation of photovoltaic module temperature in V-trough using a metal-wax composite phase change matrix. Solar Energy, 85(9), 1805–1816. https://doi.org/10.1016/j.solener.2011.04.021.
[87] Adibpour, S., Raisi, A., Ghasemi, B., Sajadi, A.R. and Rosengarten, G. (2021). Experimental investigation of the performance of a sun tracking photovoltaic panel with phase change material. Renewable Energy, 165, 321–333. https://doi.org/10.1016/j.renene.2020.11.022.
[88] Sudhakar, P., Santosh, R., Asthalakshmi, B., Kumaresan, G. and Velraj, R. (2021). Performance augmentation of solar photovoltaic panel through PCM integrated natural water circulation cooling technique. Renewable Energy, 172, 1433–1448. https://doi.org/10.1016/j.renene.2020.11.138.
[89] Al Hariri, A., Selimli, S. and Dumrul, H. (2022). Effectiveness of heat sink fin position on photovoltaic thermal collector cooling supported by paraffin and steel foam: An experimental study. Applied Thermal Engineering, 213, 118784. https://doi.org/10.1016/j.applthermaleng.2022.118784.
[90] Bhakre, S.S., Sawarkar, P.D. and Kalamkar, V.R. (2023). Numerical study on photovoltaic thermal phase change material system in hot climatic conditions. Applied Thermal Engineering, 227, 120423. https://doi.org/10.1016/j.applthermaleng.2023.120423.
[91] Karthick, A., Ramanan, P., Ghosh, A., Stalin, B., Vignesh Kumar, R. and Baranilingesan, I. (2020). Performance enhancement of copper indium diselenide photovoltaic module using inorganic phase change material. Asia-Pacific Journal of Chemical Engineering, 15(5), 1–11. https://doi.org/10.1002/apj.2480.
[92] Emam, M., Ookawara, S. and Ahmed, M. (2017). Performance study and analysis of an inclined concentrated photovoltaic-phase change material system. Solar Energy, 150, 229–245. https://doi.org/10.1016/j.solener.2017.04.050.
[93] Khanna, S., Reddy, K.S. and Mallick, T.K. (2018). Optimization of solar photovoltaic system integrated with phase change material. Solar Energy, 163, 591–599. https://doi.org/10.1016/j.solener.2018.01.002.
[94] Xu, H., Zhang, C., Wang, N., Qu, Z. and Zhang, S. (2020). Experimental study on the performance of a solar photovoltaic/thermal system combined with phase change material. Solar Energy, 198, 202–211. https://doi.org/10.1016/j.solener.2020.01.064.
[95] Xu, H., Wang, N., Zhang, C., Qu, Z. and Karimi, F. (2021). Energy conversion performance of a PV/T-PCM system under different thermal regulation strategies. Energy Conversion and Management, 229, 113660. https://doi.org/10.1016/j.enconman.2020.113660.
[96] Smith, C.J., Forster, P.M. and Crook, R. (2014). Global analysis of photovoltaic energy output enhanced by phase change material cooling. Applied Energy, 126, 21–28. https://doi.org/10.1016/j.apenergy.2014.03.083.
[97] Fu, Z. et al. (2021). Experimental investigation on the enhanced performance of a solar PVT system using micro-encapsulated PCMs. Energy, 228, 120509. https://doi.org/10.1016/j.energy.2021.120509
[98] Shastry, D.M.C. and Arunachala, U.C. (2020). Thermal management of photovoltaic module with metal matrix embedded PCM. Journal of Energy Storage, 28, 101312. https://doi.org/10.1016/j.est.2020.101312.
[99] El Kassar, R., Al Takash, A., Faraj, J., Khaled, M. and Ramadan, H.S. (2024). Phase change materials for enhanced photovoltaic panels performance: A comprehensive review and critical analysis. Energy and Built Environment. https://doi.org/10.1016/j.enbenv.2024.02.004.
[100] Hussain, B., Malik, H.W., Hasnain, F.U. and Irfan, M. (2023). Phase change material for the cooling of solar panels—An experimental study. Engineering Proceedings, 45(1), 43–46.
https://doi.org/10.3390/engproc2023045043.
[101] Maghrabie, H.M., Mohamed, A.S.A., Fahmy, A.M. and Abdel Samee, A.A. (2023). Performance enhancement of PV panels using phase change material (PCM): An experimental implementation. Case Studies in Thermal Engineering, 42, 102741. https://doi.org/10.1016/j.csite.2023.102741.
[102] Hossain, F., Karim, M.R. and Bhuiyan, A.A. (2022). A review on recent advancements of the usage of nano fluid in hybrid photovoltaic/thermal (PV/T) solar systems. Renewable Energy, 188, 114–131. https://doi.org/10.1016/j.renene.2022.01.116.
[103] Abdelrahman, H.E., Wahba, M.H., Refaey, H.A., Moawad, M. and Berbish, N.S. (2019). Performance enhancement of photovoltaic cells by changing configuration and using PCM (RT35HC) with nanoparticles Al₂O₃. Solar Energy, 177, 665–671. https://doi.org/10.1016/j.solener.2018.11.022.
[104] Raja Jeyaseelan, T., Azhagesan, N. and Pethurajan, V. (2019). Thermal characterization of NaNO₃/KNO₃ with different concentrations of Al₂O₃ and TiO₂ nanoparticles. Journal of Thermal Analysis and Calorimetry, 136(1), 235–242. DOI: 10.1007/s10973-018-7980-6.
[105] Lin, Y., Jia, Y., Alva, G. and Fang, G. (2018). Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage. Renewable and Sustainable Energy Reviews, 82, 2730–2742. https://doi.org/10.1016/j.rser.2017.10.002.
[106] Amaral, C., Vicente, R., Marques, P.A.A.P. and Barros-Timmons, A. (2017). Phase change materials and carbon nanostructures for thermal energy storage: A literature review. Renewable and Sustainable Energy Reviews, 79, 1212–1228. https://doi.org/10.1016/j.rser.2017.05.093.
[107] Cao, Y., Kamrani, E., Mirzaei, S., Khandakar, A. and Vaferi, B. (2022). Electrical efficiency of the photovoltaic/thermal collectors cooled by nanofluids: Machine learning simulation and optimization by evolutionary algorithm. Energy Reports, 8, 24–36. https://doi.org/10.1016/j.egyr.2021.11.252.
[108] Awad, M.M. et al. (2022). Photovoltaic thermal collectors integrated with phase change materials: A comprehensive analysis. Electronics, 11(3),337, https://doi.org/10.3390/electronics11030337.
[109] Alinia, A.M. and Sheikholeslami, M. (2025). Development of a new solar system integrating photovoltaic and thermoelectric modules with paraffin-based nanomaterials, Nature, https://doi.org/10.1038/s41598-025-85161-5 1
[110] Badgujar, S.P., Kumar, C.S. and Wagh, H.K. (2024). Optimizing solar PV panel performance through phase change material cooling: An experimental study. 11(8), 32–38, https://doi.org/10.14445/23488360/IJME-V11I8P104.
[111] Bhakre, S.S., Sawarkar, P.D. and Kalamkar, V.R. (2022). Experimental study on photovoltaic panel integrated with Polyethylene Glycol 1500 phase change material. Journal of Energy Storage, 105518, https://doi.org/10.1016/j.est.2022.105518.
[112] Biwole, P., Eclache, P. and Kuznik, F. (2015). Improving the performance of solar panels by the use of phase-change materials. Energy and building. Volume 62, Pages 59-67 https://doi.org/10.1016/j.enbuild.2013.02.059
[113] Gaviria, J.F., Narváez, G., Guillen, C., Giraldo, L.F. and Bressan, M. (2022). Machine learning in photovoltaic systems: A review. Renewable Energy, 196, 298–318.
[114] Radwan, A. and Ahmed, M. (2018). Thermal management of concentrator photovoltaic systems using microchannel heat sink with nanofluids. Solar Energy, 171, 229–246. https://doi.org/10.1016/j.solener.2018.06.083.
[115] Al-Shamani, A.N., Sopian, K., Mat, S., Hasan, H.A., Abed, A.M. and Ruslan, M.H. (2016). Experimental studies of rectangular tube absorber photovoltaic thermal collector with various types of nanofluids under the tropical climate conditions. Energy Conversion and Management. Volume 124, 15, Pages 528-542. https://doi.org/10.1016/j.enconman.2016.07.052.
[116] Madhi, H., Aljabair, S. and Imran, A.A. (2024). A review of photovoltaic/thermal system cooled using mono and hybrid nanofluids. International Journal of Thermofluids, 22, 100679. https://doi.org/10.1016/j.ijft.2024.100679.
[117] Ibrahim, A., Ramadan, M.R., Khallaf, A.E.M. and Abdulhamid, M. (2023). A comprehensive study for Al₂O₃ nanofluid cooling effect on the electrical and thermal properties of polycrystalline solar panels in outdoor conditions. Environmental Science and Pollution Research, 30(49), 106838–106859. https://doi.org/10.1007/s11356-023-25928-3.
[118] Ebaid, M.S.Y., Ghrair, A.M., Batarseh, F., Roscow, J. and Bowen, C.R. (2024). Exploring cooling of PV panels based on metallic and nonmetallic nanofluids: An experimental study. Advances in Mechanical Engineering, 16(1), 1–15. https://doi.org/10.1177/16878132231220354.
[119] Vartak, M., Udeshi, T., Jadhav, R., Aswalekar, U. and Wahile, G. (2023). CFD analysis of absorber tube using phase change materials. Materials Today: Proceedings. Volume 82, Pages 129-136 https://doi.org/10.1016/j.matpr.2022.12.110
[120] Merzah, B.N., Almakhyoul, Z.M., Abdullah, A.R. and Ayed, S.K. (2024). Enhancing solar panel cooling and thermal efficiency using nanoparticle-enhanced phase change materials. Mathematical Modelling of Engineering Problems, 11(6), 1547–1557. https://doi.org/10.18280/mmep.110615.
[121] Pereira, J. and Moita, A. (2023). An overview of the nano-enhanced phase change materials for energy harvesting and conversion. Molecules, 28(15),5763. https://doi.org/10.3390/molecules28155763
[122] Sangeetha, M., Manigandan, S., Chaichan, M.T. and Kumar, V. (2020). Progress of MWCNT, Al₂O₃, and CuO with water in enhancing the photovoltaic thermal system. International Journal of Energy Research, 44(2), 821–832. https://doi.org/10.1002/er.4905.
[123] Sheik, M.A. et al. (2022). A comprehensive review on recent advancements in cooling of solar photovoltaic systems using phase change materials, International Journal of Low-Carbon Technologies, Volume 17, pp. 768–783. https://doi.org/10.1093/ijlct/ctac053.
[124] Masalha, I., Ujila, S., Badran, O. and Alahmer, A. (2025). A multi-method approach to investigating porous media cooling for enhanced thermal performance of photovoltaic panels: Exploring the effects of porosity, flow rates, channel design, and coolant types. International Journal of Thermofluids, 27, 101165. https://doi.org/10.1016/j.ijft.2025.101165.
[125] Alami, A.H. (2014). Effects of evaporative cooling on efficiency of photovoltaic modules. Energy Conversion and Management, 77, 668–679. https://doi.org/10.1016/j.enconman.2013.10.019.
[126] Chandrasekar, M., Suresh, S., Senthilkumar, T. and Karthikeyan, M.G. (2013). Passive cooling of standalone flat PV module with cotton wick structures. Energy Conversion and Management, 71, 43–50. https://doi.org/10.1016/j.enconman.2013.03.012.
[127] Haidar, Z.A., Orfi, J. and Kaneesamkandi, Z. (2018). Experimental investigation of evaporative cooling for enhancing photovoltaic panels efficiency. Results in Physics. https://doi.org/10.1016/j.rinp.2018.10.016.
[128] Alktranee, M. and Bencs, P. (2022). Effect of evaporative cooling on photovoltaic module performance. Process Integration and Optimization for Sustainability. https://doi.org/10.1007/s41660-022-00268-w.
[129] Haidar, Z.A. (2016). Cooling of solar PV panels using evaporative cooling. Journal of Thermal Engineering, 2, 928–933. [Online]. Available: http://eds.yildiz.edu.tr/journal-of-thermal-engineering/Articles.
[130] Chandrasekar, M. and Senthilkumar, T. (2016). Passive thermal regulation of flat PV modules by coupling the mechanisms of evaporative and fin cooling. Heat and Mass Transfer/Waerme- und Stoffuebertragung, 52(7), 1381–1391.
[131] Mansour, M.S., Halawa, M., Yahya, H., Abdel-Raouf, M.M. and Eid, M.A. (2024). Enhancement of PV and concentrated PV panels using evaporative cooling during summer and winter seasons: A case study in Egypt. Case Studies in Thermal Engineering, 63, 105354. https://doi.org/10.1016/j.csite.2024.105354.
[132] Buker, M.S. and Riffat, S.B. (2015). Recent developments in solar assisted liquid desiccant evaporative cooling technology – A review. Energy and Buildings, 96, 95–108. https://doi.org/10.1016/j.enbuild.2015.03.020.
[133]a Jani, D.B., Mishra, M. and Sahoo, P.K. (2018). A critical review on application of solar energy as renewable regeneration heat source in solid desiccant–vapor compression hybrid cooling system. Journal of Building Engineering, 18, 107–124. https://doi.org/10.1016/j.jobe.2018.03.012.
[134] Siabdallah, M., Bouafia, S. and Siabdallah, H. (2025). Experimental study of a cooling photovoltaic solar panel using water-wet jute fabric. Journal of Energy Resources Technology, 147, 1–7. https://doi.org/10.1115/1.4068000.
[135] Jaffar, M.F., Mohammad, A.T., Ahmed, A.Q. and Al-Shohani, W.A.M. (2024). Experimental investigation of using the evaporative air cooling technique to enhance the performance of the photovoltaic module. International Journal of Low-Carbon Technologies, 19, 1231–1245.
[136] Li, R., Shi, Y., Wu, M., Hong, S. and Wang, P. (2020). Photovoltaic panel cooling by atmospheric water sorption-evaporation cycle. Nature Sustainability volume 3, pages 636–643.
[137] Wankhede, S. (2023). Experimental performance and comparison of sustainable cooling techniques for solar (photovoltaic) panel. NanoWorld Journal, 9, 105–112. https://doi.org/10.17756/nwj.2023-s4-019.
[138] Mahmood, D.M.N., Aljubury, I.M.A. and Al-obaidi, M.A. (2024). Theoretical analysis of photovoltaic panel power enhancement using evaporative cooling and underground water. pp. 220–228. https://doi.org/10.2478/9788368412031-018.
[139] Wang, Z., et al. (2020). Lightweight, passive radiative cooling to enhance concentrating photovoltaics. Joule, 4(12), 2702–2717. https://doi.org/10.1016/j.joule.2020.10.004.
[140] Sato, D. and Yamada, N. (2019). Review of photovoltaic module cooling methods and performance evaluation of the radiative cooling method. Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2018.12.051.
[141] Zhu, L., Raman, A., Wang, K.X., Anoma, M.A. and Fan, S. (2014). Radiative cooling of solar cells. Optica, 1(1), 32. https://doi.org/10.1364/optica.1.000032.
[142] Ahmed, A., Fouda, A., Elattar, H.F., Alnamasi, K. and Alsharif, A.M.A. (2025). Advancing photovoltaic thermal module efficiency through optimized heat sink designs. Applied Thermal Engineering, 126241. https://doi.org/10.1016/j.applthermaleng.2025.126241.
[143] Kumar, N.S., Barik, D., Tudu, K., Praveenkumar, S., Dennison, M.S. and Ibrahim, T.K. (2025). Thermodynamic study of improved cooling in solar photovoltaic cells using nanofluids with graphite-doped titanium dioxide and aluminum oxide. Case Studies in Thermal Engineering, 69, 105969. https://doi.org/10.1016/j.csite.2025.105969.
[144] Prakash, A., Kukreja, R. and Kumar, P. (2025). Improving the performance of PV panel by using PCM with nanoparticles and bifluid – A comprehensive review. Materials Chemistry and Physics: Sustainability and Energy, 2, 100005. https://doi.org/10.1016/j.macse.2024.100005.
[145] Murtadha, T.K., Hussein, A.A.D., Alalwany, A.A.H., Alrwashdeh, S.S. and Al-Falahat, A.M. (2022). Improving the cooling performance of photovoltaic panels by using two passes circulation of titanium dioxide nanofluid. Case Studies in Thermal Engineering, 36, 102191.
https://doi.org/10.1016/j.csite.2022.102191.
[146] Bhakre, S.S., Sawarkar, P.D. and Kalamkar, V.R. (2023). Evaporative cooling of photovoltaic panels in dry and hot climatic conditions. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 45(4), 11259–11277. https://doi.org/10.1080/15567036.2023.2256687.