Porous Jump Model to Interpret the Effect of Perforated Absorber Layer Inclination on Solar Cooker Reliability

Document Type : Original Article

Authors

1 Mechanical Engineering Department, College of Engineering, Al-Nahrain University, Baghdad, Iraq

2 Department of Mechanical Engineering, University of Technology, Baghdad, Iraq

10.22059/jser.2024.376901.1417

Abstract

Energy is one of the many problems concerning the future of sustainable development since it is limited in quantities. Investments should be re-employed and new technologies should be employed. The use of solar stoves will be one possible approach. In numerical tests of box-shaped solar cookers, the heat absorber plate was copper perforated, and we examined the heat absorption levels for inclined angles of 0°, 3°, 6°, and 9°. The research revealed that the perforated copper lid of the cube-based facade of the solar cooker reached a level of almost 18.4 degrees higher than the regular absorber. Moreover, the cooking time in the box-shaped solar oven will shorten by 21% when the manufacturer uses a perforated copper plate instead of a regular flat one in production. In the first test, the best internal air temperature was obtained by an inclination of 9 degrees. Consequently, the mean temperatures of the perforated copper absorber plate were raised with increasing inclination angles. In this case, the equation for cooking power demonstrated how the cooker steadily heated up and used water in the right range throughout the selected period.

Keywords

[1]  Oyedepo, S. O. (2014). Towards achieving energy for sustainable development in Nigeria. Renewable and sustainable energy reviews, 34, 255-272. doi:  https://doi.org/10.1016/j.rser.2014.03.019
[2]  Bazmi, A. A., & Zahedi, G. (2011). Sustainable energy systems: Role of optimization modeling techniques in power generation and supply—A review. Renewable and sustainable energy reviews, 15(8), 3480-3500. doi:  https://doi.org/10.1016/j.rser.2011.05.003
[3]  Otte, P. P. (2013). Solar cookers in developing countries—What is their key to success? Energy Policy, 63, 375-381. doi:  https://doi.org/10.1016/j.enpol.2013.08.075
[4]  Shbailat, S. J., & Nima, M. A. (2021). Possible energy saving of evaporative passive cooling using a solar chimney of metal foam porous absorber. Energy Conversion and Management: X, 12, 100118. doi:  https://doi.org/10.1016/j.ecmx.2021.100118
[5]  Mark P. McCarthy, M. J. B., Richard A. Betts. (2010). Climate change in cities due to global warming and urban effects. Geophysical Research Letters, 37(9). doi:  https://doi.org/10.1029/2010GL042845
[6]  Suhaib J Shbailat, M. N. (2024). Simulation of Effect a Variable Height of Porous Absorber on Ventilation Solar Chimney Performance. Al-Nahrain Journal for Engineering Sciences, 26(4), 343–350. doi:  https://doi.org/10.29194/NJES.26040343
[7]  Hamood, B. A. K., & Nima, M. A. (2020). Experimental Investigation of Thermal Performance of a Solar Chimney Provided with a Porous Absorber Plate. Journal of Engineering (17264073), 26(4). doi:  https://doi.org/10.31026/j.eng.2020.04.01
[8]  Bakhtiari, A. H. A. A. (2015). Efficiency Analysis of an Air Solar Flat Plate Collector in Different Convection Modes
International Journal of Green Energy, 12(9), 881-887. doi:  https://doi.org/10.1080/15435075.2014.940621
[9]  M. A. Al-Nimr, B. K., M. Alata. (2011). International Journal of Green Energy A Novel Integrated Direct Absorption Self-Storage Solar Collector, 8(6), 618-630. doi:  https://doi.org/10.1080/15435075.2011.600377
[10]  Ashby, M. F., & Lu, T. (2003). Metal foams: A survey. Science in China Series B: Chemistry, 46, 521-532. doi:  https://doi.org/10.1360/02yb0203
[11]  Tan, W. C., Saw, L. H., San Thiam, H., Xuan, J., Cai, Z., & Yew, M. C. (2018). Overview of porous media/metal foam application in fuel cells and solar power systems. Renewable and sustainable energy reviews, 96, 181-197. doi:  https://doi.org/10.1016/j.rser.2018.07.032
[12]  Nayak, J., Agrawal, M., Mishra, S., Sahoo, S. S., Swain, R. K., & Mishra, A. (2018). Combined heat loss analysis of trapezoidal shaped solar cooker cavity using computational approach. Case studies in thermal engineering, 12, 94-103. doi:  https://doi.org/10.1016/j.csite.2018.03.009
[13]  Ukey, A., & Katekar, V. (2019). An experimental investigation of thermal performance of an octagonal box type solar cooker. Smart Technologies for Energy, Environment and Sustainable Development: Select Proceedings of ICSTEESD 2018, 767-777. doi:  https://doi.org/10.1007/978-981-13-6148-7_73
[14]  Noman, M., Wasim, A., Ali, M., Jahanzaib, M., Hussain, S., Ali, H. M. K., & Ali, H. M. (2019). An investigation of a solar cooker with parabolic trough concentrator. Case studies in thermal engineering, 14, 100436. doi:  https://doi.org/10.1016/j.csite.2019.100436
[15]  Hashemian, N., & Noorpoor, A. (2019). Assessment and multi-criteria optimization of a solar and biomass-based multi-generation system: Thermodynamic, exergoeconomic and exergoenvironmental aspects. Energy Conversion and Management, 195, 788-797. doi:  https://doi.org/10.1016/j.enconman.2019.05.039
[16]  Engoor, G. G., Shanmugam, S., & Veerappan, A. (2020). Experimental investigation of a box-type solar cooker incorporated with Fresnel lens magnifier. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-16. doi:  https://doi.org/10.1080/15567036.2020.1826009
[17]  Vengadesan, E., & Senthil, R. (2021). Experimental investigation of the thermal performance of a box type solar cooker using a finned cooking vessel. Renewable Energy, 171, 431-446. doi:  https://doi.org/10.1016/j.renene.2021.02.130
[18]  Singh, O. K. (2021). Development of a solar cooking system suitable for indoor cooking and its exergy and enviroeconomic analyses. Solar Energy, 217, 223-234. doi:  https://doi.org/10.1016/j.solener.2021.02.007
[19]  Tawfik, M., Sagade, A. A., Palma-Behnke, R., Abd Allah, W., & Hanan, M. (2022). Performance evaluation of solar cooker with tracking type bottom reflector retrofitted with a novel design of thermal storage incorporated absorber plate. Journal of Energy Storage, 51, 104432. doi:  https://doi.org/10.1016/j.est.2022.104432
[20]  Saxena, A., Joshi, S. K., Gupta, P., Tirth, V., Suryavanshi, A., Singh, D. B., & Sethi, M. (2023). An experimental comparative analysis of the appropriateness of different sensible heat storage materials for solar cooking. Journal of Energy Storage, 61, 106761. doi:  https://doi.org/10.1016/j.est.2023.106761
[21]  Sagade, A. A., Samdarshi, S., Sagade, N. A., & Panja, P. (2021). Enabling open sun cooling method-based estimation of effective concentration factor/ratio for concentrating type solar cookers. Solar Energy, 227, 568-576. doi:  https://doi.org/10.1016/j.solener.2021.09.035
[22]  Ruivo, C. R., Apaolaza-Pagoaga, X., Coccia, G., & Carrillo-Andrés, A. (2022). Proposal of a non-linear curve for reporting the performance of solar cookers. Renewable Energy, 191, 110-121. doi:  https://doi.org/10.1016/j.renene.2022.04.026
[23]  Aquilanti, A., Tomassetti, S., Muccioli, M., & Di Nicola, G. (2023). Design and experimental characterization of a solar cooker with a prismatic cooking chamber and adjustable panel reflectors. Renewable Energy, 202, 405-418. doi:  https://doi.org/10.1016/j.renene.2022.11.083
[24]  Aquilanti, A., Tomassetti, S., Coccia, G., Muccioli, M., & Di Nicola, G. (2023). Experimental characterization and performance comparison of four prototypes of panel solar cooker for low to high sun elevations. Journal of Cleaner Production, 390, 136158. doi:  https://doi.org/10.1016/j.jclepro.2023.136158
[25]  Patel, A. (2023). Comparative thermal performance analysis of circular and triangular embossed trapezium solar cooker with and without heat storage medium. International Journal of Science and Research (IJSR), 12(7), 376-380. doi:  http://dx.doi.org/10.21275/SR23612004356
[26]  Goyal, R. K., & Eswaramoorthy, M. (2024). Theoretical and experimental analysis of box-type solar cooker with sensible heat storage. Solar Energy, 268, 112273. doi:  https://doi.org/10.1016/j.solener.2023.112273
[27]  Banitia, D., Ramachandran, S., Bhogilla, S. S., & Vijayan, P. (2024). Optical analysis and design of a novel solar beam down concentrator for indoor cooking. Solar Compass, 12, 100083. doi:  https://doi.org/10.1016/j.solcom.2024.100083
[28]  Sivaramakrishnaiah, M., Reddy, B. S. P., Subhanjeneyulu, P., Sreenivasulu, N., Veeralingam, B., Paramasivam, P., & Gurulakshmi, B. (2024). Nano-thermal energy storage system for application in solar cooker. International Journal of Low-Carbon Technologies, 19, 1417-1424. doi:  https://doi.org/10.1093/ijlct/ctae096
[29]  Hashemian, N., & Noorpoor, A. (2023). Thermo-eco-environmental Investigation of a Newly Developed Solar/wind Powered Multi-Generation Plant with Hydrogen and Ammonia Production Options. Journal of Solar Energy Research, 8(4), 1728-1737. doi:  10.22059/jser.2024.374028.1388
[30]  Goyal, R. K. (2023). Thermo-physical properties of heat storage material required for effective heat storage and heat transfer enhancement techniques for the solar cooking applications. Sustainable Energy Technologies and Assessments, 56, 103078. doi:  https://doi.org/10.1016/j.seta.2023.103078
[31]  Getnet, M. Y., Gunjo, D. G., & Sinha, D. K. (2023). Experimental investigation of thermal storage integrated indirect solar cooker with and without reflectors. Results in Engineering, 18, 101022. doi:  https://doi.org/10.1016/j.rineng.2023.101022
[32]  Koshti, B., Dev, R., Bharti, A., & Narayan, A. (2023). Comparative performance evaluation of modified solar cookers for subtropical climate conditions. Renewable Energy, 209, 505-515. doi:  https://doi.org/10.1016/j.renene.2023.04.021
[33]  Shbailat, S. J., & Nima, M. A. (2022). Effect of absorber plate height on the performance of solar chimney utilized with porous absorber and integrated with an insulated room. Thermal Science, 26(6 Part A), 4775-4795. doi:  https://doi.org/10.2298/TSCI211008117S
[34]  Seth M. Ebersviller, J. J. J. (2022). Evaluation of performance of household solar cookers. Solar Energy, 208, 166-172. doi:  https://doi.org/10.1016/j.solener.2020.07.056
[35]  Ibrahim, O. A. A. M., Kadhim, S. A., & Ali, H. M. (2024). Enhancement the solar box cooker performance using steel fibers. Heat Transfer, 53(3), 1660-1684. doi:  https://doi.org/10.1093/ijlct/ctae096
[36]  Eyosiyas Yohannis, B., Amare Zeru, Nebiyu Bogale. (2024). Comparative CFD Analysis of Heat Transfer Enhancement in Phase Change Thermal Energy Storage with and without Fins for Solar Energy Storage. American Journal of Bioscience and Bioinformatics, 3(1). doi:  https://doi.org/10.54536/ajbb.v3i1.2564
[37]  Abdul Hussein, S. A., & Shbailat, S. J. (2023). Impact of bumpers position variation on heat exchanger performance: an experimental and predictive analysis using an artificial neural network. Journal of Engineering and Applied Science, 70(1), 6. doi:  https://doi.org/10.1186/s44147-023-00176-x
[38]  Shbailat, S. J., Rasheed, R. M., Sherza, J. S., & Ansam, A. M. (2023). Effect of inserting 10-PPI copper foam as a porous absorber on the solar cooker performance. International Journal of Advanced Technology and Engineering Exploration, 10(106), 1225. doi:  http://dx.doi.org/10.19101/IJATEE.2023.10101244
[39]  Shbailat, S. J., Rasheed, R. M., Muhi, R. J., & Mohammed, A. A. (2023). Effect of the 40-PPI copper foam layer height on the solar cooker performance. Open Engineering, 13(1), 20220471. doi:  https://doi.org/10.1515/eng-2022-0471
[40]  Al-Nehari, H. A., Mohammed, M. A., Odhah, A. A., Al-Attab, K., Mohammed, B. K., Al-Habari, A. M., & Al-Fahd, N. H. (2021). Experimental and numerical analysis of tiltable box-type solar cooker with tracking mechanism. Renewable Energy, 180, 954-965. doi:  https://doi.org/10.1016/j.renene.2021.08.125