Experimental Investigation of Flexible Solar Cells Using Passive Cooling Technique in Hot and Dry Climate of Jodhpur

Document Type : Original Article

Authors

1 Department of Mechanical Engineering, MBM University, Jodhpur 342001, India

2 Defence Laboratory, DRDO Jodhpur 342011, India.

10.22059/jser.2024.371686.1376

Abstract

High temperature is one the important factor that degrades efficiency of Photovoltaic Panels. For every degree increase in the PV temperature, the efficiency decreases by 0.45-0.65%. The Enhancement of performance of flexible PV panel using passive cooling Technique is the main goal of this study. The research aims to optimize the power conversion efficiency of flexible PV panels which are highly affected due to direct contact of mounting surface making them overheat, resulting in decreased output and lifespan. In the present study, two Identical Flexible PV panels 6W each were tested at optimum tilt angle of 31o in atmospheric condition in hot and dry climate of Jodhpur (26.2697°N,73.0352°E), India. Here different electrical parameters of passively cooled panel using Nanomaterial based heat resistant coating were compared with those of a reference panel that lacked cooling. Also, temperature variations over the PV modules were meticulously recorded during August, September, and October using temperature sensors, while considering influencing factors such as wind speed and solar irradiation. According to Experimentation’s finding, a temperature reduction of 6-7°C and an improved solar power efficiency of 2.5-4 % were observed for cooled flexible solar panel.

Keywords

[1] Skoplaki, E., & Palyvos, J. A. (2009). On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. Solar energy, 83(5), 614-624. DOI: 10.1016/j.solener.2008.10.008
[2] Notton, G., Cristofari, C., Mattei, M., & Poggi, P. (2005). Modelling of a double-glass photovoltaic module using finite differences. Applied thermal engineering, 25(17-18), 2854-2877.DOI: 10.1016/j.applthermaleng.2005.02.008
[3] Grubišić-Čabo, F., Nižetić, S., & Giuseppe Marco, T. (2016). Photovoltaic panels: A review of the cooling techniques. Transactions of FAMENA, 40(SI-1), 63-74. Retrieved from https://hrcak.srce.hr/159196
[4] Edenburn, M. W., & Edenburn, M. W. (1981). Active and passive cooling for concentrating photovoltaic arrays. NASA STI/Recon Technical Report N, 82, 21745.
[5] Araki, K., Uozumi, H., & Yamaguchi, M. (2002, May). A simple passive cooling structure and its heat analysis for 500/spl times/concentrator PV module. In Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002. (pp. 1568-1571). IEEE. DOI: 10.1109/PVSC.2002.1190913
[6] Tonui, J. K., & Tripanagnostopoulos, Y. (2007). Improved PV/T solar collectors with heat extraction by forced or natural air circulation. Renewable energy, 32(4), 623-637. DOI: 10.1016/j.renene.2006.03.006
[7] Kalogirou, S. A. (2001). Use of TRNSYS for modelling and simulation of a hybrid pv–thermal solar system for Cyprus. Renewable energy, 23(2), 247-260. DOI: 10.1016/S0960-1481(00)00176-2
[8] Tripanagnostopoulos, Y., Nousia, T. H., Souliotis, M., & Yianoulis, P. (2002). Hybrid photovoltaic/thermal solar systems. Solar energy, 72(3), 217-234. DOI:10.1016/S0038-092X(01)00096-2
[9] Krauter, S. (2004). Increased electrical yield via water flow over the front of photovoltaic panels. Solar energy materials and solar cells, 82(1-2), 131-137.DOI: 10.1016/j.solmat.2004.01.011
[10] Hadipour, A., Zargarabadi, M. R., & Rashidi, S. (2021). An efficient pulsed-spray water cooling system for photovoltaic panels: Experimental study and cost analysis. Renewable Energy, 164, 867-875. DOI: 10.1016/j.renene.2020.09.021
[11] Kordzadeh, A. (2010). The effects of nominal power of array and system head on the operation of photovoltaic water pumping set with array surface covered by a film of water. Renewable energy, 35(5), 1098-1102. DOI: 10.1016/j.renene.2009.10.024
[12] Cuce, E., Bali, T., & Sekucoglu, S. A. (2011). Effects of passive cooling on performance of silicon photovoltaic cells. International Journal of Low-Carbon Technologies, 6(4), 299-308. DOI:  10.1093/ijlct/ctr018
[13] Mazón-Hernández, R., García-Cascales, J. R., Vera-García, F., Káiser, A. S., & Zamora, B. (2013). Improving the electrical parameters of a photovoltaic panel by means of an induced or forced air stream. International Journal of Photoenergy, 2013. DOI: 10.1155/2013/830968
[14] Hassan, A. (2010). Phase change materials for thermal regulation of building integrated photovoltaics. Dissertation, Technological University Dublin
[15] Maiti, S., Banerjee, S., Vyas, K., Patel, P., & Ghosh, P. K. (2011). Self-regulation of photovoltaic module temperature in V-trough using a metal–wax composite phase change matrix. Solar energy, 85(9), 1805-1816. DOI: 10.1016/j.solener.2011.04.021
[16] Smith, C. J., Forster, P. M., & Crook, R. (2014). Global analysis of photovoltaic energy output enhanced by phase change material cooling. Applied energy, 126, 21-28. DOI: 10.1016/j.apenergy.2014.03.083
[17] Rosa-Clot, M., Rosa-Clot, P., Tina, G. M., & Scandura, P. F. (2010). Submerged photovoltaic solar panel: SP2. Renewable Energy, 35(8), 1862-1865.  DOI: 10.1016/j.renene.2009.10.023
[18] Elseesy, I., Khalil, T., & Ahmed, M. H. (2012). Experimental investigations and developing of photovoltaic/thermal system. World Applied Sciences Journal, 19(9), 1342-1347. DOI: 10.5829/idosi.wasj.2012.19.09.2794
[19] Chandrasekar, M., Suresh, S., & Senthilkumar, T. (2013). Passive cooling of standalone flat PV module with cotton wick structures. Energy conversion and management, 71, 43-50.DOI: 10.1016/j.enconman.2013.03.012
[20] Alami, A. H. (2014). Effects of evaporative cooling on efficiency of photovoltaic modules. Energy Conversion and Management, 77, 668-679. DOI: 10.1016/j.enconman.2013.10.019
[21] Han, X., Wang, Y., & Zhu, L. (2013). The performance and long-term stability of silicon concentrator solar cells immersed in dielectric liquids. Energy conversion and management, 66, 189-198. DOI: 10.1016/j.enconman.2012.10.009
[22] Abdulgafar, S. A., Omar, O. S., & Yousif, K. M. (2014). Improving the efficiency of polycrystalline solar panel via water immersion method. International Journal of Innovative Research in Science, Engineering and Technology, 3(1), 8127-8132.
[23] Lu, Y., Chen, Z., Ai, L., Zhang, X., Zhang, J., Li, J., & Song, W. (2017). A universal route to realize radiative cooling and light management in photovoltaic modules. Solar Rrl, 1(10), 1700084. DOI: 10.1002/solr.201700084.
[24] Zhou, Z., Wang, Z., & Bermel, P. (2019). Radiative cooling for low-bandgap photovoltaics under concentrated sunlight. Optics express, 27(8), A404-A418.DOI: 10.1364/OE.27.00A404
[25] Hashemian, N., & Noorpoor, A. (2023). Thermo-eco-environmental Investigation of a Newly Developed Solar/wind Powered Multi-Generation Plant with Hydrogen and Ammonia Production Options. Journal of Solar Energy Research, 8(4), 1728-1737. doi: 10.22059/jser.2024.374028.1388
[26] Agyekum, E. B., PraveenKumar, S., Alwan, N. T., Velkin, V. I., & Shcheklein, S. E. (2021). Effect of dual surface cooling of solar photovoltaic panel on the efficiency of the module: experimental investigation. Heliyon, 7(9). DOI: 10.1016/j.heliyon. 2021.e07920.
[27] Dida, M., Boughali, S., Bechki, D., & Bouguettaia, H. (2021). Experimental investigation of a passive cooling system for photovoltaic modules efficiency improvement in hot and arid regions. Energy Conversion and Management, 243, 114328. DOI: 10.1016/j.enconman.2021.114328.
[28] Nazari, S., & Eslami, M. (2021). Impact of frame perforations on passive cooling of photovoltaic modules: CFD analysis of various patterns. Energy Conversion and Management, 239, 114228.DOI: 10.1016/j.enconman.2021.114228
[29] Özcan, Z., Gülgün, M., Şen, E., Çam, N. Y., & Bilir, L. (2021). Cooling channel effect on photovoltaic panel energy generation. Solar Energy, 230, 943-953. DOI: 10.1016/j.solener.2021.10.086
[30] Yadav, A. K., & Chandel, S. S. (2018). Formulation of new correlations in terms of extraterrestrial radiation by optimization of tilt angle for installation of solar photovoltaic systems for maximum power generation: case study of 26 cities in India. Sādhanā, 43, 1-15. DOI: 10.1007/s12046-018-0858-2
[31] Lee, J. W., Song, M. S., Jung, H. S., & Kang, Y. T. (2023). Development of solar radiation spectrum-controlled emulsion filter for a photovoltaic-thermal (PVT) system. Energy Conversion and Management, 287, 117087.DOI: 10.1016/j.enconman.2023.117087
[32] Yan, C., Li, A., Wu, H., Tong, Z., Qu, J., Sun, W., & Yang, Z. (2023). Scalable and all-season passive thermal modulation enabled by radiative cooling, selective solar absorption, and thermal retention. Applied Thermal Engineering, 221, 119707.DOI: 10.1016/j.applthermaleng.2022.119707
[33] Zhou, Z., Gentle, A., Mohsenzadeh, M., Jiang, Y., Keevers, M., & Green, M. (2024). Long-term outdoor testing of vortex generators for passive PV module cooling. Solar Energy, 275, 112610.DOI: 10.1016/j.solener.2024.112610
[34] Sharaf, M., Yousef, M.S. & Huzayyin, A.S. Review of cooling techniques used to enhance the efficiency of photovoltaic power systems. Environmental Science Pollution Research. 29, 26131–26159 (2022). DOI:10.1007/s11356-022-18719-9
[35] Singh, D., Singh, A. K., Singh, S. P., & Poonia, S. (2021). Optimization of tilt angles for solar devices to gain maximum solar energy in Indian climate. In Advances in Clean Energy Technologies: Select Proceedings of ICET 2020 (pp. 189-199). Springer Singapore. DOI:10.1007/978-981-16-0235-1_16
[36] Jorgensen, G. J., Brunold, S., Koehl, M., Nostell, P., Oversloot, H., & Roos, A. (1999, October). Durability testing of antireflection coatings for solar applications. In Solar Optical Materials XVI (Vol. 3789, pp. 66-76). SPIE.
DOI: https://doi.org/10.1117/12.367571
[37] Jelle, B. P., Kalnæs, S. E., & Gao, T. (2015). Low-emissivity materials for building applications: A state-of-the-art review and future research perspectives. Energy and Buildings, 96, 329-356. DOI: 10.1016/j.enbuild.2015.03.024
[38] K. Emery, (2007) Standardization News 35(1): 30-33. Report URL: https://www.researchgate.net/publication/255945173
[39] Roy, J. N., Gariki, G. R., & Nagalakhsmi, V. (2010). Reference module selection criteria for accurate testing of photovoltaic (PV) panels. Solar Energy, 84(1), 32-36. DOI: 10.1016/j.solener.2009.09.007
[40] Photovoltaics, D. G., & Storage, E (2021). IEEE Recommended Practice for Testing the Performance of Stand-Alone Photovoltaic Systems. ,1-32, DOI: 10.1109/IEEESTD.2021.9508826.
[41] Nikitenkov, N. (Ed.). (2017). Modern technologies for creating the thin-film systems and coatings. BoD–Books on Demand (United Kingdom. Intech Open Press) DOI: 10.5772/63326
[42] Hassan, R. (2020, November). Experimental and numerical study on the effect of water cooling on PV panel conversion efficiency. In IOP Conference Series: Materials Science and Engineering (Vol. 928, No. 2, p. 022094). IOP Publishing. DOI: 10.1088/1757-899X/928/2/022094
[43] Haidar, Z. A., Orfi, J., & Kaneesamkandi, Z. (2018). Experimental investigation of evaporative cooling for enhancing photovoltaic panels efficiency. Results in Physics, 11, 690-697. DOI: 10.1016/j.rinp.2018.10.016
[44]         Chandrika, V. S., Karthick, A., Kumar, N. M., Kumar, P. M., Stalin, B., & Ravichandran, M. (2021). Experimental analysis of solar concrete collector for residential buildings. International Journal of Green Energy, 18(6), 615-623.DOI: 10.1080/15435075.2021.1875468
[45] Chandel, R. (2013). Uncertainty analysis of photovoltaic power measurements using solar simulators. Energy Technology, 1(12), 763-769. DOI: 10.1002/ente.201300112
[46] Naqvi, S. A. R., Kumar, L., Harijan, K., & Sleiti, A. K. (2024). Performance investigation of solar photovoltaic panels using mist nozzles cooling system. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 46(1), 2299–2317. DOI:10.1080/15567036.2024.2305302