[1] Skoplaki, E., & Palyvos, J. A. (2009). On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. Solar energy, 83(5), 614-624. DOI: 10.1016/j.solener.2008.10.008
[2] Notton, G., Cristofari, C., Mattei, M., & Poggi, P. (2005). Modelling of a double-glass photovoltaic module using finite differences. Applied thermal engineering, 25(17-18), 2854-2877.DOI: 10.1016/j.applthermaleng.2005.02.008
[3] Grubišić-Čabo, F., Nižetić, S., & Giuseppe Marco, T. (2016). Photovoltaic panels: A review of the cooling techniques. Transactions of FAMENA, 40(SI-1), 63-74. Retrieved from https://hrcak.srce.hr/159196
[4] Edenburn, M. W., & Edenburn, M. W. (1981). Active and passive cooling for concentrating photovoltaic arrays. NASA STI/Recon Technical Report N, 82, 21745.
[5] Araki, K., Uozumi, H., & Yamaguchi, M. (2002, May). A simple passive cooling structure and its heat analysis for 500/spl times/concentrator PV module. In Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002. (pp. 1568-1571). IEEE. DOI: 10.1109/PVSC.2002.1190913
[6] Tonui, J. K., & Tripanagnostopoulos, Y. (2007). Improved PV/T solar collectors with heat extraction by forced or natural air circulation. Renewable energy, 32(4), 623-637. DOI: 10.1016/j.renene.2006.03.006
[7] Kalogirou, S. A. (2001). Use of TRNSYS for modelling and simulation of a hybrid pv–thermal solar system for Cyprus. Renewable energy, 23(2), 247-260. DOI: 10.1016/S0960-1481(00)00176-2
[8] Tripanagnostopoulos, Y., Nousia, T. H., Souliotis, M., & Yianoulis, P. (2002). Hybrid photovoltaic/thermal solar systems. Solar energy, 72(3), 217-234. DOI:10.1016/S0038-092X(01)00096-2
[9] Krauter, S. (2004). Increased electrical yield via water flow over the front of photovoltaic panels. Solar energy materials and solar cells, 82(1-2), 131-137.DOI: 10.1016/j.solmat.2004.01.011
[10] Hadipour, A., Zargarabadi, M. R., & Rashidi, S. (2021). An efficient pulsed-spray water cooling system for photovoltaic panels: Experimental study and cost analysis. Renewable Energy, 164, 867-875. DOI: 10.1016/j.renene.2020.09.021
[11] Kordzadeh, A. (2010). The effects of nominal power of array and system head on the operation of photovoltaic water pumping set with array surface covered by a film of water. Renewable energy, 35(5), 1098-1102. DOI: 10.1016/j.renene.2009.10.024
[12] Cuce, E., Bali, T., & Sekucoglu, S. A. (2011). Effects of passive cooling on performance of silicon photovoltaic cells. International Journal of Low-Carbon Technologies, 6(4), 299-308. DOI: 10.1093/ijlct/ctr018
[13] Mazón-Hernández, R., García-Cascales, J. R., Vera-García, F., Káiser, A. S., & Zamora, B. (2013). Improving the electrical parameters of a photovoltaic panel by means of an induced or forced air stream. International Journal of Photoenergy, 2013. DOI: 10.1155/2013/830968
[14] Hassan, A. (2010). Phase change materials for thermal regulation of building integrated photovoltaics. Dissertation, Technological University Dublin
[15] Maiti, S., Banerjee, S., Vyas, K., Patel, P., & Ghosh, P. K. (2011). Self-regulation of photovoltaic module temperature in V-trough using a metal–wax composite phase change matrix. Solar energy, 85(9), 1805-1816. DOI: 10.1016/j.solener.2011.04.021
[16] Smith, C. J., Forster, P. M., & Crook, R. (2014). Global analysis of photovoltaic energy output enhanced by phase change material cooling. Applied energy, 126, 21-28. DOI: 10.1016/j.apenergy.2014.03.083
[17] Rosa-Clot, M., Rosa-Clot, P., Tina, G. M., & Scandura, P. F. (2010). Submerged photovoltaic solar panel: SP2. Renewable Energy, 35(8), 1862-1865. DOI: 10.1016/j.renene.2009.10.023
[18] Elseesy, I., Khalil, T., & Ahmed, M. H. (2012). Experimental investigations and developing of photovoltaic/thermal system. World Applied Sciences Journal, 19(9), 1342-1347. DOI: 10.5829/idosi.wasj.2012.19.09.2794
[19] Chandrasekar, M., Suresh, S., & Senthilkumar, T. (2013). Passive cooling of standalone flat PV module with cotton wick structures. Energy conversion and management, 71, 43-50.DOI: 10.1016/j.enconman.2013.03.012
[20] Alami, A. H. (2014). Effects of evaporative cooling on efficiency of photovoltaic modules. Energy Conversion and Management, 77, 668-679. DOI: 10.1016/j.enconman.2013.10.019
[21] Han, X., Wang, Y., & Zhu, L. (2013). The performance and long-term stability of silicon concentrator solar cells immersed in dielectric liquids. Energy conversion and management, 66, 189-198. DOI: 10.1016/j.enconman.2012.10.009
[22] Abdulgafar, S. A., Omar, O. S., & Yousif, K. M. (2014). Improving the efficiency of polycrystalline solar panel via water immersion method. International Journal of Innovative Research in Science, Engineering and Technology, 3(1), 8127-8132.
[23] Lu, Y., Chen, Z., Ai, L., Zhang, X., Zhang, J., Li, J., & Song, W. (2017). A universal route to realize radiative cooling and light management in photovoltaic modules. Solar Rrl, 1(10), 1700084. DOI: 10.1002/solr.201700084.
[24] Zhou, Z., Wang, Z., & Bermel, P. (2019). Radiative cooling for low-bandgap photovoltaics under concentrated sunlight.
Optics express, 27(8), A404-A418.DOI:
10.1364/OE.27.00A404
[25] Hashemian, N., & Noorpoor, A. (2023). Thermo-eco-environmental Investigation of a Newly Developed Solar/wind Powered Multi-Generation Plant with Hydrogen and Ammonia Production Options. Journal of Solar Energy Research, 8(4), 1728-1737. doi: 10.22059/jser.2024.374028.1388
[26] Agyekum, E. B., PraveenKumar, S., Alwan, N. T., Velkin, V. I., & Shcheklein, S. E. (2021). Effect of dual surface cooling of solar photovoltaic panel on the efficiency of the module: experimental investigation. Heliyon, 7(9). DOI: 10.1016/j.heliyon. 2021.e07920.
[27] Dida, M., Boughali, S., Bechki, D., & Bouguettaia, H. (2021). Experimental investigation of a passive cooling system for photovoltaic modules efficiency improvement in hot and arid regions. Energy Conversion and Management, 243, 114328. DOI: 10.1016/j.enconman.2021.114328.
[28] Nazari, S., & Eslami, M. (2021). Impact of frame perforations on passive cooling of photovoltaic modules: CFD analysis of various patterns. Energy Conversion and Management, 239, 114228.DOI: 10.1016/j.enconman.2021.114228
[29] Özcan, Z., Gülgün, M., Şen, E., Çam, N. Y., & Bilir, L. (2021). Cooling channel effect on photovoltaic panel energy generation. Solar Energy, 230, 943-953. DOI: 10.1016/j.solener.2021.10.086
[30] Yadav, A. K., & Chandel, S. S. (2018). Formulation of new correlations in terms of extraterrestrial radiation by optimization of tilt angle for installation of solar photovoltaic systems for maximum power generation: case study of 26 cities in India. Sādhanā, 43, 1-15. DOI: 10.1007/s12046-018-0858-2
[31] Lee, J. W., Song, M. S., Jung, H. S., & Kang, Y. T. (2023). Development of solar radiation spectrum-controlled emulsion filter for a photovoltaic-thermal (PVT) system.
Energy Conversion and Management, 287, 117087.DOI:
10.1016/j.enconman.2023.117087
[32] Yan, C., Li, A., Wu, H., Tong, Z., Qu, J., Sun, W., & Yang, Z. (2023). Scalable and all-season passive thermal modulation enabled by radiative cooling, selective solar absorption, and thermal retention. Applied Thermal Engineering, 221, 119707.DOI: 10.1016/j.applthermaleng.2022.119707
[33] Zhou, Z., Gentle, A., Mohsenzadeh, M., Jiang, Y., Keevers, M., & Green, M. (2024). Long-term outdoor testing of vortex generators for passive PV module cooling.
Solar Energy, 275, 112610.DOI:
10.1016/j.solener.2024.112610
[34] Sharaf, M., Yousef, M.S. & Huzayyin, A.S. Review of cooling techniques used to enhance the efficiency of photovoltaic power systems. Environmental Science Pollution Research. 29, 26131–26159 (2022). DOI:10.1007/s11356-022-18719-9
[35] Singh, D., Singh, A. K., Singh, S. P., & Poonia, S. (2021). Optimization of tilt angles for solar devices to gain maximum solar energy in Indian climate. In Advances in Clean Energy Technologies: Select Proceedings of ICET 2020 (pp. 189-199). Springer Singapore. DOI:10.1007/978-981-16-0235-1_16
[36] Jorgensen, G. J., Brunold, S., Koehl, M., Nostell, P., Oversloot, H., & Roos, A. (1999, October). Durability testing of antireflection coatings for solar applications. In Solar Optical Materials XVI (Vol. 3789, pp. 66-76). SPIE.
DOI: https://doi.org/10.1117/12.367571
[37] Jelle, B. P., Kalnæs, S. E., & Gao, T. (2015). Low-emissivity materials for building applications: A state-of-the-art review and future research perspectives. Energy and Buildings, 96, 329-356. DOI: 10.1016/j.enbuild.2015.03.024
[38] K. Emery, (2007) Standardization News 35(1): 30-33. Report URL: https://www.researchgate.net/publication/255945173
[39] Roy, J. N., Gariki, G. R., & Nagalakhsmi, V. (2010). Reference module selection criteria for accurate testing of photovoltaic (PV) panels.
Solar Energy, 84(1), 32-36. DOI:
10.1016/j.solener.2009.09.007
[40] Photovoltaics, D. G., & Storage, E (2021). IEEE Recommended Practice for Testing the Performance of Stand-Alone Photovoltaic Systems. ,1-32, DOI: 10.1109/IEEESTD.2021.9508826.
[41] Nikitenkov, N. (Ed.). (2017). Modern technologies for creating the thin-film systems and coatings. BoD–Books on Demand (United Kingdom. Intech Open Press) DOI: 10.5772/63326
[42] Hassan, R. (2020, November). Experimental and numerical study on the effect of water cooling on PV panel conversion efficiency. In IOP Conference Series: Materials Science and Engineering (Vol. 928, No. 2, p. 022094). IOP Publishing. DOI: 10.1088/1757-899X/928/2/022094
[43] Haidar, Z. A., Orfi, J., & Kaneesamkandi, Z. (2018). Experimental investigation of evaporative cooling for enhancing photovoltaic panels efficiency.
Results in Physics, 11, 690-697. DOI:
10.1016/j.rinp.2018.10.016
[44] Chandrika, V. S., Karthick, A., Kumar, N. M., Kumar, P. M., Stalin, B., & Ravichandran, M. (2021). Experimental analysis of solar concrete collector for residential buildings. International Journal of Green Energy, 18(6), 615-623.DOI: 10.1080/15435075.2021.1875468
[45] Chandel, R. (2013). Uncertainty analysis of photovoltaic power measurements using solar simulators. Energy Technology, 1(12), 763-769. DOI: 10.1002/ente.201300112
[46] Naqvi, S. A. R., Kumar, L., Harijan, K., & Sleiti, A. K. (2024). Performance investigation of solar photovoltaic panels using mist nozzles cooling system. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 46(1), 2299–2317. DOI:10.1080/15567036.2024.2305302