A Novel Methodology of Literature Review of a Flat Plate Liquid Solar Collector

Document Type : Review Article


1 Mechanical Engineering Department, Maharishi Markandeshwar (Deemed To Be) University, Mullana, India

2 Vedantu Innovations Private Limited, Karnataka, India

3 Mechanical Engineering Department, Maharishi Markandeshwar (Deemed To Be) University, Mullana

4 Department of Agriculture, Maharishi Markandeshwar (Deemed To Be) University, Mullana, India



In this study, a literature review in the area of flat plate liquid solar collector (FPLSC) is carried out using an effective and efficient approach. The approach is based on research issues and other attributes those affect the system performance. These issues and attributes are collected from the presently published literature. Attributes can be classified into different categories for better handling, storage and identification. In case of FPLSC, attributes are classified as general, operational, environmental, type of application, type of work, instruments used and others. An information matrix (IM) is developed between present literature and the attributes. It is shown that the IM is a powerful source to derive knowledge from the database of research publications using different tools of excel software and is very useful to the industrialists, designers and researchers. Moreover, the academic value of different papers and attributes is obtained in this study. By comparing information obtained from IM and cause & effect diagram the gaps in the existing literature are easily identified. The IM is easily stored in computers on excel sheet. The IM being flexible and comprehensive become an archive of FPLSC and a permanent asset to be updated and used in future research work.


  1. Bhargva, M. and A. Yadav, Experimental comparative study on a solar still combined with evacuated tubes and a heat exchanger at different water depths. International Journal of Sustainable Engineering, 2020. 13(3): p. 218-229. DOI: 10.1080/19397038.2019.1653396
  2. Swanepoel, J.K., et al., Helically coiled solar cavity receiver for micro-scale direct steam generation. Applied Thermal Engineering, 2021. 185: p. 116427. DOI: 10.1016/j.applthermaleng.2020.116427
  3. Sadiq, M. and A.T. Mayyas, Design of the solar water heating system for local communities in Pakistan. Cleaner Engineering and Technology, 2022. 8: p. 100496. DOI: 10.1016/j.clet.2022.100496
  4. Raut, D. and V.R. Kalamkar, A review on latent heat energy storage for solar thermal water-lithium bromide vapor absorption refrigeration system. Journal of Energy Storage, 2022. 55: p. 105828. DOI: 10.1016/j.est.2022.105828
  5. Hashemian, N. and A. Noorpoor, Thermo-eco-environmental Investigation of a Newly Developed Solar/wind Powered Multi-Generation Plant with Hydrogen and Ammonia Production Options. Journal of Solar Energy Research, 2023. 8(4): p. 1728-1737. DOI: 10.22059/JSER.2024.374028.1388
  6. Hashemian, N. and A. Noorpoor, Assessment and multi-criteria optimization of a solar and biomass-based multi-generation system: Thermodynamic, exergoeconomic and exergoenvironmental aspects. Energy Conversion and Management, 2019. 195: p. 788-797. DOI: 10.1016/j.enconman.2019.05.039
  7. Alghoul, M., et al., Review of materials for solar thermal collectors. Anti-Corrosion methods and materials, 2005. 52(4): p. 199-206. ISSN: 0003-5599
  8. Vengadesan, E. and R. Senthil, A review on recent developments in thermal performance enhancement methods of flat plate solar air collector. Renewable and sustainable energy reviews, 2020. 134: p. 110315. DOI: 10.1016/j.rser.2020.110315
  9. Gorla, R.S.R., Finite element analysis of a flat plate solar collector. Finite Elements in Analysis and Design, 1997. 24(4): p. 283-290. DOI: 10.1016/S0168-874X(96)00067-4
  10. Aghakhani, S., et al., Numerical and experimental study of thermal efficiency of a spiral flat plate solar collector by changing the spiral diameter, flow rate, and pipe diameter. Sustainable Energy Technologies and Assessments, 2022. 53: p. 102353. DOI: 10.1016/j.seta.2022.102353
  11. Yeh, H.-M., C.-D. Ho, and C.-H. Chen, The effect of collector aspect ratio on the collector efficiency of sheet-and-tube solar fluid heaters. Journal of Applied Science and Engineering, 1999. 2(2): p. 61-68. DOI: 10.6180/jase.1999.2.2.02
  12. Kazeminejad, H., Numerical analysis of two dimensional parallel flow flat-plate solar collector. Renewable energy, 2002. 26(2): p. 309-323. DOI: 10.1016/S0960-1481(01)00121-5
  13. Al-Tabbakh, A.A., Numerical transient modeling of a flat plate solar collector. Results in Engineering, 2022. 15: p. 100580. DOI: 10.1016/j.rineng.2022.100580
  14. Srithar, K. and A. Mani, Analysis of a single cover FRP flat plate collector for treating tannery effluent. Applied Thermal Engineering, 2004. 24(5-6): p. 873-883. DOI: 10.1016/j.applthermaleng.2003.10.021
  15. Kumar, L.H., et al., Energy, exergy and economic analysis of liquid flat-plate solar collector using green covalent functionalized graphene nanoplatelets. Applied Thermal Engineering, 2021. 192: p. 116916. DOI: 10.1016/j.applthermaleng.2021.116916
  16. Freegah, B., M.H. Alkhafaji, and M.H. Alhamdo, Study the thermal response of a solar flat-plate collector under transient solar radiation experimentally and numerically. Journal of Engineering Research, 2024. DOI: 10.1016/j.jer.2024.03.004
  17. Sivakumar, C., et al., Analysis of the performance of V-type solar stills coupled with flat plate collectors and the potential use of artificial intelligence. Desalination and Water Treatment, 2024: p. 100365. DOI: 10.1016/j.dwt.2024.100365
  18. Abu-Zeid, M.A.-R., et al., Performance enhancement of flat-plate and parabolic trough solar collector using nanofluid for water heating application. Results in Engineering, 2024. 21: p. 101673. DOI: 10.1016/j.rineng.2023.101673
  19. Jovijari, F. and M. Mehrpooya, Development of crude oil desalination unit by using solar flat plate collectors. Applied Thermal Engineering, 2024. 239: p. 122110. DOI: 10.1016/j.applthermaleng.2023.122110
  20. Ajeena, A.M., I. Farkas, and P. Víg, Energy and exergy assessment of a flat plate solar thermal collector by examine silicon carbide nanofluid: An experimental study for sustainable energy. Applied Thermal Engineering, 2024. 236: p. 121844. DOI: 10.1016/j.applthermaleng.2023.121844
  21. García-Rincón, M. and J. Flores-Prieto, Nanofluids stability in flat-plate solar collectors: A review. Solar Energy Materials and Solar Cells, 2024. 271: p. 112832. DOI: 10.1016/j.solmat.2024.112832
  22. Shemelin, V. and T. Matuška, Quantitative review on recent developments of flat-plate solar collector design. Part 1: Front-side heat loss reduction. Energy Reports, 2023. 9: p. 64-69. DOI: 10.1016/j.egyr.2023.09.144
  23. Alkhafaji, M.H., B. Freegah, and M.H. Alhamdo, Effect of riser-pipe cross section and plate geometry on the solar flat plate collector's thermal efficiency under natural conditions. Journal of Engineering Research, 2023. DOI: 10.1016/j.jer.2023.100141
  24. Chilambarasan, L., V. Thangarasu, and P. Ramasamy, Solar flat plate collector's heat transfer enhancement using grooved tube configuration with alumina nanofluids: Prediction of outcomes through artificial neural network modeling. Energy, 2024. 289: p. 129953. DOI: 10.1016/j.energy.2023.129953
  25. Ajeena, A.M., I. Farkas, and P. Víg, Experimental approach on the effect of ZrO2/DW nanofluid on flat plate solar collector thermal and exergy efficiencies. Energy Reports, 2023. 10: p. 4733-4750. DOI: 10.1016/j.egyr.2023.11.036
  26. Ajeena, A.M., I. Farkas, and P. Víg, Performance enhancement of flat plate solar collector using ZrO2-SiC/DW hybrid nanofluid: a comprehensive experimental study. Energy Conversion and Management: X, 2023. 20: p. 100458. DOI: 10.1016/j.ecmx.2023.100458
  27. Akram, N., et al., Application of PEG-Fe3O4 nanofluid in flat-plate solar collector: An experimental investigation. Solar Energy Materials and Solar Cells, 2023. 263: p. 112566. DOI: 10.1016/j.solmat.2023.112566
  28. Kumar, P. and V. Agrawal, Modeling, Analysis, Evaluation and Selection of Flat Plate Liquid Solar Collector System, 2012.
  29. Gao, D., et al., A novel direct steam generation system based on the high-vacuum insulated flat plate solar collector. Renewable energy, 2022. 197: p. 966-977. DOI: 10.1016/j.renene.2022.07.102
  30. Jiang, Y., et al., Dynamic performance modeling and operation strategies for a v-corrugated flat-plate solar collector with movable cover plate. Applied Thermal Engineering, 2021. 197: p. 117374. DOI: 10.1016/j.applthermaleng.2021.117374
  31. Mohseni-Gharyehsafa, B., et al., Soft computing analysis of thermohydraulic enhancement using twisted tapes in a flat-plate solar collector: Sensitivity analysis and multi-objective optimization. Journal of Cleaner Production, 2021. 314: p. 127947. DOI: 10.1016/j.jclepro.2021.127947
  32. Wang, D., et al., Thermal performance analysis of large-scale flat plate solar collectors and regional applicability in China. Energy, 2022. 238: p. 121931. DOI: 10.1016/j.energy.2021.121931
  33. Ahmadlouydarab, M., T.D. Anari, and A. Akbarzadeh, Experimental study on cylindrical and flat plate solar collectors’ thermal efficiency comparison. Renewable energy, 2022. 190: p. 848-864. DOI: 10.1016/j.renene.2022.04.003
  34. Luminosu, I., Flat-plate solar collector technical constructive parameters determination by numerical calculation, considering the temperature criterion. Romanian reports in physics, 2004. 56(1): p. 13-19.
  35. Badran, O. and H. Al-Tahaineh, The effect of coupling a flat-plate collector on the solar still productivity. Desalination, 2005. 183(1-3): p. 137-142. DOI: 10.1016/j.desal.2005.02.046
  36. Aref, L., et al., A novel dual-diameter closed-loop pulsating heat pipe for a flat plate solar collector. Energy, 2021. 230: p. 120751. DOI: 10.1016/j.energy.2021.120751
  37. Manickavasagan, A., et al., An experimental study on solar flat plate collector using an alternative working fluid. PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY, 2005. 13(2): p. 147-161.
  38. Sharma, H.K., S. Kumar, and S.K. Verma, Comparative performance analysis of flat plate solar collector having circular &trapezoidal corrugated absorber plate designs. Energy, 2022. 253: p. 124137. DOI: 10.1016/j.energy.2022.124137
  39. Metzger, J., T. Matuska, and H. Schranzhofer. A comparative simulation study of solar flat-plate collectors directly and indirectly integrated into the building envelope. in Proceedings of International Conference of Building Simulation, Glasgow, UK. 2009.
  40. Sekhar, Y.R., K. Sharma, and M.B. Rao, Evaluation of heat loss coefficients in solar flat plate collectors. ARPN journal of engineering and Applied Sciences, 2009. 4(5): p. 15-19.
  41. Akhtar, N. and S. Mullick, Effect of absorption of solar radiation in glass-cover (s) on heat transfer coefficients in upward heat flow in single and double glazed flat-plate collectors. International Journal of Heat and Mass Transfer, 2012. 55(1-3): p. 125-132. DOI: 10.1016/j.ijheatmasstransfer.2011.08.048
  42. Bhargva, M. and A. Yadav, Effect of shading and evaporative cooling of glass cover on the performance of evacuated tube-augmented solar still. Environment, Development and Sustainability, 2020. 22: p. 4125-4143. DOI: 10.1007/s10668-019-00375-8
  43. Bhargva, M. and A. Yadav, Annual thermal performance analysis and economic assessment of an evacuated tube coupled solar still for Indian climatic conditions. Environmental Science and Pollution Research, 2023. 30(11): p. 31268-31280. DOI: 10.1007/s11356-022-24342-5
  44. Madhukeshwara, N. and E. Prakash, An investigation on the performance characteristics of solar flat plate collector with different selective surface coatings. International Journal of Energy & Environment, 2012. 3(1).
  45. Kalogirou, S., Y. Tripanagnostopoulos, and M. Souliotis, Performance of solar systems employing collectors with colored absorber. Energy and buildings, 2005. 37(8): p. 824-835. DOI: 10.1016/j.enbuild.2004.10.011
  46. Dorfling, C., et al., The experimental response and modelling of a solar heat collector fabricated from plastic microcapillary films. Solar Energy Materials and Solar Cells, 2010. 94(7): p. 1207-1221. DOI: 10.1016/j.solmat.2010.03.008
  47. Vejen, N.K., S. Furbo, and L.J. Shah, Development of 12.5 m2 solar collector panel for solar heating plants. Solar Energy Materials and Solar Cells, 2004. 84(1-4): p. 205-223. DOI: 10.1016/j.solmat.2004.01.037
  48. Kundu, B., et al., Operating design conditions of a solar-powered vapor absorption cooling system with an absorber plate having different profiles: An analytical study. International communications in heat and mass transfer, 2010. 37(9): p. 1238-1245. DOI: 10.1016/j.icheatmasstransfer.2010.08.012
  49. Mukherjee, A., et al., Performance evaluation of an open thermochemical energy storage system integrated with flat plate solar collector. Applied Thermal Engineering, 2020. 173: p. 115218. DOI: 10.1016/j.applthermaleng.2020.115218
  50. Hobbi, A. and K. Siddiqui, Experimental study on the effect of heat transfer enhancement devices in flat-plate solar collectors. International Journal of Heat and Mass Transfer, 2009. 52(19-20): p. 4650-4658. DOI: 10.1016/j.ijheatmasstransfer.2009.03.018
  51. Koholé, Y.W., F.C.V. Fohagui, and G. Tchuen, Flat-plate solar collector thermal performance assessment via energy, exergy and irreversibility analysis. Energy Conversion and Management: X, 2022. 15: p. 100247. DOI: 10.1016/j.ecmx.2022.100247
  52. Farahat, S., F. Sarhaddi, and H. Ajam, Exergetic optimization of flat plate solar collectors. Renewable energy, 2009. 34(4): p. 1169-1174. DOI: 10.1016/j.renene.2008.06.014
  53. Das, S., B. Bandyopadhyay, and S.K. Saha, Sensitivity Analysis of The Test Parameters of a Solar Flat Plate Collector for Performance Studies. Advances in Energy Research: p. 515-520.
  54. Badran, A.A., et al., A solar still augmented with a flat-plate collector. Desalination, 2005. 172(3): p. 227-234. DOI: 10.1016/j.desal.2004.06.203
  55. Gertzos, K. and Y. Caouris, Experimental and computational study of the developed flow field in a flat plate integrated collector storage (ICS) solar device with recirculation. Experimental Thermal and Fluid Science, 2007. 31(8): p. 1133-1145. DOI: 10.1016/j.expthermflusci.2006.12.002
  56. Ogunwole, O., Flat plate collector solar cooker. AU J Technol, 2006. 9(3): p. 199-202.
  57. Sengar, S., A. Kurchania, and N. Rathore, 43. Design and Development of Composite Solar Water Heater cum Distillation unit for Domestic Use. Water and Energy Abstracts, 2004. 14(4): p. 21-21.
  58. Sözen, A., T. Menlik, and S. Ünvar, Determination of efficiency of flat-plate solar collectors using neural network approach. Expert Systems with Applications, 2008. 35(4): p. 1533-1539. DOI: 10.1016/j.eswa.2007.08.080
  59. Bello, S.R. and S.O. Odey, Development of hot water solar oven for low temperature thermal processes. Leonardo Electronic Journal of Practices and Technologies, 2009. 14: p. 73-84. ISSN 1583-1078
  60. Prasad, P.R., H. Byregowda, and P. Gangavati, Experiment analysis of flat plate collector and comparison of performance with tracking collector. European Journal of Scientific Research, 2010. 40(1): p. 144-155.
  61. Bhatt, M., S. Gaderia, and S. Channiwala, Distribution of heat losses in a single glazed flat plate collector at variable wind velocity–an experimental simulation. World Academy of Science, Engineering and Technology, 2011. 78: p. 453-457.
  62. Yousefi, T., et al., An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors. Renewable energy, 2012. 39(1): p. 293-298. DOI: 10.1016/j.renene.2011.08.056
  63. Alawi, O.A., et al., Nanofluids for flat plate solar collectors: Fundamentals and applications. Journal of Cleaner Production, 2021. 291: p. 125725. DOI: 10.1016/j.jclepro.2020.125725
  64. Farhana, K., et al., Analysis of efficiency enhancement of flat plate solar collector using crystal nano-cellulose (CNC) nanofluids. Sustainable Energy Technologies and Assessments, 2021. 45: p. 101049. DOI: 10.1016/j.seta.2021.101049
  65. Moravej, M., et al., Enhancing the efficiency of a symmetric flat-plate solar collector via the use of rutile TiO2-water nanofluids. Sustainable Energy Technologies and Assessments, 2020. 40: p. 100783. DOI: 10.1016/j.seta.2020.100783
  66. Abu-Hamdeh, N.H., et al., Improve the efficiency and heat transfer rate’trend prediction of a flat-plate solar collector via a solar energy installation by examine the Titanium Dioxide/Silicon Dioxide-water nanofluid. Sustainable Energy Technologies and Assessments, 2021. 48: p. 101623. DOI: 10.1016/j.seta.2021.101623
  67. Ehrmann, N. and R. Reineke-Koch, Selectively coated high efficiency glazing for solar-thermal flat-plate collectors. Thin Solid Films, 2012. 520(12): p. 4214-4218. DOI: 10.1016/j.tsf.2011.04.094
  68. Rodríguez-Hidalgo, M., et al., Instantaneous performance of solar collectors for domestic hot water, heating and cooling applications. Energy and buildings, 2012. 45: p. 152-160. DOI: 10.1016/j.enbuild.2011.10.060
  69. Badescu, V., Optimal control of flow in solar collectors for maximum exergy extraction. International Journal of Heat and Mass Transfer, 2007. 50(21-22): p. 4311-4322. DOI: 10.1016/j.ijheatmasstransfer.2007.01.061
  70. Moghadam, H., F.F. Tabrizi, and A.Z. Sharak, Optimization of solar flat collector inclination. Desalination, 2011. 265(1-3): p. 107-111. DOI: 10.1016/j.desal.2010.07.039
  71. Wei, S.-X., L. Ming, and X.-Z. Zhou, A theoretical study on area compensation for non-directly-south-facing solar collectors. Applied Thermal Engineering, 2007. 27(2-3): p. 442-449. DOI: 10.1016/j.applthermaleng.2006.07.015
  72. Gunerhan, H. and A. Hepbasli, Determination of the optimum tilt angle of solar collectors for building applications. Building and Environment, 2007. 42(2): p. 779-783. DOI: 10.1016/j.buildenv.2005.09.012
  73. Ghoneim, A., Performance optimization of solar collector equipped with different arrangements of square-celled honeycomb. International Journal of Thermal Sciences, 2005. 44(1): p. 95-105. DOI: 10.1016/j.ijthermalsci.2004.03.008
  74. Bhargva, M. and A. Yadav, Factors affecting the performance of a solar still and productivity enhancement methods: a review. Environmental Science and Pollution Research, 2021. 28(39): p. 54383-54402. DOI: 10.1007/s11356-021-15983-z
  75. Gertzos, K., Y. Caouris, and T. Panidis, Optimal design and placement of serpentine heat exchangers for indirect heat withdrawal, inside flat plate integrated collector storage solar water heaters (ICSSWH). Renewable energy, 2010. 35(8): p. 1741-1750. DOI: 10.1016/j.renene.2009.12.014
  76. Ayompe, L., et al., Validated TRNSYS model for forced circulation solar water heating systems with flat plate and heat pipe evacuated tube collectors. Applied Thermal Engineering, 2011. 31(8-9): p. 1536-1542. DOI: 10.1016/j.applthermaleng.2011.01.046
  77. Panchal, H., et al., A comparative analysis of single slope solar still coupled with flat plate collector and passive solar still. International Journal of Research and Reviews in Applied Sciences, 2011. 7(2): p. 111-116. ISSN (Print): 2076-734X
  78. Ozsabuncuoglu, I.H., Economic analysis of flat plate collectors of solar energy. Energy policy, 1995. 23(9): p. 755-763. DOI: 10.1016/0301-4215(95)00063-O
  79. Georgiev, A., Testing solar collectors as an energy source for a heat pump. Renewable energy, 2008. 33(4): p. 832-838. DOI: 10.1016/j.renene.2007.05.002
  80. Hang, Y., M. Qu, and F. Zhao, Economic and environmental life cycle analysis of solar hot water systems in the United States. Energy and buildings, 2012. 45: p. 181-188. DOI: 10.1016/j.enbuild.2011.10.057
  81. Varol, Y., et al., Forecasting of thermal energy storage performance of Phase Change Material in a solar collector using soft computing techniques. Expert Systems with Applications, 2010. 37(4): p. 2724-2732. DOI: 10.1016/j.eswa.2009.08.007
  82. Koca, A., et al., Energy and exergy analysis of a latent heat storage system with phase change material for a solar collector. Renewable energy, 2008. 33(4): p. 567-574. DOI: 10.1016/j.renene.2007.03.012
  83. Alwan, N.T., S. Shcheklein, and O.M. Ali, Experimental analysis of thermal performance for flat plate solar water collector in the climate conditions of Yekaterinburg, Russia. Materials Today: Proceedings, 2021. 42: p. 2076-2083. DOI: 10.1016/j.matpr.2020.12.263
  84. Hou, H., et al., A new method for the measurement of solar collector time constant. Renewable energy, 2005. 30(6): p. 855-865. DOI: 10.1016/j.renene.2004.08.005
  85. Rossiter Jr, W.J., et al., An investigation of the degradation of aqueous ethylene glycol and propylene glycol solutions using ion chromatography. Solar Energy Materials, 1985. 11(5-6): p. 455-467. DOI: 10.1016/0165-1633(85)90016-4
  86. Loutzenhiser, P., et al., Empirical validation of models to compute solar irradiance on inclined surfaces for building energy simulation. Solar Energy, 2007. 81(2): p. 254-267. DOI: 10.1016/j.solener.2006.03.009
  87. Sopian, K., et al., Thermal performance of thermoplastic natural rubber solar collector. Journal of materials Processing technology, 2002. 123(1): p. 179-184. DOI: 10.1016/S0924-0136(02)00093-6
  88. Resch, K. and G.M. Wallner, Thermotropic layers for flat-plate collectors—A review of various concepts for overheating protection with polymeric materials. Solar Energy Materials and Solar Cells, 2009. 93(1): p. 119-128. DOI: 10.1016/j.solmat.2008.09.004
  89. Chung, K., K. Chang, and Y. Liu, Reduction of wind uplift of a solar collector model. Journal of Wind Engineering and Industrial Aerodynamics, 2008. 96(8-9): p. 1294-1306. DOI: 10.1016/j.jweia.2008.01.012
  90. Anderson, T.N., M. Duke, and J.K. Carson, The effect of colour on the thermal performance of building integrated solar collectors. Solar Energy Materials and Solar Cells, 2010. 94(2): p. 350-354. DOI: 10.1016/j.solmat.2009.10.012
  91. Eltaweel, M., A.A. Abdel-Rehim, and A.A. Attia, A comparison between flat-plate and evacuated tube solar collectors in terms of energy and exergy analysis by using nanofluid. Applied Thermal Engineering, 2021. 186: p. 116516. DOI: 10.1016/j.applthermaleng.2020.116516