Comparative Analysis of Polycarbonate and Glass Cover Configurations for Enhanced Thermal Efficiency in Flat Plate Solar Collectors for Water Heating

Document Type : Original Article

Authors

1 Department of Mechanical Engineering, Faculty of Engineering and Technology, Annamalai University, Tamilnadu, India

2 Department of Electronics and Communication Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India.

3 Department of Mechanical Engineering, Annapoorana Engineering College, (Autonomous), Salem, Tamil Nadu, India

10.22059/jser.2024.374268.1394

Abstract

This study evaluates the thermal efficiency of flat plate solar collectors using Polycarbonate and Glass covers for solar water heating in India. Results indicated that the glass-covered solar collector achieved an average thermal efficiency of 50.5%, surpassing the Polycarbonate-covered collector's 46.1%. The glass cover resulted in a maximum water temperature increase of 9.1°C, compared to 8.7°C for Polycarbonate. Daily solar irradiance averaged 884.2 W/m² for the glass cover and 874.6 W/m² for the Polycarbonate cover. The glass-covered system generated a daily hot water yield averaging 150 liters at temperatures above 37°C, whereas the Polycarbonate system produced 140 liters under similar conditions. Over 10 tests, the glass-covered collector showed an average temperature gain (ΔT) of 9.1°C, compared to 8.7°C for Polycarbonate. The glass cover’s optical transmittance was 90%, compared to 85% for Polycarbonate, contributing to higher thermal performance. Despite Polycarbonate’s lower cost, its performance was hindered by higher thermal emittance and lower optical transmittance. The glass cover's stability and durability were further demonstrated, showing no signs of degradation after 10 months, unlike the Polycarbonate cover, which exhibited yellowing and scratching. These findings suggest that glass covers provide better long-term efficiency and performance for solar water heating systems.

Keywords

  1. Abdelsalam, E., Almomani, F., Azzam, A., Juaidi, A., Abdallah, R., & Shboul, B. (2024). Synergistic energy solutions: Solar chimney and nuclear power plant integration for sustainable green hydrogen, electricity, and water production. Process Safety and Environmental Protection, 186, 756–772. https://doi.org/10.1016/j.psep.2024.03.121
  2. Abedi, M., Tan, X., Saha, P., Klausner, J. F., & Bénard, A. (2024). Design of a solar air heater for a direct-contact packed-bed humidification–dehumidification desalination system. Applied Thermal Engineering, 244, 122700. https://doi.org/10.1016/j.applthermaleng.2024.122700
  3. Attia, M. E. H., Kabeel, A. E., Khelifa, A., & Abdel-Aziz, M. M. (2024). Thermal and electrical analysis of the performance of a skeleton-shaped tubes via hybrid PVT cooling system. Applied Thermal Engineering, 248, 123277. https://doi.org/10.1016/j.applthermaleng.2024.123277
  4. Beltrán, F., Sommerfeldt, N., Eskola, J., & Madani, H. (2024). Empirical investigation of solar photovoltaic-thermal collectors for heat pump integration. Applied Thermal Engineering, 248, 123175. https://doi.org/10.1016/j.applthermaleng.2024.123175
  5. Diao, Y., Gong, X., Xu, D., Duan, P., Wang, S., & Guo, Y. (2024). From culture, harvest to pretreatment of microalgae and its high-value utilization. Algal Research, 78, 103405. https://doi.org/10.1016/j.algal.2024.103405
  6. Duraivel, B., Muthuswamy, N., & Gnanavendan, S. (2024). Comprehensive analysis of the greenhouse solar tunnel dryer (GSTD) using Tomato, snake Gourd, and Cucumber: Insights into energy Efficiency, exergy Performance, economic Viability, and environmental impact. Solar Energy, 267, 112263. https://doi.org/10.1016/j.solener.2023.112263
  7. Hashemi, S. F., Pourfallah, M., & Gholinia, M. (2024). Thermal performance enhancement in an indirect solar greenhouse dryer using helical fin under variable solar irradiation. Solar Energy, 267, 112217. https://doi.org/10.1016/j.solener.2023.112217
  8. Johnson, Z. S., Abakar, Y. A., Caleb, N. N., & Chen, B. (2024). An open-loop hybrid photovoltaic solar thermal evacuated tube energy system: A new configuration to enhance techno economic of conventional photovoltaic solar thermal system. Journal of Building Engineering, 82, 108000. https://doi.org/10.1016/j.jobe.2023.108000
  9. Kotkondawar, A., Gabhane, K., & Rayalu, S. (2024). Design and performance evaluation of Front glass-covered photovoltaics-thermal hybrid system for enhanced electrical output and hot water production. Measurement: Energy, 100006. https://doi.org/10.1016/j.meaene.2024.100006
  10. Noman, S., & Manokar, A. M. (2024). Experimental investigation of pistachio shell powder (bio-waste) to augment the performance of tubular solar still: Energy, exergy, and environmental analysis. Desalination, 576, 117317. https://doi.org/10.1016/j.desal.2024.117317
  11. Partheeban, P., Jegadeesan, V., Manimuthu, S., & Chella Gifta, C. (2024). Cleaner production of geopolymer bricks using Solar-LPG hybrid dryer. Journal of Cleaner Production, 442, 141048. https://doi.org/10.1016/j.jclepro.2024.141048
  12. Ammar, M., Mokni, A., Mhiri, H., & Bournot, P. (2020). Numerical analysis of solar air collector provided with rows of rectangular fins. Energy Reports, 6, 3412–3424. https://doi.org/10.1016/j.egyr.2020.11.252
  13. Shabahang Nia, E., & Ghazikhani, M. (2024). Enhancing reliability and efficiency of solar chimney by phase change material Integration: An Experimental study. Thermal Science and Engineering Progress, 51, 102600. https://doi.org/10.1016/j.tsep.2024.102600
  14. Struchalin, P. G., Zhao, Y., & Balakin, B. V. (2024). Field study of a direct absorption solar collector with eco-friendly nanofluid. Applied Thermal Engineering, 243, 122652. https://doi.org/10.1016/j.applthermaleng.2024.122652
  15. Thangaraj, H., Winston David, P., Raj, M., & Babu Balachandran, G. (2024). Performance of stand-alone bifacial photovoltaic module using non-biodegradable waste as reflectors for tropical climatic region of southern India: An experimental approach. Solar Energy, 268, 112302. https://doi.org/10.1016/j.solener.2023.112302
  16. Wang, J., Luo, Q., Cheng, J., Qu, M., Wang, P., Zhao, S., Xu, H., & Ma, C. (2024). Study on thermal property of a solar collector applied to solar greenhouse. Applied Thermal Engineering, 244, 122628. https://doi.org/10.1016/j.applthermaleng.2024.122628
  17. Zheng, J., Febrer, R., Castro, J., Kizildag, D., & Rigola, J. (2024). A new high-performance flat plate solar collector. Numerical modelling and experimental validation. Applied Energy, 355, 122221. https://doi.org/10.1016/j.apenergy.2023.122221
  18. Das, B., Mondol, J. D., Negi, S., Smyth, M., & Pugsley, A. (2021). Experimental performance analysis of a novel sand coated and sand filled polycarbonate sheet based solar air collector. Renewable Energy, 164, 990–1004. https://doi.org/10.1016/j.renene.2020.10.054
  19. Yadav, M. K., Kedare, S. B., & Modi, A. (2023). Experimental investigation of a compound parabolic concentrator with aerogel and polycarbonate cover. Applied Thermal Engineering, 121585. https://doi.org/10.1016/j.applthermaleng.2023.121585
  20. Ammar, M., Mokni, A., Mhiri, H., & Bournot, P. (2021). Performance optimization of flat plate solar collector through the integration of different slats arrangements made of transparent insulation material. Sustainable Energy Technologies and Assessments, 46. https://doi.org/10.1016/j.seta.2021.101237
  21. Belkhode, P. N., Shelare, S. D., Sakhale, C. N., Kumar, R., Shanmugan, S., Soudagar, M. E. M., & Mujtaba, M. A. (2021). Performance analysis of roof collector used in the solar updraft tower. Sustainable Energy Technologies and Assessments, 48. https://doi.org/10.1016/j.seta.2021.101619
  22. Chandan, Suresh, V., Iqbal, S. M., Reddy, K. S., & Pesala, B. (2021). 3-D numerical modelling and experimental investigation of coupled photovoltaic thermal and flat plate collector. Solar Energy, 224, 195–209. https://doi.org/10.1016/j.solener.2021.05.079
  23. Channa Keshava Naik, N., Shashi Shekar, K. S., Gautham, M. G., & Prasad, T. B. (2021). Comparative study of pebble absorber solar thermal collector (PASTC) with conventional absorber solar thermal collector (CASTC). Materials Today: Proceedings, 46, 2641–2646. https://doi.org/10.1016/j.matpr.2021.02.354
  24. Hassan, H., Osman, O. O., Abdelmoez, M. N., & abo-Elfadl, S. (2023). Experimental assessment of novel designed solar hot water storage collector incorporating an array of partitioned ducts absorber. Solar Energy, 262. https://doi.org/10.1016/j.solener.2023.111838
  25. Jiang, Y., Zhang, H., You, S., Fan, M., Wang, Y., & Wu, Z. (2021). Dynamic performance modeling and operation strategies for a v-corrugated flat-plate solar collector with movable cover plate. Applied Thermal Engineering, 197. https://doi.org/10.1016/j.applthermaleng.2021.117374
  26. Kandasamy, V. K., Jaganathan, S., Dhairiyasamy, R., & Rajendran, S. (2023). Optimizing the efficiency of solar thermal collectors and studying the effect of particle concentration and stability using nanofluidic analysis. Https://Doi.Org/10.1177/0958305X231183687, 34(5), 1564–1591. https://doi.org/10.1177/0958305X231183687
  27. Kizildag, D., Castro, J., Kessentini, H., Schillaci, E., & Rigola, J. (2022). First test field performance of highly efficient flat plate solar collectors with transparent insulation and low-cost overheating protection. Solar Energy, 236, 239–248. https://doi.org/10.1016/j.solener.2022.02.007
  28. Lamrani, B., Elmrabet, Y., Mathew, I., Bekkioui, N., Etim, P., Chahboun, A., Draoui, A., & Ndukwu, M. C. (2022). Energy, economic analysis and mathematical modelling of mixed-mode solar drying of potato slices with thermal storage loaded V-groove collector: Application to Maghreb region. Renewable Energy, 200, 48–58. https://doi.org/10.1016/j.renene.2022.09.119
  29. Miao, R., Hu, X., Yu, Y., Zhang, Y., Wood, M., & Olson, G. (2021). Experimental study of a newly developed dual-purpose solar thermal collector for heat and cold collection. Energy and Buildings, 252. https://doi.org/10.1016/j.enbuild.2021.111370
  30. Miao, R., Hu, X., Yu, Y., Zhang, Y., Wood, M., Olson, G., & Yang, H. (2022). Evaluation of cooling performance of a novel dual-purpose solar thermal collector through numerical simulations. Applied Thermal Engineering, 204. https://doi.org/10.1016/j.applthermaleng.2021.117966
  31. Nishit, J., & Bekal, S. (2023). Experimental investigation on polymer solar water heater using Al2O3 nanofluid for performance improvement. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.04.475
  32. Oliveira, M., & Charamba Dutra, J. C. (2023). The impact of the V-corrugation on the thermal efficiency of a solar collector. Solar Energy, 255, 460–473. https://doi.org/10.1016/j.solener.2023.02.053
  33. Radwan, A., Abdelrehim, O., Salem, M. S., Abo-Zahhad, E. M., Elmarghany, M. R., Shouman, M. A., & Khater, A. (2023). A modified support pillar design for a flat vacuum-based solar thermal collectors. Sustainable Energy Technologies and Assessments, 58. https://doi.org/10.1016/j.seta.2023.103372
  34. Radwan, A., Abo-Zahhad, E. M., El-Sharkawy, I. I., Said, Z., Abdelrehim, O., Memon, S., Cheng, P., & Soliman, A. S. (2024). Thermal analysis of a bifacial vacuum-based solar thermal collector. Energy, 294, 130748. https://doi.org/10.1016/j.energy.2024.130748
  35. Ramdani, H., & Ould-Lahoucine, C. (2020). Study on the overall energy and exergy performances of a novel water-based hybrid photovoltaic-thermal solar collector. Energy Conversion and Management, 222. https://doi.org/10.1016/j.enconman.2020.113238
  36. Sharma, K., Kumar, V., Bisht, D. S., & Garg, H. (2021). Comparative study of acrylic flat plate and dome shaped collector for summer and winter solstice conditions. Materials Today: Proceedings, 45, 5489–5493. https://doi.org/10.1016/j.matpr.2021.02.200
  37. Herrando, M., Fantoni, G., Cubero, A., Simón-Allué, R., Guedea, I., & Fueyo, N. (2023). Numerical analysis of the fluid flow and heat transfer of a hybrid PV-thermal collector and performance assessment. Renewable Energy, 209, 122–132. https://doi.org/10.1016/j.renene.2023.03.125
  38. Tarminzi, M. A. S. M., Razak, A. A., Azmi, M. A. A., Fazlizan, A., Majid, Z. A. A., & Sopian, K. (2021). Comparative study on thermal performance of cross-matrix absorber solar collector with series and parallel configurations. Case Studies in Thermal Engineering, 25. https://doi.org/10.1016/j.csite.2021.100935
  39. Tripanagnostopoulos, Y., Huang, G., Wang, K., & Markides, C. N. (2022). 3.08 - Photovoltaic/Thermal Solar Collectors. Comprehensive Renewable Energy, Second Edition: Volume 1-9, 1–3, 294–345. https://doi.org/10.1016/B978-0-12-819727-1.00051-0
  40. Vahidinia, F., & Khorasanizadeh, H. (2021). Development of new algebraic derivations to analyze minichannel solar flat plate collectors with small and large size minichannels and performance evaluation study. Energy, 228. https://doi.org/10.1016/j.energy.2021.120640
  41. Wang, T., Diao, Y., Zhao, Y., Liang, L., Wang, Z., & Chen, C. (2020). A comparative experimental investigation on thermal performance for two types of vacuum tube solar air collectors based on flat micro-heat pipe arrays (FMHPA). Solar Energy, 201, 508–522. https://doi.org/10.1016/j.solener.2020.03.024
  42. Yan, S. R., Golzar, A., Sharifpur, M., Meyer, J. P., Liu, D. H., & Afrand, M. (2020). Effect of U-shaped absorber tube on thermal-hydraulic performance and efficiency of two-fluid parabolic solar collector containing two-phase hybrid non-Newtonian nanofluids. International Journal of Mechanical Sciences, 185. https://doi.org/10.1016/j.ijmecsci.2020.105832
  43. Hashemian, N., & Noorpoor, A. (2019). Assessment and multi-criteria optimization of a solar and biomass-based multi-generation system: Thermodynamic, exergoeconomic and exergoenvironmental aspects. Energy Conversion and Management, 195, 788-797. https://doi.org/10.1016/j.enconman.2019.05.039
  44. Hashemian, N., & Noorpoor, A. (2023). Thermo-eco-environmental Investigation of a Newly Developed Solar/wind Powered Multi-Generation Plant with Hydrogen and Ammonia Production Options. Journal of Solar Energy Research8(4), 1728-1737. doi: 10.22059/jser.2024.374028.1388