[1] WWC, No Title, 2017.
[2] I.G. Wenten, Khoiruddin, Reverse osmosis applications: Prospect and challenges, Desalination (2016). https://doi.org/10.1016/j.desal.2015.12.011.
[3] A. Alkhudhiri, N. Darwish, N. Hilal, Membrane distillation: A comprehensive review, Desalination 287 (2012) 2–18. https://doi.org/10.1016/J.DESAL.2011.08.027.
[4] G.N. Tiwari, A.K. Tiwari, Solar Distillation Practice for Water Desalination Systems, Anamaya, New Delhi, India, 2008.
[5] A.E. Kabeel, S.A. El-Agouz, Review of researches and developments on solar stills, Desalination 276 (2011) 1–12. https://doi.org/10.1016/j.desal.2011.03.042.
[6] G.M. Ayoub, L. Malaeb, Developments in solar still desalination systems: A critical review, Crit. Rev. Environ. Sci. Technol. 42 (2012) 2078–2112. https://doi.org/10.1080/10643389.2011.574104.
[7] J.A. Clark, The steady-state performance of a solar still, Sol. Energy 44 (1990) 43–49. https://doi.org/10.1016/0038-092X(90)90025-8.
[8] P.I. Cooper, The maximum efficiency of single-effect solar stills, Sol. Energy 15 (1973). https://doi.org/10.1016/0038-092X(73)90085-6.
[9] S. Yadav, K. Sudhakar, Different domestic designs of solar stills: A review, Renew. Sustain. Energy Rev. 47 (2015) 718–731. https://doi.org/10.1016/j.rser.2015.03.064.
[10] G. Xiao, X. Wang, M. Ni, F. Wang, W. Zhu, Z. Luo, K. Cen, A review on solar stills for brine desalination, Appl. Energy 103 (2013) 642–652. https://doi.org/10.1016/j.apenergy.2012.10.029.
[11] K. Selvaraj, A. Natarajan, Factors influencing the performance and productivity of solar stills - A review, Desalination 435 (2018) 181–187. https://doi.org/10.1016/J.DESAL.2017.09.031.
[12] H. Sharon, K.S. Reddy, A review of solar energy driven desalination technologies, Renew. Sustain. Energy Rev. 41 (2015) 1080–1118. https://doi.org/10.1016/j.rser.2014.09.002.
[13] S. Abdallah, S.M. Aldarabseh, Performance of Modified Conical Solar Still Integrated With Continuous Volume Flowrate, J. Sol. Energy Eng. Trans. ASME 146 (2024) 11001. https://doi.org/10.1115/1.4062448.
[14] A. Sampathkumar, S.K. Suraparaju, S.K. Natarajan, Enhancement of Yield in Single Slope Solar Still by Composite Heat Storage Material—Experimental and Thermo-Economic Assessment, J. Sol. Energy Eng. Trans. ASME 145 (2023) 21005. https://doi.org/10.1115/1.4055100.
[15] A.K. Tiwari, G.N. Tiwari, Effect of water depths on heat and mass transfer in a passive solar still: in summer climatic condition, Desalination 195 (2006) 78–94. https://doi.org/10.1016/j.desal.2005.11.014.
[16] H. Taghvaei, H. Taghvaei, K. Jafarpur, M.R. Karimi Estahbanati, M. Feilizadeh, M. Feilizadeh, A. Seddigh Ardekani, A thorough investigation of the effects of water depth on the performance of active solar stills, Desalination 347 (2014) 77–85. https://doi.org/10.1016/j.desal.2014.05.038.
[17] V.K. Dwivedi, G.N. Tiwari, Comparison of internal heat transfer coefficients in passive solar stills by different thermal models: An experimental validation, Desalination 246 (2009) 304–318. https://doi.org/10.1016/j.desal.2008.06.024.
[18] A. Rahmani, A. Boutriaa, A. Hadef, An experimental approach to improve the basin type solar still using an integrated natural circulation loop, Energy Convers. Manag. 93 (2015) 298–308. https://doi.org/10.1016/j.enconman.2015.01.026.
[19] Z.M. Omara, A.S. Abdullah, A.E. Kabeel, F.A. Essa, The cooling techniques of the solar stills’ glass covers – A review, Renew. Sustain. Energy Rev. 78 (2017) 176–193. https://doi.org/10.1016/j.rser.2017.04.085.
[20] M.B. Shafii, A. Favakeh, M. Faegh, H. Sadrhosseini, Experimental investigation of a novel passive solar still with additional condensation on sidewalls, Desalin. Water Treat. (2017). https://doi.org/10.5004/dwt.2017.21334.
[21] B. Jamil, N. Akhtar, Effect of specific height on the performance of a single slope solar still: An experimental study, Desalination 414 (2017) 73–88. https://doi.org/10.1016/j.desal.2017.03.036.
[22] M. Afrand, A. Karimipour, Theoretical analysis of various climatic parameter effects on performance of a basin solar still, J. Power Technol. 97 (2017) 44–51.
[23] F. Safari, I. Dincer, A review and comparative evaluation of thermochemical water splitting cycles for hydrogen production, Energy Convers. Manag. 205 (2020) 112182. https://doi.org/https://doi.org/10.1016/j.enconman.2019.112182.
[24] M.S. Sodha, D.R. Mishra, A.K. Tiwari, Solar Earth Water Still for Highly Wet Ground, J Fundam Renew Energy Appl 4 (2014) 1–2. https://doi.org/10.4172/2090-4541.1000e103.
[25] P. Dumka, D.R. Mishra, Energy and exergy analysis of conventional and modified solar still integrated with sand bed earth: Study of heat and mass transfer, Desalination 437 (2018) 15–25. https://doi.org/10.1016/j.desal.2018.02.026.
[26] P. Dumka, D.R. Mishra, Experimental investigation of modified single slope solar still integrated with earth (I) &(II):Energy and exergy analysis, Energy 160 (2018) 1144–1157. https://doi.org/10.1016/j.energy.2018.07.083.
[27] A.K. Tiwari, D.R. Mishra, effect of covering by black polythene sheets and coal powder on near by surfaces of sand bed solar still: studying heat and mass transfer, in: 10th, Int. Conf. Heat Transf. Fluid Mech. Thermodyn., Orlando, Florida, 2014: pp. 514–521. https://doi.org/http://dx.doi.org/10.13140/RG.2.1.1605.0726.
[28] K. Hidouri, D.R. Mishra, A. Benhmidene, B. Chouachi, Experimental and theoretical evaluation of a hybrid solar still integrated with an air compressor using ANN, Desalin. Water Treat. 88 (2017) 52–59. https://doi.org/10.5004/dwt.2017.21333.
[29] K. Rabhi, R. Nciri, F. Nasri, C. Ali, H. Ben Bacha, H. Ben Bacha, Experimental performance analysis of a modified single-basin single-slope solar still with pin fins absorber and condenser, Desalination 416 (2017) 86–93. https://doi.org/10.1016/j.desal.2017.04.023.
[30] P. Dumka, Y. Kushwah, A. Sharma, D.R. Mishra, Comparative analysis and experimental evaluation of single slope solar still augmented with permanent magnets and conventional solar still, Desalination 459 (2019) 34–45. https://doi.org/10.1016/j.desal.2019.02.012.
[31] K. Kalidasa Murugavel, K.K.S.K. Chockalingam, K. Srithar, Progresses in improving the effectiveness of the single basin passive solar still, Desalination 220 (2008) 677–686. https://doi.org/10.1016/j.desal.2007.01.062.
[32] S. Rashidi, N. Rahbar, M. Sadegh, J. Abolfazli, Enhancement of solar still by reticular porous media : Experimental investigation with exergy and economic analysis, Appl. Therm. Eng. 130 (2018) 1341–1348. https://doi.org/10.1016/j.applthermaleng.2017.11.089.
[33] D.R. Mishra, A.K. Tiwari, Effect of coal and metal chip on the solar still, J. Sci. Tech. Res. 3 (2013) 1–6.
[34] H.S. Deshmukh, S.B. Thombre, Solar distillation with single basin solar still using sensible heat storage materials, Desalination 410 (2017) 91–98. https://doi.org/10.1016/j.desal.2017.01.030.
[35] P. Dumka, D.R. Mishra, Influence of salt concentration on the performance characteristics of passive solar still, Int. J. Ambient Energy 42 (2021) 1463–1473. https://doi.org/10.1080/01430750.2019.1611638.
[36] A. Farzi, R. Nameni, H. Asadollahi, Enhancement of single slope solar still using sand : the effect of sand grain size distribution, J. Sol. Energy Res. 6 (2021) 740–750. https://doi.org/https://doi.org/10.22059/jser.2021.320642.1194.
[37] N. Hashemian, A. Noorpoor, Thermo-eco-environmental Investigation of a Newly Developed Solar/wind Powered Multi-Generation Plant with Hydrogen and Ammonia Production Options, J. Sol. Energy Res. 8 (2023) 1728–1737. https://doi.org/10.22059/jser.2024.374028.1388.
[38] A.E. Kabeel, M. Elkelawy, H. Alm El Din, A. Alghrubah, Investigation of exergy and yield of a passive solar water desalination system with a parabolic concentrator incorporated with latent heat storage medium, Energy Convers. Manag. (2017). https://doi.org/10.1016/j.enconman.2017.04.085.
[39] T. Arunkumar, A.E. Kabeel, K. Raj, D. Denkenberger, R. Sathyamurthy, P. Ragupathy, R. Velraj, Productivity enhancement of solar still by using porous absorber with bubble-wrap insulation, J. Clean. Prod. 195 (2018) 1149–1161. https://doi.org/10.1016/j.jclepro.2018.05.199.
[40] A.E. Kabeel, S.A. El-Agouz, R. Sathyamurthy, Exergy Analysis of Single Slope Solar Still With Low Cost Energy Storage Material, Twenty-First Int. Water Technol. Conf. IWTC21 (2018) 28–30.
[41] M. Bhargva, M. Sharma, A. Yadav, N.K. Batra, R.K. Behl, Productivity Augmentation of a Solar Still with Rectangular Fins and Bamboo Cotton Wick, J. Sol. Energy Res. 8 (2023) 1410–1416. https://doi.org/10.22059/jser.2023.356414.1279.
[42] K. Subramanian, N. Meenakshisundaram, P. Barmavatu, B. Govindarajan, Experimental investigation on the effect of nano-enhanced phase change materials on the thermal performance of single slope solar still, Desalin. Water Treat. 319 (2024) 100416. https://doi.org/https://doi.org/10.1016/j.dwt.2024.100416.
[43] S.S. Adibi Toosi, H.R. Goshayeshi, I. Zahmatkesh, V. Nejati, Experimental assessment of new designed stepped solar still with Fe3O4 + graphene oxide + paraffin as nanofluid under constant magnetic field, J. Energy Storage 62 (2023) 106795. https://doi.org/https://doi.org/10.1016/j.est.2023.106795.
[44] H.R. Goshayeshi, I. Chaer, M. Yebiyo, H.F. Öztop, Experimental investigation on semicircular, triangular and rectangular shaped absorber of solar still with nano-based PCM, J. Therm. Anal. Calorim. 147 (2022) 3427–3439. https://doi.org/10.1007/s10973-021-10728-z.
[45] S.S. Adibi Toosi, H.R. Goshayeshi, S. Zeinali Heris, Experimental investigation of stepped solar still with phase change material and external condenser, J. Energy Storage 40 (2021) 102681. https://doi.org/https://doi.org/10.1016/j.est.2021.102681.
[46] M. Basiri, H.R. Goshayeshi, I. Chaer, H. Pourpasha, S.Z. Heris, Experimental study on heat transfer from rectangular fins in combined convection, J. Therm. Eng. 9 (2023) 1632–1642. https://doi.org/10.18186/thermal.1401534.
[47] A.E. Kabeel, S.A. El-agouz, R. Sathyamurthy, T. Arunkumar, Augmenting the productivity of solar still using jute cloth knitted with sand heat energy storage, Desalination 443 (2018) 122–129. https://doi.org/10.1016/j.desal.2018.05.026.
[48] R. Kumar, D.R. Mishra, P. Dumka, Improving solar still performance : A comparative analysis of conventional and honeycomb pad augmented solar stills, Sol. Energy 270 (2024) 112408. https://doi.org/https://doi.org/10.1016/j.solener.2024.112408.
[49] P. Dumka, D.R. Mishra, B. Singh, R. Chauhan, M. Haque, I. Siddiqui, Enhancing solar still performance with Plexiglas and jute cloth additions : experimental study, Sustain. Environ. Res. 34 (2024) 2–12. https://doi.org/10.1186/s42834-024-00208-y.
[50] P.T. Tsilingiris, The influence of binary mixture thermophysical properties in the analysis of heat and mass trnasfer processes in solar distillation systems, Sol. Energy 81 (2007) 1482–1491. https://doi.org/10.1016/j.solener.2007.02.005.
[51] J.P. Holman, Experimental methods for engineers, McGraw-Hill, New York, 2017.
[52] H. Manchanda, M. Kumar, Thermo-economic assessment of a novel design of a solar distillation-cum-drying unit, Energy Environ. 30 (2019) 1456–1476. https://doi.org/10.1177/0958305X19851611.
[53] P. Dumka, D.R. Mishra, Performance evaluation of single slope solar still augmented with the ultrasonic fogger, Energy 190 (2020). https://doi.org/10.1016/j.energy.2019.116398.
[54] P. Dumka, H. Gautam, S. Sharma, C. Gunawat, D.R. Mishra, Impact of Sand Filled Glass Bottles on Performance of Conventional Solar Still, J. Basic Appl. Sci. 18 (2022) 8–15. https://doi.org/10.29169/1927-5129.2022.18.02.
[55] P. Dumka, R. Chauhan, D.R. Mishra, Experimental and theoretical evaluation of a conventional solar still augmented with jute covered plastic balls, J. Energy Storage 32 (2020) 101874. https://doi.org/10.1016/j.est.2020.101874.