A Combination of SWHs and PVs Mounted on the Façade of a Building to Reduce Energy-Consuming

Document Type : Original Article

Authors

1 Faculty member, Department of Architecture and Urban Planning, Technical and Vocational University (TVU), Tehran, Iran

2 Faculty member, Department of Mechanical Engineering, Technical and Vocational University (TVU), Tehran, Iran.

10.22059/jser.2024.364971.1347

Abstract

This study aims to enhance the energy efficiency in cold climates, specifically Shahrekord, by exploring the integration of solar water heater systems and photovoltaic panels into building facades. Employing TSOL 2021 R(3) and HOMER V.2.81 software, this research adopts a novel approach to address the energy efficiency challenge. The placement of solar equipment on the southern facade yields a 44.6% increase in electricity generation and a 59.3% rise in heat production compared to the western facade. This significant difference is attributed to the larger collectors and optimal orientation in Scenario 1, resulting in a remarkable 45% greater reduction in pollutant emissions. The primary losses in the first scenario are associated with optical inefficiencies, whereas thermal inefficiencies in the solar collector drive losses in the second scenario. Despite having more solar panels, electricity costs are 19% lower in the first scenario, contributing to a higher proportion of solar electricity. This research provides valuable insights into optimizing energy efficiency in cold climates through strategic solar equipment placement, emphasizing the economic and environmental advantages of such integrations.

Keywords


[1] Santamouris, M. (2016). Innovating to zero the building sector in Europe: Minimising the energy consumption, eradication of the energy poverty and mitigating the local climate change. Solar Energy, 128, 61-94. DOI: https://doi.org/10.1016/j.solener.2016.01.021.
[2] Enerdata. (2021), Energy Market in Iran. Enerdata. Retrieved from  https://www.enerdata.net/estore/energy-market/iran/.
[3] Hadi Ramin, & Hazhir Karimi. (2020). Optimum envelope design toward zero energy buildings in Iran. E3S Web of Conferences, 17(2), 16004. https://doi.org/10.1051/e3sconf/202017216004
[4] Jahangiri M, Yousefi Y, Pishkar I, Hosseini Dehshiri SJ, Hosseini Dehshiri SS, Fatemi Vanani SM. Techno–Econo–Enviro Energy Analysis, Ranking and Optimization of Various Building-Integrated Photovoltaic (BIPV) Types in Different Climatic Regions of Iran. Energies. 2023; 16(1):546. https://doi.org/10.3390/en16010546.
[5] Chen, Y., Quan, M., Wang, D., Tian, Z., Zhuang, Z., Liu, Y., & He, E. (2023). Energy, exergy, and economic analysis of a solar photovoltaic and photothermal hybrid energy supply system for residential buildings. Building and Environment, 243, 110654.  https://doi.org/10.1016/j.buildenv.2023.110654
[6] Krei, D., Keith, F., & Mcgowan, J. (1984). Solar heating and cooling: active and passive design. American Journal of Physics, 52(8), 766. https://doi.org/10.1119/1.13559 
[7] Santos, I., & Ricardo, R. (2012). The potential of building-integrated (BIPV) and building-applied photovoltaics (BAPV) in single-family, urban residences at low latitudes in Brazil. Energy and Buildings, 50, 290-297.  https://doi.org/10.1016/j.enbuild.2012.03.052 
[8] Luo, Y., Cheng, N., Zhang, S., et al. (2022). Comprehensive energy, economic, environmental assessment of a building integrated photovoltaic-thermoelectric system with battery storage for net zero energy building. Building Simulation, 15(11), 1923-1941. https://doi.org/10.1007/s12273-022-0904-1 
[9] Jahangir, M. H., Kargarzadeh, A., & Javanshir, F. (2022). Energy investigation in buildings applying a solar adsorption chiller coupled with biofuel heaters and solar heating/cooling systems in different climates. Energy Reports, 8, 15493-15510. https://doi.org/10.1016/j.egyr.2022.10.428
[10] Baljit, S., Chan, H., & Sopian, K. (2016). Review of building integrated applications of photovoltaic and solar thermal systems. Journal of Cleaner Production, 137, 677-689.   
[11] Dehkordi, S. R., & Jahangiri, M. (2022). Sensitivity Analysis for 3E Assessment of BIPV System Performance in Abadan in Southwestern Iran. Journal of Renewable Energy and Environment, 9(1), 1-12.  https://doi.org/10.1016/j.renene.2018.06.118
[12] Bianco, V., Diana, A., Manca, O., & Nardini, S. (2018). Numerical investigation of an inclined rectangular cavity for ventilated roofs applications. Thermal Science and Engineering, 6, 426-435. https://doi.org/10.1016/j.tsep.2018.02.016
[13] Elarga, H., Fantucci, S., Serra, V., Zecchin, R., & Benini, E. (2017). Experimental and numerical analyses on thermal performance of different typologies of PCMs integrated in the roof space. Energy and Buildings, 150, 546-557. https://doi.org/10.1016/j.enbuild.2017.06.038.
[14] Li, D., Zheng, Y., Liu, C., Qi, H., & Liu, X. (2016). Numerical analysis on thermal performance of naturally ventilated roofs with different influencing parameters. Sustainable Cities and Society, 22, 86-93.  https://doi.org/10.1016/j.scs.2016.02.004.
[15] Seyedmahmoudian, M., Thirunavukkarasu, G., Jamei, E., Tey, K. S., Horan, B., Mekhilef, S., & Stojcevski, A. (2020). A Sustainable Distributed Building Integrated Photo-Voltaic System Architecture with a Single Radial Movement Optimization Based MPPT Controller. Sustainability, 12, 6687.  https://doi.org/10.3390/su12176687
[16] Kiss, B., Silvestre, J. D., Madeira, J. F. A., Santos, R. A., & Szalay, Z. (2020). Environmental and economic optimization of buildings for different climates. IOP Conference Series: Earth and Environmental Science, 588, 032033. https://doi.org/10.1088/1755-1315/588/3/032033
[17] Savvides, A., Vassiliades, C., Michael, A., & Kalogirou, S. (2018). Siting and Building-Massing Considerations for the Urban Integration of Active Solar Energy Systems. Renewable Energy, 135, 963-974. https://doi.org/10.1016/j.renene.2018.12.017.
[18] Gautam, A., Chamoli, S., Kumar, A., & Singh, S. (2017). A review on technical improvements, economic feasibility and world scenario of solar water heating system. Renewable and Sustainable Energy Reviews, 68, 541-562.  https://doi.org/10.1016/j.rser.2016.09.104.
[19] Parametthanuwat, T., Pipatpaiboon, N., Bhuwakietkumjohn, N., & Sichamnan, S. (2022). Heat transfer characteristics of closed-end thermosyphon (CE-TPCT). Engineering Science and Technology, an International Journal, 27, 101020. https://doi.org/10.1016/j.jestch.2022.101020.
[20] Haghighi Z, Angali Dehnavi M, Konstantinou T, van den Dobbelsteen A, Klein T. Architectural Photovoltaic Applications: Lessons Learnt and Perceptions from Architects. Buildings. 2021; 11(2):62. https://doi.org/10.3390/buildings11020062.
[21] Kuhn, T. E., Erban, C., Heinrich, M., Eisenlohr, J., Ensslen, F., & Neuhaus, D. H. (2020). Review of Technological Design Options for Building Integrated Photovoltaics (BIPV). Energy and Buildings, 231, 110381. https://doi.org/10.1016/j.enbuild.2020.110381.
[22] Shen, J., Wang, Z., Luo, Y., Jiang, X., Zhao, H., Cui, D., & Tian, Z. (2022). Performance evaluation of an active pipe-embedded building envelope system to transfer solar heat gain from the south to the north external wall. Journal of Building Engineering, 59, 105123. https://doi.org/10.1016/j.jobe.2022.105123.
[23] Vassiliades, C., Agathokleous, R., Barone, G., Forzano, C., Giuzio, G. F., Palombo, A., Buonomano, A., & Kalogirou, S. (2022). Building integration of active solar energy systems: A review of geometrical and architectural characteristics. Renewable and Sustainable Energy Reviews, 164, 112482. https://doi.org/10.1016/j.rser.2022.112482.
[24] Marzouk, M. A., Salheen, M. A., & Fischer, L. K. (2022). Functionalizing building envelopes for greening and solar energy: Between theory and the practice in Egypt. Frontiers in Environmental Science, 10, 2396.  https://doi.org/10.3389/fenvs.2022.1056382.
[25] Mallouh, M. A., AbdelMeguid, H., & Salah, M. (2022). A comprehensive comparison and control for different solar water heating system configurations. Engineering Science and Technology, an International Journal, 35, 101210. https://doi.org/10.1016/j.jestch.2022.101210.
[26] Fu, H., Li, G., & Li, F. (2019). Performance comparison of photovoltaic/thermal solar water heating systems with direct-coupled photovoltaic pump, traditional pump and natural circulation. Renewable Energy, 136, 463-472.  https://doi.org/10.1016/j.renene.2019.01.028.
[27] Alhuyi Nazari, M., Rungamornrat, J., Prokop, L., Blazek, V., Misak, S., Al-Bahrani, M., & Ahmadi, M. H. (2023). An updated review on integration of solar photovoltaic modules and heat pumps towards decarbonization of buildings. Energy for Sustainable Development, 72, 230-242.  https://doi.org/10.1016/j.esd.2022.12.018.
[28] Ma, J., & Yuan, X. (2023). Techno-economic optimization of hybrid solar system with energy storage for increasing the energy independence in green buildings. Journal of Energy Storage, 61, 106642.  https://doi.org/10.1016/j.est.2023.106642.
[29] Jahangiri, M., Yousefi, Y., Pishkar, I., Hosseini Dehshiri, S. J., Hosseini Dehshiri, S. S., & Fatemi Vanani, S. M. (2023). Techno–econo–enviro energy analysis, ranking and optimization of various building-integrated photovoltaic (BIPV) types in different climatic regions of Iran. Energies, 16(1), 546. https://doi.org/10.3390/en16010546
[30] Jahangir, M. H., Kargarzadeh, A., & Javanshir, F. (2022). Energy investigation in buildings applying a solar adsorption chiller coupled with biofuel heaters and solar heating/cooling systems in different climates. Energy Reports, 8, 15493-15510. https://doi.org/10.1016/j.egyr.2022.10.428.
[31] Italos, C., Patsias, M., Yiangou, A., Stavrinou, S., & Vassiliades, C. (2022). Use of double skin façade with building integrated solar systems for an energy renovation of an existing building in Limassol, Cyprus: Energy performance analysis. Energy Reports, 8, 15144-15161. https://doi.org/10.1016/j.egyr.2022.11.088.
[32] Barone, G., Vassiliades, C., Elia, C., Savvides, A., & Kalogirou, S. (2023). Design optimization of a solar system integrated double-skin façade for a clustered housing unit. Renewable Energy, 215, 119023. https://doi.org/10.1016/j.renene.2023.119023.
[33] SolarGIS. (n.d.). Overview of Maps and GIS Data. SolarGIS.  https://solargis.com/maps-and-gis-data/overview.
[34] Rubel, Franz & Kottek, Markus. (2011). Comments on: The thermal zones of the Earth by Wladimir Köppen (1884). Meteorologische Zeitschrift. 20. 361-365. https://doi.org/10.1127/0941-2948/2011/0285.
[35] Rezapour, S., Jahangiri, M., Shahrezaie, A. G., Goli, A., Farsani, R. Y., Almutairi, K., & Techato, K. (2022). Dynamic simulation and ranking of using residential-scale solar water heater in Iran. Journal of Environmental Engineering and Landscape Management, 30(1), 30-42.  https://doi.org/10.3846/jeelm.2022.15483.
[36] Almutairi, K., Mostafaeipour, A., Baghaei, N., Techato, K., Chowdhury, S., Jahangiri, M., & Issakhov, A. (2021). Techno-economic investigation of using solar energy for heating swimming pools in buildings and producing hydrogen: a case study. Frontiers in Energy Research, 9, 680103.  https://doi.org/10.3389/fenrg.2021.680103.
[37] Zarouri, A., Yaghoubi, S., & Jahangiri, M. (2023). Simultaneous Production of Heat Required for Space Heating, Sanitary Water Consumption, And Swimming Pool in Different Climates of Iran. Journal of Solar Energy Research, 8(2), 1393-1409. https://doi.org/10.1155/2022/2720057.
[38] Zaniani, J. R., Dehkordi, R. H., Bibak, A., Bayat, P., & Jahangiri, M. (2015). Examining the possibility of using solar energy to provide warm water using RETScreen4 software (Case study: Nasr primary school of pirbalut). Current World Environment, 10(Special Issue), 835. http://dx.doi.org/10.12944/CWE.10.Special-Issue1.101.
[39] Mostafaeipour, A., Qolipour, M., Rezaei, M., Jahangiri, M., Goli, A., & Sedaghat, A. (2021). A novel integrated approach for ranking solar energy location planning: a case study. Journal of Engineering, Design and Technology, 19(3), 698-720.  https://doi.org/10.1108/JEDT-04-2020-0123.
[40] Riahi Zaniani, J., Taghipour Ghahfarokhi, S., Jahangiri, M., & Alidadi Shamsabadi, A. (2019). Design and optimization of heating, cooling and lightening systems for a residential villa at Saman city, Iran. Journal of Engineering, Design and Technology, 17(1), 41-52. https://doi.org/10.1108/JEDT-01-2018-0003.
[41] Jahangiri, M., Karimi Shahmarvandi, F., & Alayi, R. (2021). Renewable energy-based systems on a residential scale in southern coastal areas of Iran: trigeneration of heat, power, and hydrogen. Journal of Renewable Energy and Environment, 8(4), 67-76. https://doi.org/10.30501/jree.2021.261980.1170.
[42] Jahangiri, M., Rezaei, M., Mostafaeipour, A., Goojani, A. R., Saghaei, H., Dehshiri, S. J. H., & Dehshiri, S. S. H. (2022). Prioritization of solar electricity and hydrogen co-production stations considering PV losses and different types of solar trackers: a TOPSIS approach. Renewable Energy, 186, 889-903. https://doi.org/10.1016/j.renene.2022.01.045.
[43] Siampour, L., Vahdatpour, S., Jahangiri, M., Mostafaeipour, A., Goli, A., Shamsabadi, A. A., & Atabani, A. (2021). Techno-enviro assessment and ranking of Turkey for use of home-scale solar water heaters. Sustainable Energy Technologies and Assessments, 43, 100948.  https://doi.org/10.1016/j.seta.2020.100948.
[44] Jahangiri, M., Akinlabi, E. T., & Sichilalu, S. M. (2021). Assessment and modeling of household-scale solar water heater application in Zambia: technical, environmental, and energy analysis. International Journal of Photoenergy, 2021, 6630338.  https://doi.org/10.1155/2021/6630338.
[45] Pishkar, I. (2022). Using Rooftop Solar Heating to Supply Part of a High-Rise Residential Building Heat in the Cold Climate of Iran: One-Year Dynamic Analysis. International Transactions on Electrical Energy Systems, 2022, 9982264.  https://doi.org/10.1155/2022/9982264.
[46] Ganjei, N., Zishan, F., Alayi, R., Samadi, H., Jahangiri, M., Kumar, R., & Mohammadian, A. (2022). Designing and sensitivity analysis of an off-grid hybrid wind-solar power plant with diesel generator and battery backup for the rural area in Iran. Journal of Engineering, 2022, 4966761.  https://doi.org/10.1155/2022/4966761.
[47] Alayi, R., Seydnouri, S. R., Jahangeri, M., & Maarif, A. (2022). Optimization, sensitivity analysis, and techno-economic evaluation of a multi-source system for an urban community: a case study. Renewable Energy Research and Applications, 3(1), 21-30.
[48] Alayi, R., Jahangiri, M., & Najafi, A. (2021). Energy analysis of vacuum tube collector system to supply the required heat gas pressure reduction station. International Journal of Low-Carbon Technologies, 16(4), 1391-1396. https://doi.org/10.1093/ijlct/ctab069.
[49] Kalbasi, R., Jahangiri, M., Mosavi, A., Dehshiri, S. J. H., Dehshiri, S. S. H., Ebrahimi, S., & Karimipour, A. (2021). Finding the best station in Belgium to use residential-scale solar heating, one-year dynamic simulation with considering all system losses: economic analysis of using ETSW. Sustainable Energy Technologies and Assessments, 45, 101097. https://doi.org/10.1016/j.seta.2021.101097.
[50] Mostafaeipour, A., Sadeghi, S., Jahangiri, M., Nematollahi, O., & Rezaeian Sabbagh, A. (2020). Investigation of accurate location planning for wind farm establishment: a case study. Journal of Engineering, Design and Technology, 18(4), 821-845. https://doi.org/10.1108/JEDT-08-2019-0208.
[51] Rezaei, M., Mostafaeipour, A., & Jahangiri, M. (2021). Economic assessment of hydrogen production from sea water using wind energy: a case study. Wind Engineering, 45(4), 1002-1019.  https://doi.org/10.1177/0309524X20944391.
[52] Valikhani Dehaghani, M., Khalili Samani, M., & Mohamadi Janaki, D. (2022). Management and Environmental Assessment of Simultaneous Production of Solar Electricity and Heat (Case Study: Sar Agha Seyed Rural Health Center). International Journal of Smart Electrical Engineering, 11(04), 191-203.  https://doi.org/10.30495/ijsee.2022.1957192.1195.
[53] Ariae, A. R., Jahangiri, M., Fakhr, M. H., & Shamsabadi, A. A. (2019). Simulation of Biogas Utilization Effect on the Economic Efficiency and Greenhouse Gas Emission: A Case Study in Isfahan, Iran. International Journal of Renewable Energy Development, 8(2), 149-160.  https://doi.org/10.14710/ijred.8.2.149-160.
[54] Jahangiri, M., Mostafaeipour, A., Rahman Habib, H. U., Saghaei, H., & Waqar, A. (2021). Effect of emission penalty and annual interest rate on cogeneration of electricity, heat, and hydrogen in Karachi: 3E assessment and sensitivity analysis. Journal of Engineering, 2021, 6679358.  https://doi.org/10.1155/2021/6679358.
[55] Dehkordi, M. H. R., Isfahani, A. H. M., Rasti, E., Nosouhi, R., Akbari, M., & Jahangiri, M. (2022). Energy-Economic-Environmental assessment of solar-wind-biomass systems for finding the best areas in Iran: A case study using GIS maps. Sustainable Energy Technologies and Assessments, 53, 102652.  https://doi.org/10.1016/j.seta.2022.102652.
[56] Pahlavan, S., Jahangiri, M., Shamsabadi, A. A., & Baharizadeh, A. (2020). Assessing the Current Status of Renewable Energies and Their Limitations in Iran. International Journal of Renewable Energy Development, 9(1), 97-105.  https://doi.org/10.14710/ijred.9.1.97-105.
[57] Kalbasi, R., Jahangiri, M., Nariman, A., & Yari, M. (2019). Optimal design and parametric assessment of grid-connected solar power plants in Iran, a review. Journal of Solar Energy Research, 4(2), 142-162.  https://doi.org/10.22059/jser.2019.282276.1114.
[58] Mohamadi Janaki, D., Pishkar, I., Mohamadi Janaki, M., Alayi, R., Sediqi Samani, M. H., & Tahmasebi, A. (2022). Optimal selection and economical ranking of isolated renewable-based CHP microgrid in cold climate, a case study for a rural healthcare center. Journal of Solar Energy Research, 7(4), 1143-1158.  https://doi.org/10.22059/jser.2022.328959.1214.
[59] Jahangiri, M., Yousefi, Y., Pishkar, I., Hosseini Dehshiri, S. J., Hosseini Dehshiri, S. S., & Fatemi Vanani, S. M. (2023). Techno–econo–enviro energy analysis, ranking and optimization of various building-integrated photovoltaic (BIPV) types in different climatic regions of Iran. Energies, 16(1), 546. https://doi.org/10.3390/en16010546.
[60] Global Petrol Prices. (2022, December). Electricity prices for households.  https://www.globalpetrolprices.com/electricity_prices. Accessed August 25, 2023.