[1] Santamouris, M. (2016). Innovating to zero the building sector in Europe: Minimising the energy consumption, eradication of the energy poverty and mitigating the local climate change. Solar Energy, 128, 61-94. DOI: https://doi.org/10.1016/j.solener.2016.01.021.
[4] Jahangiri M, Yousefi Y, Pishkar I, Hosseini Dehshiri SJ, Hosseini Dehshiri SS, Fatemi Vanani SM. Techno–Econo–Enviro Energy Analysis, Ranking and Optimization of Various Building-Integrated Photovoltaic (BIPV) Types in Different Climatic Regions of Iran. Energies. 2023; 16(1):546.
https://doi.org/10.3390/en16010546.
[5] Chen, Y., Quan, M., Wang, D., Tian, Z., Zhuang, Z., Liu, Y., & He, E. (2023). Energy, exergy, and economic analysis of a solar photovoltaic and photothermal hybrid energy supply system for residential buildings. Building and Environment, 243, 110654.
https://doi.org/10.1016/j.buildenv.2023.110654
[6] Krei, D., Keith, F., & Mcgowan, J. (1984). Solar heating and cooling: active and passive design. American Journal of Physics, 52(8), 766.
https://doi.org/10.1119/1.13559
[7] Santos, I., & Ricardo, R. (2012). The potential of building-integrated (BIPV) and building-applied photovoltaics (BAPV) in single-family, urban residences at low latitudes in Brazil. Energy and Buildings, 50, 290-297.
https://doi.org/10.1016/j.enbuild.2012.03.052
[8] Luo, Y., Cheng, N., Zhang, S., et al. (2022). Comprehensive energy, economic, environmental assessment of a building integrated photovoltaic-thermoelectric system with battery storage for net zero energy building. Building Simulation, 15(11), 1923-1941.
https://doi.org/10.1007/s12273-022-0904-1
[9] Jahangir, M. H., Kargarzadeh, A., & Javanshir, F. (2022). Energy investigation in buildings applying a solar adsorption chiller coupled with biofuel heaters and solar heating/cooling systems in different climates. Energy Reports, 8, 15493-15510.
https://doi.org/10.1016/j.egyr.2022.10.428
[10] Baljit, S., Chan, H., & Sopian, K. (2016). Review of building integrated applications of photovoltaic and solar thermal systems. Journal of Cleaner Production, 137, 677-689.
[11] Dehkordi, S. R., & Jahangiri, M. (2022). Sensitivity Analysis for 3E Assessment of BIPV System Performance in Abadan in Southwestern Iran. Journal of Renewable Energy and Environment, 9(1), 1-12.
https://doi.org/10.1016/j.renene.2018.06.118
[12] Bianco, V., Diana, A., Manca, O., & Nardini, S. (2018). Numerical investigation of an inclined rectangular cavity for ventilated roofs applications. Thermal Science and Engineering, 6, 426-435.
https://doi.org/10.1016/j.tsep.2018.02.016
[13] Elarga, H., Fantucci, S., Serra, V., Zecchin, R., & Benini, E. (2017). Experimental and numerical analyses on thermal performance of different typologies of PCMs integrated in the roof space. Energy and Buildings, 150, 546-557.
https://doi.org/10.1016/j.enbuild.2017.06.038.
[14] Li, D., Zheng, Y., Liu, C., Qi, H., & Liu, X. (2016). Numerical analysis on thermal performance of naturally ventilated roofs with different influencing parameters. Sustainable Cities and Society, 22, 86-93.
https://doi.org/10.1016/j.scs.2016.02.004.
[15] Seyedmahmoudian, M., Thirunavukkarasu, G., Jamei, E., Tey, K. S., Horan, B., Mekhilef, S., & Stojcevski, A. (2020). A Sustainable Distributed Building Integrated Photo-Voltaic System Architecture with a Single Radial Movement Optimization Based MPPT Controller. Sustainability, 12, 6687.
https://doi.org/10.3390/su12176687
[16] Kiss, B., Silvestre, J. D., Madeira, J. F. A., Santos, R. A., & Szalay, Z. (2020). Environmental and economic optimization of buildings for different climates. IOP Conference Series: Earth and Environmental Science, 588, 032033.
https://doi.org/10.1088/1755-1315/588/3/032033
[17] Savvides, A., Vassiliades, C., Michael, A., & Kalogirou, S. (2018). Siting and Building-Massing Considerations for the Urban Integration of Active Solar Energy Systems. Renewable Energy, 135, 963-974.
https://doi.org/10.1016/j.renene.2018.12.017.
[18] Gautam, A., Chamoli, S., Kumar, A., & Singh, S. (2017). A review on technical improvements, economic feasibility and world scenario of solar water heating system. Renewable and Sustainable Energy Reviews, 68, 541-562.
https://doi.org/10.1016/j.rser.2016.09.104.
[19] Parametthanuwat, T., Pipatpaiboon, N., Bhuwakietkumjohn, N., & Sichamnan, S. (2022). Heat transfer characteristics of closed-end thermosyphon (CE-TPCT). Engineering Science and Technology, an International Journal, 27, 101020.
https://doi.org/10.1016/j.jestch.2022.101020.
[20] Haghighi Z, Angali Dehnavi M, Konstantinou T, van den Dobbelsteen A, Klein T. Architectural Photovoltaic Applications: Lessons Learnt and Perceptions from Architects. Buildings. 2021; 11(2):62.
https://doi.org/10.3390/buildings11020062.
[21] Kuhn, T. E., Erban, C., Heinrich, M., Eisenlohr, J., Ensslen, F., & Neuhaus, D. H. (2020). Review of Technological Design Options for Building Integrated Photovoltaics (BIPV). Energy and Buildings, 231, 110381. https://doi.org/10.1016/j.enbuild.2020.110381.
[22] Shen, J., Wang, Z., Luo, Y., Jiang, X., Zhao, H., Cui, D., & Tian, Z. (2022). Performance evaluation of an active pipe-embedded building envelope system to transfer solar heat gain from the south to the north external wall. Journal of Building Engineering, 59, 105123.
https://doi.org/10.1016/j.jobe.2022.105123.
[23] Vassiliades, C., Agathokleous, R., Barone, G., Forzano, C., Giuzio, G. F., Palombo, A., Buonomano, A., & Kalogirou, S. (2022). Building integration of active solar energy systems: A review of geometrical and architectural characteristics. Renewable and Sustainable Energy Reviews, 164, 112482.
https://doi.org/10.1016/j.rser.2022.112482.
[24] Marzouk, M. A., Salheen, M. A., & Fischer, L. K. (2022). Functionalizing building envelopes for greening and solar energy: Between theory and the practice in Egypt. Frontiers in Environmental Science, 10, 2396.
https://doi.org/10.3389/fenvs.2022.1056382.
[25] Mallouh, M. A., AbdelMeguid, H., & Salah, M. (2022). A comprehensive comparison and control for different solar water heating system configurations. Engineering Science and Technology, an International Journal, 35, 101210.
https://doi.org/10.1016/j.jestch.2022.101210.
[26] Fu, H., Li, G., & Li, F. (2019). Performance comparison of photovoltaic/thermal solar water heating systems with direct-coupled photovoltaic pump, traditional pump and natural circulation. Renewable Energy, 136, 463-472.
https://doi.org/10.1016/j.renene.2019.01.028.
[27] Alhuyi Nazari, M., Rungamornrat, J., Prokop, L., Blazek, V., Misak, S., Al-Bahrani, M., & Ahmadi, M. H. (2023). An updated review on integration of solar photovoltaic modules and heat pumps towards decarbonization of buildings. Energy for Sustainable Development, 72, 230-242.
https://doi.org/10.1016/j.esd.2022.12.018.
[28] Ma, J., & Yuan, X. (2023). Techno-economic optimization of hybrid solar system with energy storage for increasing the energy independence in green buildings. Journal of Energy Storage, 61, 106642.
https://doi.org/10.1016/j.est.2023.106642.
[29] Jahangiri, M., Yousefi, Y., Pishkar, I., Hosseini Dehshiri, S. J., Hosseini Dehshiri, S. S., & Fatemi Vanani, S. M. (2023). Techno–econo–enviro energy analysis, ranking and optimization of various building-integrated photovoltaic (BIPV) types in different climatic regions of Iran. Energies, 16(1), 546. https://doi.org/10.3390/en16010546
[30] Jahangir, M. H., Kargarzadeh, A., & Javanshir, F. (2022). Energy investigation in buildings applying a solar adsorption chiller coupled with biofuel heaters and solar heating/cooling systems in different climates. Energy Reports, 8, 15493-15510.
https://doi.org/10.1016/j.egyr.2022.10.428.
[31] Italos, C., Patsias, M., Yiangou, A., Stavrinou, S., & Vassiliades, C. (2022). Use of double skin façade with building integrated solar systems for an energy renovation of an existing building in Limassol, Cyprus: Energy performance analysis. Energy Reports, 8, 15144-15161.
https://doi.org/10.1016/j.egyr.2022.11.088.
[32] Barone, G., Vassiliades, C., Elia, C., Savvides, A., & Kalogirou, S. (2023). Design optimization of a solar system integrated double-skin façade for a clustered housing unit. Renewable Energy, 215, 119023.
https://doi.org/10.1016/j.renene.2023.119023.
[35] Rezapour, S., Jahangiri, M., Shahrezaie, A. G., Goli, A., Farsani, R. Y., Almutairi, K., & Techato, K. (2022). Dynamic simulation and ranking of using residential-scale solar water heater in Iran. Journal of Environmental Engineering and Landscape Management, 30(1), 30-42.
https://doi.org/10.3846/jeelm.2022.15483.
[36] Almutairi, K., Mostafaeipour, A., Baghaei, N., Techato, K., Chowdhury, S., Jahangiri, M., & Issakhov, A. (2021). Techno-economic investigation of using solar energy for heating swimming pools in buildings and producing hydrogen: a case study. Frontiers in Energy Research, 9, 680103.
https://doi.org/10.3389/fenrg.2021.680103.
[37] Zarouri, A., Yaghoubi, S., & Jahangiri, M. (2023). Simultaneous Production of Heat Required for Space Heating, Sanitary Water Consumption, And Swimming Pool in Different Climates of Iran. Journal of Solar Energy Research, 8(2), 1393-1409.
https://doi.org/10.1155/2022/2720057.
[38] Zaniani, J. R., Dehkordi, R. H., Bibak, A., Bayat, P., & Jahangiri, M. (2015). Examining the possibility of using solar energy to provide warm water using RETScreen4 software (Case study: Nasr primary school of pirbalut). Current World Environment, 10(Special Issue), 835.
http://dx.doi.org/10.12944/CWE.10.Special-Issue1.101.
[39] Mostafaeipour, A., Qolipour, M., Rezaei, M., Jahangiri, M., Goli, A., & Sedaghat, A. (2021). A novel integrated approach for ranking solar energy location planning: a case study. Journal of Engineering, Design and Technology, 19(3), 698-720.
https://doi.org/10.1108/JEDT-04-2020-0123.
[40] Riahi Zaniani, J., Taghipour Ghahfarokhi, S., Jahangiri, M., & Alidadi Shamsabadi, A. (2019). Design and optimization of heating, cooling and lightening systems for a residential villa at Saman city, Iran. Journal of Engineering, Design and Technology, 17(1), 41-52.
https://doi.org/10.1108/JEDT-01-2018-0003.
[41] Jahangiri, M., Karimi Shahmarvandi, F., & Alayi, R. (2021). Renewable energy-based systems on a residential scale in southern coastal areas of Iran: trigeneration of heat, power, and hydrogen. Journal of Renewable Energy and Environment, 8(4), 67-76.
https://doi.org/10.30501/jree.2021.261980.1170.
[42] Jahangiri, M., Rezaei, M., Mostafaeipour, A., Goojani, A. R., Saghaei, H., Dehshiri, S. J. H., & Dehshiri, S. S. H. (2022). Prioritization of solar electricity and hydrogen co-production stations considering PV losses and different types of solar trackers: a TOPSIS approach. Renewable Energy, 186, 889-903.
https://doi.org/10.1016/j.renene.2022.01.045.
[43] Siampour, L., Vahdatpour, S., Jahangiri, M., Mostafaeipour, A., Goli, A., Shamsabadi, A. A., & Atabani, A. (2021). Techno-enviro assessment and ranking of Turkey for use of home-scale solar water heaters. Sustainable Energy Technologies and Assessments, 43, 100948.
https://doi.org/10.1016/j.seta.2020.100948.
[44] Jahangiri, M., Akinlabi, E. T., & Sichilalu, S. M. (2021). Assessment and modeling of household-scale solar water heater application in Zambia: technical, environmental, and energy analysis. International Journal of Photoenergy, 2021, 6630338.
https://doi.org/10.1155/2021/6630338.
[45] Pishkar, I. (2022). Using Rooftop Solar Heating to Supply Part of a High-Rise Residential Building Heat in the Cold Climate of Iran: One-Year Dynamic Analysis. International Transactions on Electrical Energy Systems, 2022, 9982264.
https://doi.org/10.1155/2022/9982264.
[46] Ganjei, N., Zishan, F., Alayi, R., Samadi, H., Jahangiri, M., Kumar, R., & Mohammadian, A. (2022). Designing and sensitivity analysis of an off-grid hybrid wind-solar power plant with diesel generator and battery backup for the rural area in Iran. Journal of Engineering, 2022, 4966761.
https://doi.org/10.1155/2022/4966761.
[47] Alayi, R., Seydnouri, S. R., Jahangeri, M., & Maarif, A. (2022). Optimization, sensitivity analysis, and techno-economic evaluation of a multi-source system for an urban community: a case study. Renewable Energy Research and Applications, 3(1), 21-30.
[48] Alayi, R., Jahangiri, M., & Najafi, A. (2021). Energy analysis of vacuum tube collector system to supply the required heat gas pressure reduction station. International Journal of Low-Carbon Technologies, 16(4), 1391-1396.
https://doi.org/10.1093/ijlct/ctab069.
[49] Kalbasi, R., Jahangiri, M., Mosavi, A., Dehshiri, S. J. H., Dehshiri, S. S. H., Ebrahimi, S., & Karimipour, A. (2021). Finding the best station in Belgium to use residential-scale solar heating, one-year dynamic simulation with considering all system losses: economic analysis of using ETSW. Sustainable Energy Technologies and Assessments, 45, 101097.
https://doi.org/10.1016/j.seta.2021.101097.
[50] Mostafaeipour, A., Sadeghi, S., Jahangiri, M., Nematollahi, O., & Rezaeian Sabbagh, A. (2020). Investigation of accurate location planning for wind farm establishment: a case study. Journal of Engineering, Design and Technology, 18(4), 821-845.
https://doi.org/10.1108/JEDT-08-2019-0208.
[51] Rezaei, M., Mostafaeipour, A., & Jahangiri, M. (2021). Economic assessment of hydrogen production from sea water using wind energy: a case study. Wind Engineering, 45(4), 1002-1019.
https://doi.org/10.1177/0309524X20944391.
[52] Valikhani Dehaghani, M., Khalili Samani, M., & Mohamadi Janaki, D. (2022). Management and Environmental Assessment of Simultaneous Production of Solar Electricity and Heat (Case Study: Sar Agha Seyed Rural Health Center). International Journal of Smart Electrical Engineering, 11(04), 191-203.
https://doi.org/10.30495/ijsee.2022.1957192.1195.
[53] Ariae, A. R., Jahangiri, M., Fakhr, M. H., & Shamsabadi, A. A. (2019). Simulation of Biogas Utilization Effect on the Economic Efficiency and Greenhouse Gas Emission: A Case Study in Isfahan, Iran. International Journal of Renewable Energy Development, 8(2), 149-160.
https://doi.org/10.14710/ijred.8.2.149-160.
[54] Jahangiri, M., Mostafaeipour, A., Rahman Habib, H. U., Saghaei, H., & Waqar, A. (2021). Effect of emission penalty and annual interest rate on cogeneration of electricity, heat, and hydrogen in Karachi: 3E assessment and sensitivity analysis. Journal of Engineering, 2021, 6679358.
https://doi.org/10.1155/2021/6679358.
[55] Dehkordi, M. H. R., Isfahani, A. H. M., Rasti, E., Nosouhi, R., Akbari, M., & Jahangiri, M. (2022). Energy-Economic-Environmental assessment of solar-wind-biomass systems for finding the best areas in Iran: A case study using GIS maps. Sustainable Energy Technologies and Assessments, 53, 102652.
https://doi.org/10.1016/j.seta.2022.102652.
[56] Pahlavan, S., Jahangiri, M., Shamsabadi, A. A., & Baharizadeh, A. (2020). Assessing the Current Status of Renewable Energies and Their Limitations in Iran. International Journal of Renewable Energy Development, 9(1), 97-105.
https://doi.org/10.14710/ijred.9.1.97-105.
[57] Kalbasi, R., Jahangiri, M., Nariman, A., & Yari, M. (2019). Optimal design and parametric assessment of grid-connected solar power plants in Iran, a review. Journal of Solar Energy Research, 4(2), 142-162.
https://doi.org/10.22059/jser.2019.282276.1114.
[58] Mohamadi Janaki, D., Pishkar, I., Mohamadi Janaki, M., Alayi, R., Sediqi Samani, M. H., & Tahmasebi, A. (2022). Optimal selection and economical ranking of isolated renewable-based CHP microgrid in cold climate, a case study for a rural healthcare center. Journal of Solar Energy Research, 7(4), 1143-1158.
https://doi.org/10.22059/jser.2022.328959.1214.
[59] Jahangiri, M., Yousefi, Y., Pishkar, I., Hosseini Dehshiri, S. J., Hosseini Dehshiri, S. S., & Fatemi Vanani, S. M. (2023). Techno–econo–enviro energy analysis, ranking and optimization of various building-integrated photovoltaic (BIPV) types in different climatic regions of Iran. Energies, 16(1), 546.
https://doi.org/10.3390/en16010546.