Estimating Global Horizontal Irradiance in Nigeria: An Empirical Modelling Perspective

Document Type : Original Article

Authors

1 Department of Electrical and Electronics Engineering, Kogi State Polytechnic Lokoja, Nigeria. Department of Electrical and Electronics Engineering, Federal University Oye Ekiti, Nigeria.

2 Department of Electrical and Electronics Engineering, Federal University Oye Ekiti, Nigeria.

3 Department of Electrical and Electronic Engineering, Federal University Oye Ekiti, Nigeria

10.22059/jser.2024.363403.1337

Abstract

Accurate Global Horizontal Irradiance (GHI) data is key to designing optimal solar PV systems. Limited by the availability and high cost of traditional pyranometers in developing countries like Nigeria, this study proposes a cost-effective alternative using the Ångström-Prescott model and readily available sunshine data from the Nigerian Meteorological Agency. Empirical models for GHI estimation were developed for 37 selected locations across Nigeria. The country was divided into three regions, and estimates were then compared with NASA data using statistical metrics like R2, MBE, and RMSE to evaluate model performance. The results indicate that Sokoto, Ibi, and Abakaliki have the highest GHI values of 5.86 kWh/m2/day, 4.90 kWh/m2/day, and 4.76 kWh/m2/day, respectively. Conversely, the lowest GHI values were observed in Jos, Ilorin, and Benin City, with values of 4.84 kWh/m2/day, 4.71 kWh/m2/day, and 4.37 kWh/m2/day for regions 1, 2, and 3, respectively. Statistical tests revealed underestimation in the Gusau and Abuja models, slight overestimation in Sokoto, and the lowest accuracy in Jos. R² values ranged from 0.706 to 0.985, indicating strong correlations and high accuracy in most regions. By leveraging readily available sunshine data, this cost-effective method allows accurate GHI estimation, driving improved solar PV systems in Nigeria and similar contexts.

Keywords

[1] Mabasa, B., Lysko, M. D., & Moloi, S. J. (2022). Comparison of Satellite-Based and Ångström–Prescott Estimated Global Horizontal Irradiance under Different Cloud Cover Conditions in South African Locations. Solar, 2(3), 354-374. DOI: 10.3390/solar2030021
[2] Benti, N. E., Aneseyee, A. B., Asfaw, A. A., Geffe, C. A., Tiruye, G. A., & Mekonnen, Y. S. (2022). Estimation of global solar radiation using sunshine-based models in Ethiopia. Cogent Engineering, 9(1), 2114200. DOI: 10.1080/23311916.2022.2114200
[3] Mohammadi, B., Moazenzadeh, R., Bao Pham, Q., Al-Ansari, N., Ur Rahman, K., Tran Anh, D., & Duan, Z. (2022). Application of ERA-Interim, empirical models, and an artificial intelligence-based model for estimating daily solar radiation. Ain Shams Engineering Journal, 13(1), 101498. DOI: https://doi.org/10.1016/j.asej.2021.05.012
[4] Khalil, S. A. (2022). Performance Evaluation and Statistical Analysis of Solar Energy Modeling: A Review and Case Study. Journal of the Nigerian Society of Physical Sciences, 911-911. DOI: 10.46481/jnsps.2022.911
[5] Banihashemi Dehkordi, S. N., Bakhtiari, B., Qaderi, K., & Ahmadi, M. M. (2022). Calibration and validation of the Angstrom–Prescott model in solar radiation estimation using optimization algorithms. Scientific Reports, 12(1), 4855. DOI: 10.1038/s41598-022-08744-6
[6] Bounoua, Z., Ouazzani Chahidi, L., & Mechaqrane, A. (2021). Estimation of daily global solar radiation using empirical and machine-learning methods: A case study of five Moroccan locations. Sustainable Materials and Technologies, 28, e00261. DOI: https://doi.org/10.1016/j.susmat.2021.e00261
[7] Kumari, P., & Toshniwal, D. (2021). Analysis of ANN-based daily global horizontal irradiance prediction models with different meteorological parameters: a case study of mountainous region of India. International Journal of Green Energy, 18(10), 1007-1026. DOI: 10.1080/15435075.2021.1890085
[8] Angstrom, A. (1924). Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation. Quarterly Journal of the Royal Meteorological Society, 50(210), 121-126. DOI: https://doi.org/10.1002/qj.49705021008
[9] Iradukunda, C., & Chiteka, K. (2023). Angstrom-Prescott Type Models for Predicting Solar Irradiation for Different Locations in Zimbabwe [empirical coefficients; Angstrom-Prescott models; solar irradiation; sunshine duration;]. 2023, 69(1-2), 17. DOI: 10.5545/sv-jme.2022.331
[10] Pelkowski, J. (2009). A physical rationale for generalized Ångström–Prescott regression. Solar Energy, 83(7), 955-963. DOI: https://doi.org/10.1016/j.solener.2008.12.011
[11] Asilevi, P. J., Quansah, E., Amekudzi, L. K., Annor, T., & Klutse, N. A. B. (2019). Modeling the spatial distribution of Global Solar Radiation (GSR) over Ghana using the Ångström-Prescott sunshine duration model. Scientific African, 4, e00094. DOI: 10.1016/j.sciaf.2019.e00094
[12] Liu, Y., Tan, Q., & Pan, T. (2019). Determining the Parameters of the Ångström-Prescott Model for Estimating Solar Radiation in Different Regions of China: Calibration and Modeling. Earth and Space Science, 6(10), 1976-1986. DOI: 10.1029/2019EA000635
[13] Hargreaves, G. H., & Samani, Z. A. (1982). Estimating Potential Evapotranspiration. Journal of the Irrigation and Drainage Division, 108(3), 225-230. DOI: 10.1061/JRCEA4.0001390
[14] De Souza, K. (2018). Temperature-based model for monthly average hourly global solar radiation for the Caribbean island of Trinidad. Journal of Renewable and Sustainable Energy, 10(3). DOI: 10.1063/1.5000817
[15] Ghazouani, N., Bawadekji, A., El-Bary, A. A., Elewa, M. M., Becheikh, N., Alassaf, Y., & Hassan, G. E. (2022). Performance Evaluation of Temperature-Based Global Solar Radiation Models—Case Study: Arar City, KSA. Sustainability, 14(1), 35. DOI: 10.3390/su14010035
[16] Jamil, B., Irshad, K., Algahtani, A., Islam, S., Ali, M. A., & Shahab, A. (2020). On the calibration and applicability of global solar radiation models based on temperature extremities in India. Environmental Progress & Sustainable Energy, 39(1), 13236. DOI: 10.1002/ep.13236
[17] Manisha, Upadhyaya, A., & Gaur, P. (2020, December). Evaluation of Empirical Models for the Assessment of Global Solar Radiation in Baramati Region, Maharashtra (Paper presented at the 2020 IEEE 17th India Council International Conference (INDICON),  DOI: 10.1109/INDICON49873.2020.9342088
[18] Ahamed, M. S., Guo, H., & Tanino, K. (2022). Cloud cover-based models for estimation of global solar radiation: A review and case study. International Journal of Green Energy, 19(2), 175-189. DOI: 10.1080/15435075.2021.1941043
[19] Yakoubi, H., El Mghouchi, Y., Abdou, N., Hajou, A., & Khellouki, A. (2021). Correlating clearness index with cloud cover and other meteorological parameters for forecasting the global solar radiation over Morocco. Optik, 242, 167145. DOI: https://doi.org/10.1016/j.ijleo.2021.167145
[20] Rughoo, D., Mohun, S., & Doorga, J. R. S. (2022, December). Implementation of a cloud-based solar radiation model using Regression Analysis for estimating photovoltaic power generation (Paper presented at the 2022 7th International Conference on Environment Friendly Energies and Applications (EFEA),  DOI: 10.1109/EFEA56675.2022.10063817
[21] Kaplan, Y. A., Saraç, M. S., & Ünaldı, G. G. (2022). Developing a new model in solar radiation estimation with genetic algorithm method. Environmental Progress & Sustainable Energy, 41(6), e13912. DOI: 10.1002/ep.13912
[22] Okundamiya, M. S., & Nzeako, A. N. (2010). Empirical Model for Estimating Global Solar Radiation on Horizontal Surfaces for Selected Cities in the Six Geopolitical Zones in Nigeria. Journal of Applied Sciences, Engineering and Technology, 2(8), 805-812. DOI: 10.1155/2011/356405
[23] Soneye-Arogundade, O. O., & Rappenglück, B. (2023). Estimation of Diffuse Solar Radiation Models for a Tropical Site in Nigeria. Pure and Applied Geophysics, 1--16. DOI: 10.1007/s00024-023-03330-x
[24] Mudasiru, M. (2019). Estimation of Global Solar Radiation on Horizontal Surface in Kano, Nigeria Using Air Temperature Amplitude. International Journal of Integrated Engineering, 11(6), 103-109. DOI: 10.30880/ijie.2019.11.06.011
[25] Salisu, S., Mustafa, M. W., Mustapha, M., Otuoze, A. O., & Mohammed, O. O. (2019). A Hybrid PSO-ANFIS Approach for Horizontal Solar Radiation Prediction in Nigeria. ELEKTRIKA- Journal of Electrical Engineering, 18(2), 23-32. DOI: 10.11113/elektrika.v18n2.153
[26] Adeniji, N., Akinpelu, J., Adeola, S., & Adeniji, J. (2019). Estimation of global solar radiation, sunshine hour distribution and clearness index in Enugu, Nigeria. Journal of Applied Sciences and Environmental Management, 23(2), 345-349. DOI: 10.4314/jasem.v23i2.22
[27] Nwokolo, S. C., Amadi, S. O., Obiwulu, A. U., Ogbulezie, J. C., & Eyibio, E. E. (2022). Prediction of global solar radiation potential for sustainable and cleaner energy generation using improved Angstrom-Prescott and Gumbel probabilistic models. Cleaner Engineering and Technology, 6, 100416. DOI: https://doi.org/10.1016/j.clet.2022.100416
[28] Akpootu, D., Alaiyemola, S., Abdulsalam, M., Bello, G., Umar, M., Aruna, S., Isah, A., Aminu, Z., Abdullahi, Z., & Badmus, T. (2023). Sunshine and Temperature Based Models for Estimating Global Solar Radiation in Maiduguri, Nigeria. Saudi J Eng Technol, 8(5), 82-90. DOI: 10.36348/sjet.2023.v08i05.001
[29] Ozoegwu, C. G. (2018). New temperature-based models for reliable prediction of monthly mean daily global solar radiation. Journal of Renewable and Sustainable Energy, 10(2). DOI: 10.1063/1.5006805
[30] Dike, V. N., Chineke, T. C., Nwofor, O. K., & Okoro, U. K. (2011). Evaluation of horizontal surface solar radiation levels in southern Nigeria. Journal of Renewable and Sustainable Energy, 3(2), 023101. DOI: 10.1063/1.3558871
[31] Bawonda, F. I., & Adefarati, T. (2023). Evaluation of solar energy potential in six geopolitical regions of Nigeria using analytical and simulation techniques. Energy Conversion and Management, 290, 117193. DOI: https://doi.org/10.1016/j.enconman.2023.117193
[32] Ramgolam, Y. K., & Soyjaudah, K. M. S. (2019). Assessment and validation of global horizontal radiation: a case study in Mauritius. International Journal of Green Energy, 16(14), 1317-1328. DOI: 10.1080/15435075.2019.1671407
[33] Hailu, E., Salau, A. O., & Godebo, A. J. (2021). Assessment of solar energy potential of east gojjam zone Ethiopia using angestrom-prescott model. International Journal of Engineering Research in Africa, 53, 171-179. DOI: 10.1007/978-3-030-80621-7_28
[34] Gürel, A. E., Ağbulut, Ü., Bakır, H., Ergün, A., & Yıldız, G. (2023). A state of art review on estimation of solar radiation with various models. Heliyon. DOI: 10.1016/j.heliyon.2023.e13167
[35] Ikotoni, F. B., Haruna, I., Isah, Y. J., & Ige, O. O. (2019, 2019). Solar Radiation Potential Using Surface Meteorological Data: (A Case Study of Lokoja City, Kogi State) (Paper presented at the 2019 IEEE PES/IAS PowerAfrica Conference, Abuja.) DOI: 10.1109/PowerAfrica.2019.8928725
[36] NiMeT. Nigerian Meteorological Agency. In  https://nimet.gov.ng/
[37] NBET. Irradiation Map Of Nigeria. Retrieved June 6, 2022 from https://nbet.com.ng/irradiationmap.html
[38] Bailek, N., Bouchouicha, K., Abdel-Hadi, Y. A., El-Shimy, M., Slimani, A., Jamil, B., & Djaafari, A. (2020). Developing a new model for predicting global solar radiation on a horizontal surface located in Southwest Region of Algeria. NRIAG Journal of Astronomy and Geophysics, 9(1), 341-349. DOI: 10.1080/20909977.2020.1746892
[39] Kalogirou, S. A. (2009). Solar energy engineering processes and systems: Academic press DOI: https://doi.org/10.1016/B978-0-12-374501-9.X0001-5
[40] Sen, Z. (2008). Solar energy fundamentals and modeling techniques: atmosphere, environment, climate change and renewable energy: Springer Science & Business Media DOI: https://doi.org/10.1007/978-1-84800-134-3