Type-I Graphene/Si Quantum Dot Superlattice for Intermediate Band Applications

Document Type : Original Article


1 Department of Electrical Engineering, Shabestar Branch, Islamic Azad University, Shabestar, Iran

2 Department of Electrical Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran

3 Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran



The most important loss mechanism in single junction solar cells is the inability to convert photons with energies below the bandgap to electricity. Due to quantum confinement, graphene-based quantum dots (QDs) provide a means to create an intermediate band (IB) in the bandgap of semiconductors to absorb sub-bandgap photons. In this work, we introduce a new type-I core/shell-graphene/Si QD for use in all Si-based intermediate band solar cells (IBSCs). Slater-Koster Tight-Binding method is exploited to compute the ground state and the band structure of the graphene/Si QD. The ground state is obtained 0.6 eV above the valance band (VB), which is suitable for creating IB between the conduction band and VB of Si. A superlattice (SL) of this QD is created and the mini-band formation in SL is investigated by varying the inter-dot spacing between QDs. A mini-band with roughly 0.3 eV bandgap is observed in the well-aligned and closely packed SL. This SL is embedded in the intrinsic region of the conventional Si-based solar cell. The mini-band in SL works as an IB in the solar cell and results in increased photon absorption. As a result, carrier generation rate improves from 1.48943×1028 m-3s-1 to 7.94192×1028 m-3s-1 and short circuit current density increases from 211.465 A/m2 to 364.19 A/m2.


  1. Hu, W., M.E. Fauzi, M. Igarashi, A. Higo, M.-Y. Lee, Y. Li, N. Usami, and S. Samukawa.(2013). Type-II Ge/Si quantum dot superlattice for intermediate-band solar cell applications. in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC). IEEE.
  2. Fioretti, A.N., M. Boccard, R. Monnard, and C. Ballif.(2019). Low-temperature $ p $-type microcrystalline silicon as carrier selective contact for silicon heterojunction solar cells. IEEE Journal of Photovoltaics. 9(5): p. 1158-1165.
  3. Collazos, L.J., M.M. Al Huwayz, R. Jakomin, D.N. Micha, L.D. Pinto, R.M. Kawabata, M.P. Pires, M. Henini, and P.L. Souza.(2021). The role of defects on the performance of quantum dot intermediate band solar cells. IEEE Journal of Photovoltaics. 11(4): p. 1022-1031.
  4. Delamarre, A., D. Suchet, N. Cavassilas, Y. Okada, M. Sugiyama, and J.-F. Guillemoles.(2018). An electronic ratchet is required in nanostructured intermediate-band solar cells. IEEE Journal of Photovoltaics. 8(6): p. 1553-1559.
  5. Islam, A., A. Das, N. Sarkar, M. Matin, and N. Amin.(2018). Numerical Analysis of PbSe/GaAs Quantum Dot Intermediate Band Solar Cell (QDIBSC). in 2018 International Conference on Computer, Communication, Chemical, Material and Electronic Engineering (IC4ME2). IEEE.
  6. Dong, B., S. Guo, A. Afanasev, and M. Zaghloul.(2016). Simulations of properties of quantum dots and high-efficiency GaAs solar cells. in 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC). IEEE.
  7. Tsai, Y.-C., M.-Y. Lee, Y. Li, and S. Samukawa.(2017). Design and simulation of intermediate band solar cell with ultradense type-II multilayer Ge/Si quantum dot superlattice. IEEE Transactions on Electron Devices. 64(11): p. 4547-4553.
  8. Rocha, B., R. Jakomin, R. Kawabata, L. Dornelas, M. Pires, and P. Souza.(2019). Transition Energy Calculations of Type II In (As) P/InGaP Quantum Dots for Intermediate Band Solar Cells. in 2019 34th Symposium on Microelectronics Technology and Devices (SBMicro). IEEE.
  9. Hossain, M.J., S. Roy, M.S. Hossain, and M. Moznuzzaman.(2018). Analytical modeling of AlInN/GaN quantum dot intermediate band solar cell. in 2018 International Conference on Innovation in Engineering and Technology (ICIET). IEEE.
  10. Villa, J., I. Ramiro, J.M. Ripalda, I. Tobías, P. García-Linares, E. Antolín, and A. Martí.(2020). Contribution to the study of sub-bandgap photon absorption in quantum dot InAs/AlGaAs intermediate band solar cells. IEEE Journal of Photovoltaics. 11(2): p. 420-428.
  11. Ankhi, A.I., M.R. Islam, M.T. Hasan, and E. Hossain.(2020). Projected Performance of InGaAs/GaAs Quantum Dot Solar Cells: Effects of Cap and Passivation Layers. IEEE Access. 8: p. 212339-212350.
  12. de Paula Dias, C., E.C. Weiner, R.M.S. Kawabata, R. Jakomin, P.L. Souza, and M.P. Pires.(2021). Optical Characterization of InAs/InGaP Intermediate Band Solar Cells. in 2021 35th Symposium on Microelectronics Technology and Devices (SBMicro). IEEE.
  13. Sharan, A. and J. Kumar.(2022). Effect of Position-Dependent Doping on Intermediate Band Generation-Recombination Rate in InAs/GaAs Quantum Dot Solar Cell. IEEE Transactions on Nanotechnology. 21: p. 151-157.
  14. Robichaud, L. and J.J. Krich.(2022). Ingan quantum dot superlattices as ratchet band solar cells. IEEE Journal of Photovoltaics. 12(2): p. 474-482.
  15. Lee, M.-Y., Y.-C. Tsai, Y. Li, and S. Samukawa.(2016). Numerical simulation of physical and electrical characteristics of Ge/Si quantum dots based intermediate band solar cell. in 2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO). IEEE.
  16. Mahmoudi, T., Y. Wang, and Y.-B. Hahn.(2018). Graphene and its derivatives for solar cells application. Nano Energy. 47: p. 51-65.
  17. Chen, Q., A.W. Robertson, K. He, C. Gong, E. Yoon, A.I. Kirkland, G.-D. Lee, and J.H. Warner.(2016). Elongated silicon–carbon bonds at graphene edges. ACS nano. 10(1): p. 142-149.
  18. Javvaji, B., B.M. Shenoy, D.R. Mahapatra, A. Ravikumar, G. Hegde, and M. Rizwan.(2017). Stable configurations of graphene on silicon. Applied Surface Science. 414: p. 25-33.
  19. Arefinia, Z. and A. Asgari.(2017). Optimization study of a novel few-layer graphene/silicon quantum dots/silicon heterojunction solar cell through opto-electrical modeling. IEEE Journal of Quantum Electronics. 54(1): p. 1-6.
  20. Mirzakhani, M.(2017). Electronic properties and energy levels of graphene quantum dots, University of Antwerp
  21. Lin, I.-T. and J.-M. Liu.(2013). Terahertz frequency-dependent carrier scattering rate and mobility of monolayer and AA-stacked multilayer graphene. IEEE Journal of Selected Topics in Quantum Electronics. 20(1): p. 122-129.
  22. Daukiya, L., M.N. Nair, M. Cranney, F. Vonau, S. Hajjar-Garreau, D. Aubel, and L. Simon.(2019). Functionalization of 2D materials by intercalation. Progress in Surface Science. 94(1): p. 1-20.
  23. Xiang, C., F. Kong, K. Li, and M. Liu.(2017). A high-order symplectic FDTD scheme for the Maxwell-Schrodinger system. IEEE Journal of Quantum Electronics. 54(1): p. 1-8.
  24. Junaid, M. and G. Witjaksono.(2019). Analysis of band gap in AA and Ab stacked bilayer graphene by Hamiltonian tight binding method. in 2019 IEEE International Conference on Sensors and Nanotechnology. IEEE.
  25. Papaconstantopoulos, D. and M. Mehl.(2003). The Slater–Koster tight-binding method: a computationally efficient and accurate approach. Journal of Physics: Condensed Matter. 15(10): p. R413.
  26. Sun, Y., S.E. Thompson, and T. Nishida,(2009). Strain effect in semiconductors: theory and device applications. 2009: Springer Science & Business Media.
  27. Dresselhaus, G., M.S. Dresselhaus, and R. Saito,(1998). Physical properties of carbon nanotubes. 1998: World scientific.
  28. Kiziloglu, V., T.S. Navruz, and M. Saritas.(2018). Size Dependent Intermediate Band Energy Levels and Absorption of Bound States in Box Shaped Quantum Dots. in 2018 International Conference on Photovoltaic Science and Technologies (PVCon). IEEE.
  29. Hellstroem, S. and S.M. Hubbard.(2014). Drift-diffusion simulations of InAs/AlAsSb quantum dot intermediate-band solar cells. in 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC). IEEE.
  30. Chaves, A., J.G. Azadani, H. Alsalman, D. Da Costa, R. Frisenda, A. Chaves, S.H. Song, Y.D. Kim, D. He, and J. Zhou.(2020). Bandgap engineering of two-dimensional semiconductor materials. npj 2D Materials and Applications. 4(1): p. 1-21.
  31. Afanas' ev, V.V.(2014). Electron band alignment at interfaces of semiconductors with insulating oxides: An internal photoemission study. Advances in Condensed Matter Physics. 2014.
  32. Nandan, Y. and M.S. Mehata.(2019). Wavefunction engineering of type-I/type-II excitons of CdSe/CdS core-shell quantum dots. Scientific reports. 9(1): p. 1-11.
  33. .www.kb.lumerical.com
  34. Zhu, L., H. Akiyama, and Y. Kanemitsu.(2018). Intrinsic and extrinsic drops in open-circuit voltage and conversion efficiency in solar cells with quantum dots embedded in host materials. Scientific reports. 8(1): p. 1-12.