Experimental Study of the Performance of a Three-Dimensional Pyramid-Shaped Solar Water Heater in Different Conditions

Document Type : Original Article

Authors

1 Department of Mechanical Engineering, Payame Noor University, Iran.

2 Department of Agriculture, Payame Noor University, Iran

3 Department of Mechanical Engineering, Payame Noor University, Iran

10.22059/jser.2022.343918.1245

Abstract

One of the important and effective criteria in performance of solar collectors is the adsorption geometry. In this study, a three-dimensional and fixed solar collector with pyramid geometry and diagonal risers which is designed and built by the author, has been experimentally investigated in southern Iran. Studies included the effects of environmental factors such as changes in radiation, angles and temperatures over time. The thermal performance of the collector has been evaluated according to the ASHRAE standard. Experimental results showed that in addition to the proper stability of this geometry, the rate of return in the normal state and using water as the operating fluid is approximately 35.1% on average and the maximum return obtained was about 46.2%. In addition, in the experiment by using of CuO-Water nanofluid with a concentration of 0.1% in the collector, it was found that the collector efficiency increases about 6% compared to the use of ordinary water.

Keywords


  1. Duffie, J., Beckman, W., Blair, N., Solar engineering of thermal processes, photovoltaics and wind. John Wiley and Sons, 2020.
  2. Heidarnejad, P., Noorpoor, A. Thermodynamic and Thermoeconomic Investigation of a Multi-Generation Energy System Utilizing Solar and Biomass as Energy Sources. Journal of Solar Energy Research, 2018; 3(4): p. 325-341. 
  3. 2. Noghrehabadi, A., Hajidavalloo, E., Moravej, M., An experimental investigation of performance of a 3-D solar conical collector at different flow rates. Journal of Heat and Mass Transfer Research, 2016. 3: p. 57-66.
  4. Ouagued, M. Magnesium–Chlorine Cycle for Hydrogen Production Driven by Solar Parabolic Trough Collectors. Journal of Solar Energy Research, 2021; 6(3): 799-813. 
  5. Moravej, M., & Namdarnia, F. (2018). Experimental Investigation of the Efficiency of a Semi-Spherical Solar piping Collector. Journal of Renewable Energy and Environment, 5(2), 22-30.‏
  6. Noghrehabadi, A., Hajidavalloo, E., Moravej, M. (2016). 'An experimental investigation of performance of a 3-D solar conical collector at different flow rates', Journal of Heat and Mass Transfer Research, 3(1), pp. 57-66.
  7. Alawi, O. A., Kamar, H. M., Mallah, A. R., Mohammed, H. A., Sabrudin, M. A. S., Newaz, K. M., ... & Yaseen, Z. M. (2021). Experimental and Theoretical Analysis of Energy Efficiency in a Flat Plate Solar Collector Using Monolayer Graphene Nanofluids. Sustainability, 13(10), 5416.‏
  8. Alklaibi, A. M., Sundar, L. S., & Sousa, A. C. M. (2021). Experimental analysis of exergy efficiency and entropy generation of diamond/water nanofluids flow in a thermosyphon flat plate solar collector. International Communications in Heat and Mass Transfer, 120, 105057.
  9. Kumar, L. H., Kazi, S. N., Masjuki, H. H., Zubir, M. N. M., Jahan, A., & Bhinitha, C. (2021). Energy, exergy and economic analysis of liquid flat-plate solar collector using green covalent functionalized graphene nanoplatelets. Applied Thermal Engineering, 192, 116916.
  10. Aref, L., Fallahzadeh, R., Shabanian, S. R., & Hosseinzadeh, M. (2021). A novel dual-diameter closed-loop pulsating heat pipe for a flat plate solar collector. Energy, 230, 120751.
  11. Akram, N., Montazer, E., Kazi, S. N., Soudagar, M. E. M., Ahmed, W., Zubir, M. N. M., ... & Sarsam, W. S. (2021). Experimental investigations of the performance of a flat-plate solar collector using carbon and metal oxides based nanofluids. Energy, 227, 120452.
  12. Cao, Y., Ayed, H., Hashemian, M., Issakhov, A., Jarad, F., & Wae-hayee, M. (2021). Inducing swirl flow inside the pipes of flat-plate solar collector by using multiple nozzles for enhancing thermal performance. Renewable Energy, 180, 1344-1357.
  13. Eidan, A. A., AlSahlani, A., Ahmed, A. Q., Al-fahham, M., & Jalil, J. M. (2018). Improving the performance of heat pipe-evacuated tube solar collector experimentally by using Al2O3 and CuO/acetone nanofluids. Solar Energy, 173, 780-788.
  14. Pandey, K. M., & Chaurasiya, R. (2017). A review on analysis and development of solar flat plate collector. Renewable and Sustainable Energy Reviews, 67, 641-650.
  15. Sheikholeslami, M., Farshad, S. A., & Said, Z. (2021). Analyzing entropy and thermal behavior of nanomaterial through solar collector involving new tapes. International Communications in Heat and Mass Transfer, 123, 105190.
  16. Hawwash, A. A., Ahamed, M., Nada, S. A., Radwan, A., & Abdel-Rahman, A. K. (2021). Thermal analysis of flat plate solar collector using different nanofluids and nanoparticles percentages. IEEE Access, 9, 52053-52066.‏‏‏‏‏‏‏‏‏
  17. Ahmed, O. K. (2018). A numerical and experimental investigation for a triangular storage collector. Solar Energy, 171, 884-892.‏
  18. Mishra, D. R., Jain, H., Kumar, N., & Sodha, M. S. (2020). Experimental evaluation of solar integrated water heater. Scientia Iranica, 27(4), 1878-1885.
  19. Zayed, M. E., Zhao, J., Du, Y., Kabeel, A. E., & Shalaby, S. M. (2019). Factors affecting the thermal performance of the flat plate solar collector using nanofluids: A review. Solar Energy, 182, 382-396.
  20. Elsheikh AH. Sharshir SW.Mostafa ME, Essa FA.Ali,MK"Applications of nanofluids in solar energy: a review of recent advances. Renew Sust Energy Rev82:3483-3502,2020.

‏‏20. Sheikholeslami, M., Farshad, S. A., & Said, Z. (2021). Analyzing entropy and thermal behavior of nanomaterial through solar collector involving new tapes. International Communications in Heat and Mass Transfer, 123, 105190.

  1. Sajadipour, F., Kheiralipour, K., Mirzaee- Ghaleh, E., Rabani, H. Assessment of Thermal Behavior of a Flat Plate Water Heater Solar Collector at Different Day Times by Computational Fluid Dynamics Method. Journal of Solar Energy Research, 2022; 7(4): p.1134-1142.
  2. Moravej, M., Namdarnia, F., Partabian, L. An experimental study of the effect of using Ag-water nanofluid in different concentrations on the performance of circular collectors. Journal of Solar Energy Research, 2022; 7(2): p.1016-1026.
  3. STANDARD, ASHRAE. 93-77, Methods of testing to determine the thermal performance of solar collectors. American Society of Heating. Refrigeration and Air Conditioning Engineers, Inc., NY, 1977.‏ New York.
  4. Noghrehabadi, A., Hajidavaloo, E., Moravej, M., & Esmailinasab, A. (2018). An experimental study of the thermal performance of the square and rhombic solar collectors. Thermal Science, 22(1 Part B), 487-494.
  5. Moravej, M., Doranehgard, M. H., Razeghizadeh, A., Namdarnia, F., Karimi, N., Li, L. K., ... & Ebrahimi, Z. (2021). Experimental study of a hemispherical three-dimensional solar collector operating with silver-water nanofluid. Sustainable Energy Technologies and Assessments, 44, 101043.
  6. Mojtaba Moravej., AN Experimental Study of the Performance of a Solar Flat Plate Collector with Triangular Geometry. Journal of Solar Energy Research, 2021. 6: p. 923-936.
  7. Poongavanam, G. K., Sakthivadivel, D., Meikandan, M., Balaji, K., & Vigneswaran, V. S. (2020). Thermal performance augmentation of a solar flat plate collector using the shot peening technique.