A Novel Fan-Based Cooling System for Photovoltaic Panels: Impact on Thermal Regulation and Electrical Efficiency

Document Type : Research Article

Authors

Center of Excellence in Energy Conversion, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran, Azadi Ave., P.O. Box: 11155-9567

10.22059/jser.2026.407563.1679

Abstract

This study experimentally investigates a suction-based fan cooling system to improve the thermal and electrical performance of photovoltaic (PV) modules under outdoor conditions. Low-power axial fans extract heated air from a sealed plenum behind the panel, inducing distributed inflow through inlet holes. This limits warm-air recirculation and creates uniform convective streams across the backside. Experiments were performed on a clear, sunny day with a peak irradiance of 1030 W/m² and an ambient temperature of 32 °C. The system achieved a maximum surface-temperature drop of 15.5 °C relative to an uncooled module. With the experimental results subjected to a rigorous uncertainty analysis, infrared thermography confirmed a more uniform temperature with no visible hot spots. Electrical performance was assessed using a 15-minute duty cycle (5 min ON / 10 min OFF) to balance cooling and auxiliary energy use. Based on the manufacturer’s temperature coefficient combined with measured surface temperature and irradiance, the system yielded an estimated net electrical efficiency gain of 0.94% after accounting for fan consumption. Compared with conventional rear-side blowing, the suction architecture demonstrated superior cooling, improved thermal uniformity, and potentially better long-term stability, offering a compact, energy-efficient solution for PV modules in warm climates.

Keywords

[1]         A. R. Elbakheit, S. Waheeb, and A. Mahmoud, “A Ducted Photovoltaic Façade Unit with Forced Convection Cooling,” Sustainability, vol. 14, no. 19, p. 12875, 2022, doi: https://doi.org/10.3390/su141912875.
[2]         S. Sharma, N. Sellami, A. A. Tahir, T. K. Mallick, and R. Bhakar, “Performance improvement of a CPV system: experimental investigation into passive cooling with phase change materials,” Energies, vol. 14, no. 12, p. 3550, 2021, doi: https://doi.org/10.3390/en14123550.
[3]         K. Sornek, W. Goryl, R. Figaj, G. Dąbrowska, and J. Brezdeń, “Development and tests of the water cooling system dedicated to photovoltaic panels,” Energies, vol. 15, no. 16, p. 5884, 2022, doi: https://doi.org/10.3390/en15165884.
[4]         E. Abdelsalam, H. Alnawafah, F. Almomani, A. Mousa, M. Jamjoum, and M. Alkasrawi, “Efficiency improvement of photovoltaic panels: A novel integration approach with cooling tower,” Energies, vol. 16, no. 3, p. 1070, 2023, doi: https://doi.org/10.3390/en16031070.
[5]         M. Krstic et al., “Passive cooling of photovoltaic panel by aluminum heat sinks and numerical simulation,” Ain Shams Eng. J., vol. 15, no. 1, p. 102330, 2024, doi: https://doi.org/10.1016/j.asej.2023.102330.
[6]         S. Praveenkumar et al., “Experimental study on performance enhancement of a photovoltaic module incorporated with CPU heat pipe—A 5E analysis,” Sensors, vol. 22, no. 17, p. 6367, 2022, doi: https://doi.org/10.3390/s22176367.
[7]         S. V. Hudișteanu, F. E. Țurcanu, N. C. Cherecheș, C. G. Popovici, M. Verdeș, and I. Huditeanu, “Enhancement of PV panel power production by passive cooling using heat sinks with perforated fins,” Appl. Sci., vol. 11, no. 23, p. 11323, 2021, doi: https://doi.org/10.3390/app112311323.
[8]         A. Alqatamin, O. A. Al-Khashman, and J. Su, “A Novel Heatsink for Optimizing Photovoltaic Cell Performance With Passive Cooling Using Perforated Wave-Shaped Fins,” J. Sol. Energy Eng., vol. 147, no. 5, p. 51002, 2025, doi: https://doi.org/10.1115/1.4068410.
[9]         M. F. Jaffar, A. T. Mohammad, A. Q. Ahmed, and W. A. M. Al-Shohani, “Experimental investigation of using the evaporative air cooling technique to enhance the performance of the photovoltaic module,” Int. J. Low-Carbon Technol., vol. 19, pp. 1231–1245, 2024, doi: https://doi.org/10.1093/ijlct/ctae067.
[10]       A. Durez, M. Ali, A. Waqas, K. Nazir, and S. Kumarasamy, “Modelling and optimization of phase change materials (PCM)-based passive cooling of solar PV panels in multi climate conditions,” Front. Energy Res., vol. 11, p. 1121138, 2023, doi: https://doi.org/10.3389/fenrg.2023.1121138.
[11]       N. Badi, S. A. Alghamdi, H. M. El-Hageen, and H. Albalawi, “Onsite enhancement of REEEC solar photovoltaic performance through PCM cooling technique,” PLoS One, vol. 18, no. 3, p. e0281391, 2023, doi: https://doi.org/10.1371/journal.pone.0281391.
[12]       A. Al Miaari and H. M. Ali, “A recent review on thermal management of photovoltaic panels using phase change material based on thermal conductivity enhancers for sustainable buildings,” J. Energy Storage, vol. 103, p. 113936, 2024, doi: https://doi.org/10.1016/j.est.2024.113936.
[13]       I. Čorić, S. Nižetić, and M. Jurčević, “Progress in passive cooling strategies for silicon photovoltaic panels with incorporated phase change materials,” Energy, p. 136370, 2025, doi: https://doi.org/10.1016/j.energy.2025.136370.
[14]       F. Wang et al., “Enhancing heat transfer of photovoltaic panels with fins,” Int. J. Energy Res., vol. 2024, no. 1, p. 5180627, 2024, doi: https://doi.org/10.1155/2024/5180627.
[15]       T. Ibrahim, F. Hachem, M. Ramadan, J. Faraj, G. El Achkar, and M. Khaled, “Cooling PV panels by free and forced convections: Experiments and comparative study.,” AIMS Energy, vol. 11, no. 5, 2023, doi: https://doi.org/10.3934/energy.2023038.
[16]       S.-V. Hudișteanu, N.-C. Cherecheș, F.-E. Țurcanu, I. Hudișteanu, M. Verdeș, and A.-D. Ancaș, “Experimental analysis of innovative perforated heat sinks for enhanced photovoltaic efficiency,” Energy Convers. Manag. X, vol. 25, p. 100842, 2025, doi: https://doi.org/10.1016/j.ecmx.2024.100842.
[17]       V. S. Poddar, V. A. Ranawade, and N. B. Dhokey, “Study of synergy between photovoltaic, thermoelectric and direct evaporative cooling system for improved performance,” Renew. Energy, vol. 182, pp. 817–826, 2022, doi: https://doi.org/10.1016/j.renene.2021.10.040.
[18]       P. Bevilacqua, S. Perrella, D. Cirone, R. Bruno, and N. Arcuri, “Efficiency improvement of photovoltaic modules via back surface cooling,” Energies, vol. 14, no. 4, p. 895, 2021, doi: https://doi.org/10.3390/en14040895.
[19]       A. M. Elbreki, F. Mohamed, W. Elbsuoni, and M. Elmnif, “Active cooling of PV module performance enhancement using air duct with fans: Indoor Experimental Study,” in The 7th International Conference on Engineering & MIS 2021, 2021, pp. 1–5. doi: https://doi.org/10.1145/3492547.34925.
[20]       B. R. Utomo, A. Sulistyanto, T. W. B. Riyadi, and A. T. Wijayanta, “Enhanced Performance of Combined Photovoltaic–Thermoelectric Generator and Heat Sink Panels with a Dual-Axis Tracking System,” Energies, vol. 16, no. 6, p. 2658, 2023, doi: https://doi.org/10.3390/en16062658.
[21]       A. Saxena, N. Agarwal, and B. Norton, “Design and performance characteristics of an innovative heat sink structure with phase change material for cooling of photovoltaic system,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 47, no. 1, pp. 10721–10745, 2025, doi: https://doi.org/10.1080/15567036.2021.1968545.
[22]       K. Appalasamy, R. Mamat, and S. Kumarasamy, “Smart thermal management of photovoltaic systems: Innovative strategies,” AIMS Energy, vol. 13, no. 2, pp. 309–353, 2025, doi: https://doi.org/10.3934/energy.2025013.
[23]       M. Alktranee and P. Bencs, “Experimental comparative study on using different cooling techniques with photovoltaic modules.,” J. Therm. Anal. Calorim., vol. 148, no. 9, 2023, doi: https://doi.org/10.1007/s10973-022-11940-1.
[24]       L. Jyani, S. K. Sankhala, K. Chaudhary, and K. Purohit, “Experimental Investigation of Flexible Solar Cells Using Passive Cooling Technique in Hot and Dry Climate of Jodhpur,” J. Sol. Energy Res., vol. 9, no. 2, pp. 1854–1869, 2024, doi: 10.22059/jser.2024.371686.1376.
[25]       P. Dwivedi, K. Sudhakar, A. Soni, E. Solomin, and I. Kirpichnikova, “Advanced cooling techniques of PV modules: A state of art,” Case Stud. Therm. Eng., vol. 21, p. 100674, 2020, doi: https://doi.org/10.1016/j.csite.2020.100674.
[26]       M. Sharaf, M. S. Yousef, and A. S. Huzayyin, “Review of cooling techniques used to enhance the efficiency of photovoltaic power systems,” Environ. Sci. Pollut. Res., vol. 29, no. 18, pp. 26131–26159, 2022, doi: https://doi.org/10.1007/s11356-022-18719-9.
[27]       O. A. A.-M. Ibrahim, S. A. Kadhim, and M. K. S. Al-Ghezi, “Photovoltaic panels cooling technologies: Comprehensive review,” Arch. Thermodyn., vol. 44, no. 4, pp. 581–617, 2023, doi: 10.24425/ather.2023.149720.
[28]       A. Al Miaari and H. M. Ali, “Technical method in passive cooling for photovoltaic panels using phase change material,” Case Stud. Therm. Eng., vol. 49, p. 103283, 2023, doi: https://doi.org/10.1016/j.csite.2023.103283.
[29]       A. Hussien, A. Eltayesh, and H. M. El-Batsh, “Experimental and numerical investigation for PV cooling by forced convection,” Alexandria Eng. J., vol. 64, pp. 427–440, 2023, doi: https://doi.org/10.1016/j.aej.2022.09.006.
[30]       A. Shahsavar and M. Ameri, “Experimental investigation and modeling of a direct-coupled PV/T air collector,” Sol. Energy, vol. 84, no. 11, pp. 1938–1958, 2010, doi: https://doi.org/10.1016/j.solener.2010.07.010.
[31]       M. Fuentes, G. Nofuentes, J. Aguilera, D. L. Talavera, and M. Castro, “Application and validation of algebraic methods to predict the behaviour of crystalline silicon PV modules in Mediterranean climates,” Sol. Energy, vol. 81, no. 11, pp. 1396–1408, 2007, doi: https://doi.org/10.1016/j.solener.2006.12.008.
[32]       R. J. Moffat, “Describing the uncertainties in experimental results,” Exp. Therm. fluid Sci., vol. 1, no. 1, pp. 3–17, 1988, doi: https://doi.org/10.1016/0894-1777(88)90043-X.