Design of Eco-Sustainable Renewable Energy Systems for Fish Farming

Document Type : Research Article

Authors

1 Center for Research and Advanced Studies, Shri Ramswaroop Memorial University, Tindola, Barabanki, INDIA

2 Department of Electrical Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur, INDIA

3 Department of Physical Sciences, Shri Ramswaroop Memorial University, Tindola, Barabanki, INDIA

10.22059/jser.2025.402632.1637

Abstract

Aquaculture is one of the prime sector; affected by climatic variations and environmental pollution. In this research, a renewable energy based solution is proposed by integrating photovoltaic (PV) modules with a glasshouse structure to provide a controlled environment for fish ponds, ensuring production regardless of climatic fluctuations. Furthermore, this study analyzes the performance of two commonly used solar cell materials; crystalline silicon (c-Si) and nanocrystalline silicon (nc-Si) within glasshouse-integrated PV system to maximize electrical energy output. The results demonstrate that c-Si and nc-Si shows similar temperature (16˚C-35˚C) of fish pond. Additionally, c-Si is 2% more efficient than nc-Si, which increases monthly electrical energy generation by 20% to a maximum of 2000kW in January. The choice of solar cell materials for the glasshouse integrated PVT system should be optimized in accordance with the expected lifespan and performance requirements of the respective greenhouse type, as the life of glasshouse materials varies from 5 to 30 years. Therefore, this study recommends appropriate solar cell materials for specific glasshouse designs by evaluating Energy Payback Time (EPBT) and Life Cycle Conversion Efficiency (LCCE), considering thermal exergy range from 7.5 years to 9 years and 12% to 21%.

Keywords

[1] Papadopoulos, D. K.,  Alvanou, M. V., Lattos, A., Ouroulis, K., and Giantsis, I.A.(2024).  Review Tropical Shrimp Biofloc Aquaculture within Greenhouses in the Mediterranean: Preconditions, Perspectives, and a Prototype Description. Fishes, 9, 208. doi:10.3390/fishes9060208.
[2]  Wahilea, G. S., Londhec, S. D., Malwed, P., and Feroz,S.(2025). A Review On Cooling Techniques for Performance Improvement of Solar Photovoltaic Systems. Journal of solar energy research, 10, 12. doi:  10.22059/jser.2025.384682.1490.
[3] Aulakh, R. K., Singh, G., Pathak, D., Singh, R. I., Mittal, A., and Kohli, R. (2025). A Review on Progresses and Developments in Solar cell Technologies.  Journal of Solar Energy Research, 10(3), 2501-2521. doi: 10.22059/jser.2025.401985.1631.
 [4] Toosi, H. A., Balador, Z., Gjerde, M., and Ardebili, V. A. (2018). A life Cycle Cost Analysis and Environmental Assessment on the Photovoltaic System in Buildings: Two Case Studies in Iran. Journal of Clean Energy Technologies, 6(2), 134-138. doi: 10.18178/jocet.2018.6.2.448.
 [5] Dias, G. N., Ayer, N.W., Khosla, S., Acker, R.V., Young, S. B., Whitney, S., and Hendricks, P. (2017). Life cycle perspectives on the sustainability of Ontario greenhouse tomato production: Benchmarking and improvement opportunities. Journal of Cleaner Production, 140, 831. doi: 10.1016/j.jclepro.2016.06.039.
[6]  Sethi,V. P., and Sharma, S. K. (2008). Survey and evaluation of heating technologies for world wide agricultural greenhouse applications. Journal of Solar Energy, 82, 832. doi:10.1016/j.solener.2008.02.010.
[7] Ntinas, G. K., Neumair, M., Tsadilas, C. D., and Meyer, J. (2017). Carbon footprint and cumulative energy demand of greenhouse and open-field tomato cultivation systems under Southern and Central European climatic conditions. Journal of Cleaner Production, 142, 3617. doi:10.1016/j.jclepro.2016.10.106.
[8] Vadiee, A., and Yaghoubi, M. (2016). Exergy analysis of the solar blind system integrated with a commercial solar greenhouse. International Journal of Renewable Energy, 6, 1189. doi:10.1016/j.solener.2016.09.039.
[9]  Jamil, F., Hassan, F., Shoeibi, S., and Khiadani, M.(2023). Application of advanced energy storage materials in direct solar desalination: A state of art review. Journal of Renewable and Sustainable Energy Reviews, 186, 113663. doi:10.1016/j.rser.2023.113663.
[10] Mboya, J. B., and Ouko, K. O. (2023). A mini-review of the economic aspects of fish cage farming in lake victoria. Journal of Aquaculture & Fisheries. doi:10.24966/ AAF-5523/100053.
[11]  Squatrito, R., Sgroi,F., Tudisca,S., Maria, A. D., and Trapani, R.T. (2014). Post Feed-in Scheme Photovoltaic System Feasibility Evaluation in Italy: Sicilian Case Studies. Journal of Energies, 7, 7147. doi:10.3390/en7117147.
[12] Agrawal, S., and Tiwari, G. N. (2013). Enviroeconomic analysis and energy matrices of glazed hybrid photovoltaic thermal module air collector. Journal of Solar Energy, 92, 139. doi:10.1016/j.solener.2013.02.019.
[13] Russo, G., Anifantis, A. S., Verdiani, G., and   Mugnozza,G.S. (2014). Environmental analysis of geothermal heat pump and LPG greenhouse heating systems. Journal of Biosystem Engineering, 127, 11. doi:10.1016/j.biosystemseng.2014.08.002.
[14] Hashemian, N., and Noorpoor, A. (2023). Thermo-eco-environmental Investigation of a Newly Developed Solar/wind Powered Multi-Generation Plant with Hydrogen and Ammonia Production Options. Journal of Solar Energy Research, 8(4), 1728-2023. doi: 10.22059/jser.2024.374028.1388
[15] Hashemian, N., and Noorpoor, A. (2019). Assessment and multi-criteria optimization of a solar and biomass-based multi-generation system: Thermodynamic, exergoeconomic and exergoenvironmental aspects. Journal of Energy Conversion and Management,  195(1), 788-797. doi:10.1016/j.enconman.2019.05.039
[16] Tiwari, G. N., and Tiwari, A. (2021). Optimization of packing factor for maximum electric power and crop yield in greenhouse integrated semi transparent photo-voltaic thermal (GiSPVT) system in desert land: An experimental study. e-Prime - Advances in Electrical Engineering, Electronics and Energy, 1, 100008. doi:10.1016/j.prime.2021.100008
[17]  Murali, M., Basha, H., Kiran, S. R., Akram, P., and Naresh, T. (2021). Performance analysis of different types of solar photovoltaic cell techniques using MATLAB/Simulink. Proceedings of 4th International Conference on Inventive Material Science Applications. Advances in Sustainability Science and Technology, Springer, Singapore. doi:10.1007/978-981-16-4321-7_19
[18] Squatrito, R., Sgroi, F., Tudisca, S., Trapani, A. M. D., and Testa, R. (2014). Post feed-in scheme photovoltaic system feasibility evaluation in Italy: Sicilian case studies. Journal of Energies, 7, 7147. doi:10.3390/en7117147.
[19]  AlShamiry, F. M. S., Ahmad, D., Sharif, A. R. M., Aris, I., Janius, R., and Kamaruddin, R. (2007). Design and development of a photovoltaic power system for tropical greenhouse cooling. Journal of Applied Science, 4, 386. doi:10.3844/ajassp.2007.386.389.
[20] Moretti, S., and Marucci, A. (2019). A Photovoltaic Greenhouse with Variable Shading for the Optimization of Agricultural and Energy Production. Journal of Energies, 12, 2589. doi:10.3390/en12132589.
[21] Ntinas, G. K., Neumair, M., Tsadilas, C. D., and Meyer, J. (2017). Carbon footprint and cumulative energy demand of greenhouse and open-field tomato cultivation systems under Southern and Central European climatic conditions. Journal of Cleaner Production, 142, 3617. doi:10.1016/j.jclepro.2016.10.106.
[22] Sonneveld, P. J., Swinkels, G. L. A. M., Tuijl, B. A. J., Janssen, H. J. J., and Campen, J. (2011). Performance of a concentrated photovoltaic energy system with static linear fresnel lenses. Solar Energy, 85, 432. doi: 10.1016/j.solener.2010.12.001.
[23] Singh, A. K., Tiwari, G. N., Singh, R. G., and Singh, R. K. (2020). Active Heating of Outdoor Swimming Pool Water Using Different Solar Collector Systems. Journal of Solar Energy Engineering, 142,041008. doi:10.1115/1.4046150.
[24] Tiwari, G. N., Singh, S., and Singh, Y. K. (2024). Effect of Solar Cell Materials on Energy Matrices of GISPVT System. Journal of Renewable Energy and Environment, 11, 65. doi: 10.30501/jree.2023.370499.1500.
[25] Yadav, R.S., and Chaturvedi, S. K. (2016). Study of Selection Of PV Module Material And Their Performance On Different Climatic Condition: A Review. Journal of Solar Energy Research, 7, 1096. doi:10.21474/IJAR01/9597.    
[26] Singh, S., and Tiwari, G. N. (2021). Thermal Analysis of Uneven Span Greenhouse integrated Semitransparent Photovoltaic Thermal System (GiSPVT). International Journal of Engineering Research & Technology, 10, 240. doi :10.17577/IJERTV10IS060026.
[27] Murali,M., Basha, H., Hussaian,C H., Kiran, S. R., Akram,P., and Naresh,T. (2021). Performance analysis of different types of solar photovoltaic cell techniques using MATLAB/ Simulink. Proceedings of 4th International Conference on Inventive Material Science Applications, Advances in Sustainability Science and Technology, Springer, Singapore. doi: 10.1007/978-981-16-4321-7_19.
[28] Yadav, S., Panda, S.K., Tiwari, G. N., Ibrahim, M., Abdullah, A. H., Alsadon, A., Mohammed, R., and Tiwari, A. (2022). Semi-Transparent Photovoltaic Thermal Greenhouse System Combined With Earth Air Heat Exchanger for Hot Climatic Condition. Journal of Thermal Science and Engineering Applications, 14, 71. doi:10.64289/rericproc.25.0105.8367198.
[29]  Li, Z., Yano, A., Cossu, M., Yoshioka, H., Kita, I., and Ibaraki, Y. (2018). Electrical Energy Producing Greenhouse Shading System With a Semi-Transparent Photovoltaic Blind Based on Micro-Spherical Solar Cells. Journal of Energies, 11, 1681.  doi:10.3390/en11071681.
[30] Tiwari, G. N., Singh, S., and Kalkar, S. (2024). Active heating of greenhouse integrated semitransparent photovoltaic thermal system with series connected semitransparent photovoltaic thermal air collectors. Science and Technology for Energy Transition, 79, 36. doi:10.2516/stet/2024032.
[31] Yongphet, P., Ramaraj, R., Dussadee, N. (2016). Effect of Greenhouse Cages Integrated With Using Solar Energy on The Growth Performance on Freshwater Fish. International Journal of New Technology and Research, 2, 100. doi: https://www.neliti.com/publications/263572/.