[1] Papadopoulos, D. K., Alvanou, M. V., Lattos, A., Ouroulis, K., and Giantsis, I.A.(2024). Review Tropical Shrimp Biofloc Aquaculture within Greenhouses in the Mediterranean: Preconditions, Perspectives, and a Prototype Description. Fishes, 9, 208. doi:10.3390/fishes9060208.
[2] Wahilea, G. S., Londhec, S. D., Malwed, P., and Feroz,S.(2025). A Review On Cooling Techniques for Performance Improvement of Solar Photovoltaic Systems. Journal of solar energy research, 10, 12. doi: 10.22059/jser.2025.384682.1490.
[3] Aulakh, R. K., Singh, G., Pathak, D., Singh, R. I., Mittal, A., and Kohli, R. (2025). A Review on Progresses and Developments in Solar cell Technologies. Journal of Solar Energy Research, 10(3), 2501-2521. doi: 10.22059/jser.2025.401985.1631.
[4] Toosi, H. A., Balador, Z., Gjerde, M., and Ardebili, V. A. (2018). A life Cycle Cost Analysis and Environmental Assessment on the Photovoltaic System in Buildings: Two Case Studies in Iran. Journal of Clean Energy Technologies, 6(2), 134-138. doi: 10.18178/jocet.2018.6.2.448.
[5] Dias, G. N., Ayer, N.W., Khosla, S., Acker, R.V., Young, S. B., Whitney, S., and Hendricks, P. (2017). Life cycle perspectives on the sustainability of Ontario greenhouse tomato production: Benchmarking and improvement opportunities. Journal of Cleaner Production, 140, 831. doi: 10.1016/j.jclepro.2016.06.039.
[6] Sethi,V. P., and Sharma, S. K. (2008). Survey and evaluation of heating technologies for world wide agricultural greenhouse applications. Journal of Solar Energy, 82, 832. doi:10.1016/j.solener.2008.02.010.
[7] Ntinas, G. K., Neumair, M., Tsadilas, C. D., and Meyer, J. (2017). Carbon footprint and cumulative energy demand of greenhouse and open-field tomato cultivation systems under Southern and Central European climatic conditions. Journal of Cleaner Production, 142, 3617. doi:10.1016/j.jclepro.2016.10.106.
[8] Vadiee, A., and Yaghoubi, M. (2016). Exergy analysis of the solar blind system integrated with a commercial solar greenhouse. International Journal of Renewable Energy, 6, 1189. doi:10.1016/j.solener.2016.09.039.
[10] Mboya, J. B., and Ouko, K. O. (2023). A mini-review of the economic aspects of fish cage farming in lake victoria. Journal of Aquaculture & Fisheries. doi:10.24966/ AAF-5523/100053.
[11] Squatrito, R., Sgroi,F., Tudisca,S., Maria, A. D., and Trapani, R.T. (2014). Post Feed-in Scheme Photovoltaic System Feasibility Evaluation in Italy: Sicilian Case Studies. Journal of Energies, 7, 7147. doi:10.3390/en7117147.
[13] Russo, G., Anifantis, A. S., Verdiani, G., and Mugnozza,G.S. (2014). Environmental analysis of geothermal heat pump and LPG greenhouse heating systems. Journal of Biosystem Engineering, 127, 11. doi:10.1016/j.biosystemseng.2014.08.002.
[14] Hashemian, N., and Noorpoor, A. (2023). Thermo-eco-environmental Investigation of a Newly Developed Solar/wind Powered Multi-Generation Plant with Hydrogen and Ammonia Production Options. Journal of Solar Energy Research, 8(4), 1728-2023. doi: 10.22059/jser.2024.374028.1388
[15] Hashemian, N., and Noorpoor, A. (2019). Assessment and multi-criteria optimization of a solar and biomass-based multi-generation system: Thermodynamic, exergoeconomic and exergoenvironmental aspects. Journal of Energy Conversion and Management, 195(1), 788-797. doi:10.1016/j.enconman.2019.05.039
[16] Tiwari, G. N., and Tiwari, A. (2021). Optimization of packing factor for maximum electric power and crop yield in greenhouse integrated semi transparent photo-voltaic thermal (GiSPVT) system in desert land: An experimental study. e-Prime - Advances in Electrical Engineering, Electronics and Energy, 1, 100008. doi:10.1016/j.prime.2021.100008
[17] Murali, M., Basha, H., Kiran, S. R., Akram, P., and Naresh, T. (2021). Performance analysis of different types of solar photovoltaic cell techniques using MATLAB/Simulink. Proceedings of 4th International Conference on Inventive Material Science Applications. Advances in Sustainability Science and Technology, Springer, Singapore. doi:10.1007/978-981-16-4321-7_19
[18] Squatrito, R., Sgroi, F., Tudisca, S., Trapani, A. M. D., and Testa, R. (2014). Post feed-in scheme photovoltaic system feasibility evaluation in Italy: Sicilian case studies. Journal of Energies, 7, 7147. doi:10.3390/en7117147.
[19] AlShamiry, F. M. S., Ahmad, D., Sharif, A. R. M., Aris, I., Janius, R., and Kamaruddin, R. (2007). Design and development of a photovoltaic power system for tropical greenhouse cooling. Journal of Applied Science, 4, 386. doi:10.3844/ajassp.2007.386.389.
[20] Moretti, S., and Marucci, A. (2019). A Photovoltaic Greenhouse with Variable Shading for the Optimization of Agricultural and Energy Production. Journal of Energies, 12, 2589. doi:10.3390/en12132589.
[21] Ntinas, G. K., Neumair, M., Tsadilas, C. D., and Meyer, J. (2017). Carbon footprint and cumulative energy demand of greenhouse and open-field tomato cultivation systems under Southern and Central European climatic conditions. Journal of Cleaner Production, 142, 3617. doi:10.1016/j.jclepro.2016.10.106.
[22] Sonneveld, P. J., Swinkels, G. L. A. M., Tuijl, B. A. J., Janssen, H. J. J., and Campen, J. (2011). Performance of a concentrated photovoltaic energy system with static linear fresnel lenses. Solar Energy, 85, 432. doi: 10.1016/j.solener.2010.12.001.
[23] Singh, A. K., Tiwari, G. N., Singh, R. G., and Singh, R. K. (2020). Active Heating of Outdoor Swimming Pool Water Using Different Solar Collector Systems. Journal of Solar Energy Engineering, 142,041008. doi:10.1115/1.4046150.
[24] Tiwari, G. N., Singh, S., and Singh, Y. K. (2024). Effect of Solar Cell Materials on Energy Matrices of GISPVT System. Journal of Renewable Energy and Environment, 11, 65. doi: 10.30501/jree.2023.370499.1500.
[25] Yadav, R.S., and Chaturvedi, S. K. (2016). Study of Selection Of PV Module Material And Their Performance On Different Climatic Condition: A Review. Journal of Solar Energy Research, 7, 1096. doi:10.21474/IJAR01/9597.
[26] Singh, S., and Tiwari, G. N. (2021). Thermal Analysis of Uneven Span Greenhouse integrated Semitransparent Photovoltaic Thermal System (GiSPVT). International Journal of Engineering Research & Technology, 10, 240. doi :10.17577/IJERTV10IS060026.
[27] Murali,M., Basha, H., Hussaian,C H., Kiran, S. R., Akram,P., and Naresh,T. (2021). Performance analysis of different types of solar photovoltaic cell techniques using MATLAB/ Simulink. Proceedings of 4th International Conference on Inventive Material Science Applications, Advances in Sustainability Science and Technology, Springer, Singapore. doi: 10.1007/978-981-16-4321-7_19.
[28] Yadav, S., Panda, S.K., Tiwari, G. N., Ibrahim, M., Abdullah, A. H., Alsadon, A., Mohammed, R., and Tiwari, A. (2022). Semi-Transparent Photovoltaic Thermal Greenhouse System Combined With Earth Air Heat Exchanger for Hot Climatic Condition. Journal of Thermal Science and Engineering Applications, 14, 71. doi:10.64289/rericproc.25.0105.8367198.
[29] Li, Z., Yano, A., Cossu, M., Yoshioka, H., Kita, I., and Ibaraki, Y. (2018). Electrical Energy Producing Greenhouse Shading System With a Semi-Transparent Photovoltaic Blind Based on Micro-Spherical Solar Cells. Journal of Energies, 11, 1681. doi:10.3390/en11071681.
[30] Tiwari, G. N., Singh, S., and Kalkar, S. (2024). Active heating of greenhouse integrated semitransparent photovoltaic thermal system with series connected semitransparent photovoltaic thermal air collectors. Science and Technology for Energy Transition, 79, 36. doi:10.2516/stet/2024032.
[31] Yongphet, P., Ramaraj, R., Dussadee, N. (2016). Effect of Greenhouse Cages Integrated With Using Solar Energy on The Growth Performance on Freshwater Fish. International Journal of New Technology and Research, 2, 100. doi: https://www.neliti.com/publications/263572/.