[1] Ghosh, D., Ghose, J., Datta, P., Kumari, P. and Paul, S. (2022). Strategies for phase change material application in latent heat thermal energy storage enhancement: Status and prospect. Journal of Energy Storage, 53, p.105179. https://doi.org/10.1016/j.est.2022.105179
[2] Rashid, F.L., Al-Obaidi, M.A., Dulaimi, A., Bernardo, L.F.A., Redha, Z.A.A., Hoshi, H.A., Mahood, H.B. and Hashim, A. (2023). Recent advances on the applications of phase change materials in cold thermal energy storage: a critical review. Journal of Composites Science, 7(8), p.338. https://doi.org/10.3390/jcs7080338
[3] Rashid, F.L., Mohammed, H.I., Dulaimi, A., Al-Obaidi, M.A., Talebizadehsardari, P., Ahmad, S. and Ameen, A. (2023). Analysis of heat transfer in various cavity geometries with and without nano-enhanced phase change material: A review. Energy Reports, 10, pp.3757-3779. https://doi.org/10.1016/j.egyr.2023.10.036
[4] Choubani, K., Ghriss, O., Alrasheedi, N.H., Dhaoui, S. and Bouabidi, A. (2024). Experimental Investigation of a Phase-Change Material’s Stabilizing Role in a Pilot of Smart Salt-Gradient Solar Ponds. Frontiers in Heat and Mass Transfer, 22(1), pp.341-358. https://doi.org/10.32604/fhmt.2024.047016
[5] Rashid, F.L., Alyasari, H.I., Lafta, M.G., Mahdi, A.J., Al-Obaidi, M.A., Togun, H., Hammoodi, K.A. and Agyekum, E.B. (2025). Current developments, utilization, and effects of phase-change materials integrated with solar chimney: A comprehensive review. Journal of Energy Storage, 105, p.114684. https://doi.org/10.1016/j.est.2024.114684
[6] Kumar, G., & Kumar, P. (2025). Linear Fresnel Solar Collectors for Heat Generation: An Overview of Existing Prototypes. Journal of Solar Energy Research. https://doi.org/10.22059/jser.2025.395738.1572
[7] Kumar, G., Galphade, A., Solanki, A., BN, S., & Vasava, K. (2025). A Comparative Analysis of Standard and Flat Reflector Integrated Parabolic Trough Solar Collectors for Hot Water Generation. Journal of Solar Energy Research, 10(Emerging Trends in Photothermal Conversion for Solar Energy Harvesting), 1-11. https://doi.org/10.22059/jser.2025.379565.1440
[8] Kumar, G., & Gupta, H. (2021). A Study of Linear Fresnel Solar Collector Reflector Field for Performance Improvement. In Recent Advances in Mechanical Infrastructure: Proceedings of ICRAM 2020 (pp. 353-371). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-33-4176-0_31
[9] Kumar, G., & Kumar, P. (2025). Linear Fresnel solar collector with point focus integration: a novel approach to enhance the performance. International Journal of Ambient Energy, 46(1), 2471977. https://doi.org/10.1080/01430750.2025.2471977
[10] Zhao, C. Y., Lu, W., and Tian, Y. (2010). Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs). Solar Energy, 84(8), 1402-1412. https://doi.org/10.1016/j.solener.2010.04.022
[11] Xiao, X., Zhang, P., and Li, M. (2013). Preparation and thermal characterization of paraffin/metal foam composite phase change material. Applied Energy, 112, 1357-1366. https://doi.org/10.1016/j.apenergy.2013.04.050
[12] Zhu, F., Zhang, C., and Gong, X. (2016). Numerical analysis and comparison of the thermal performance enhancement methods for metal foam/phase change material composite. Applied Thermal Engineering, 109, 373-383. https://doi.org/10.1016/j.applthermaleng.2016.08.088
[13] Ghahremannezhad, A., Xu, H., Salimpour, M. R., Wang, P., and Vafai, K. (2020). Thermal performance analysis of phase change materials (PCMs) embedded in gradient porous metal foams. Applied Thermal Engineering, 179, 115731. https://doi.org/10.1016/j.applthermaleng.2020.115731
[14] Senobar, H., Aramesh, M., and Shabani, B. (2020). Nanoparticles and metal foams for heat transfer enhancement of phase change materials: A comparative experimental study. Journal of Energy Storage, 32, 101911. https://doi.org/10.1016/j.est.2020.101911
[15] Ghalambaz, M., and Zhang, J. (2020). Conjugate solid-liquid phase change heat transfer in heatsink filled with phase change material-metal foam. International Journal of Heat and Mass Transfer, 146, 118832. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118832
[16] Li, W. Q., Guo, S. J., Tan, L., Liu, L. L., and Ao, W. (2021). Heat transfer enhancement of nano-encapsulated phase change material (NEPCM) using metal foam for thermal energy storage. International Journal of Heat and Mass Transfer, 166, 120737. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120737
[17] Shakibi, H., Afzal, S., Shokri, A., and Sobhani, B. (2022). Utilization of a phase change material with metal foam for the performance improvement of the photovoltaic cells. Journal of Energy Storage, 51, 104466. https://doi.org/10.1016/j.est.2022.104466
[18] Alipour, N., Jafari, B., and Hosseinzadeh, K. (2024). Analysis of the impact of metal foam with phase change material on solar photovoltaic thermal system efficiency. Journal of Energy Storage, 98, 113064. https://doi.org/10.1016/j.est.2024.113064
[19] Sharma, S., Micheli, L., Chang, W., Tahir, A. A., Reddy, K. S., & Mallick, T. K. (2017). Nano-enhanced phase change material for thermal management of BICPV. Applied Energy, 208, 719-733. https://doi.org/10.1016/j.apenergy.2017.09.076
[20] Wołoszyn, J., & Szopa, K. (2023). Shell shape influence on latent heat thermal energy storage performance during melting and solidification. Energies, 16(23), 7822. https://doi.org/10.3390/en16237822
[21] Boomsma, K., and Poulikakos, D. (2001). On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam.
International Journal of Heat and Mass Transfer, 44(4), 823-832.
https://doi.org/10.1016/S0017-9310(00)00123-X
[22] Gad, R., Mahmoud, H., & Hassan, H. (2025). Experimental work of low-concentrated solar cell cooled by different configurations of heat spreader/phase change material/metal foam: energy, exergy, environmental, and economic assessment. Environmental Science and Pollution Research, 1-22. https://doi.org/10.1007/s11356-025-36443-y
[23] Bondareva, N. S., Gibanov, N. S., & Sheremet, M. A. (2020). Computational study of heat transfer inside different PCMs enhanced by Al2O3 nanoparticles in a copper heat sink at high heat loads. Nanomaterials, 10(2), 284. https://doi.org/10.3390/nano10020284
[24] García-Fuente, M., González-Peña, D., & Alonso-Tristán, C. (2022). A numerical simulation of an experimental melting process of a phase-change material without convective flows. Applied Sciences, 12(7), 3640. https://doi.org/10.3390/app12073640
[25] NematpourKeshteli, A., Mahmoudi, A., Iasiello, M., Langella, G., & Bianco, N. (2024). Experimental and numerical assessment of thermal characteristics of PCM in a U-shaped heat exchanger using porous metal foam and NanoPowder. Solar Energy Materials and Solar Cells, 274, 112970. https://doi.org/10.1016/j.solmat.2024.112970
[26] Saad, H. A., & Hussin, A. M. (2022). Numerical modeling for transient heat transfer of PCM with inclusion of nanomaterial. The European Physical Journal Plus, 137(11), 1263. https://doi.org/10.1140/epjp/s13360-022-03467-z
[27] Naldi, C., Dongellini, M., Biserni, C., & Morini, G. L. (2022, December). Numerical Modeling of Pure and Metal-Foam Loaded PCMs. In Defect and Diffusion Forum (Vol. 420, pp. 231-241). Trans Tech Publications Ltd. https://doi.org/10.4028/p-23o6w9
[28] Chen, X., Li, X., Xia, X., Sun, C., & Liu, R. (2019). Thermal performance of a pcm-based thermal energy storage with metal foam enhancement. Energies, 12(17), 3275. https://doi.org/10.3390/en12173275
[29] Diani, A., & Rossetto, L. (2021). Melting of PCMs embedded in copper foams: an experimental study. Materials, 14(5), 1195. https://doi.org/10.3390/ma14051195
[30] Khan, F. S. H., & Diani, A. (2025). Study of Heat Transfer Characteristics of PCMs Melting Inside Aluminum Foams. Materials, 18(22), 5130. https://doi.org/10.3390/ma18225130