Numerical Analysis of Heat Transfer and Phase Change in a Metal Foam Enhanced Phase Change Materials for Solar Thermal Energy Applications

Document Type : Research Article

Authors

1 Technical Instructor Training Institute, Middle Technical University, Baghdad 10074, Iraq

2 Petroleum Engineering Department/College of Engineering, University of Kerbala-Karbala 5600-Iraq

3 College of Engineering, Al-Naji University, Baghdad, Iraq

10.22059/jser.2025.404688.1660

Abstract

Phase change materials (PCMs) are vital in solar energy systems as a result to their capability for thermal energy storage and release via latent heat. However, the fundamentally low thermal conductivity of most PCMs meaningfully obstructs their heat transfer performance. To address this restriction, the combination of high-conductivity structures such as metal foams demonstrating highly effective. This research exhibits a numerical investigation into the impact of embedding metal foams, particularly aluminium and copper, within two types of PCMs (RT42 and RT54HC) to boost their thermal performance in solar thermal applications. The research appraises metal foam porosity levels ranging between 85% to 95%. The results indicate a notable decrease in melting (charging) time as porosity decreases, specifically a 15.4% reduction for aluminium foam and a 10% reduction for copper foam when the porosity ratio drops from 95% to 85%. This highlights the occasion for considerable enhancement of heat transfer performance at lesser porosity levels. While using aluminium foam, RT42 melts faster than RT54, with melting times of 1121 s and 1787 s respectively, indicating a 37% decrease. However, increasing heat flux further reduces melting time, with RT42 in 85% porosity copper foam hitting 870 s at 3000 W/m².

Keywords

[1] Ghosh, D., Ghose, J., Datta, P., Kumari, P. and Paul, S. (2022). Strategies for phase change material application in latent heat thermal energy storage enhancement: Status and prospect. Journal of Energy Storage, 53, p.105179. https://doi.org/10.1016/j.est.2022.105179
[2] Rashid, F.L., Al-Obaidi, M.A., Dulaimi, A., Bernardo, L.F.A., Redha, Z.A.A., Hoshi, H.A., Mahood, H.B. and Hashim, A. (2023). Recent advances on the applications of phase change materials in cold thermal energy storage: a critical review. Journal of Composites Science, 7(8), p.338. https://doi.org/10.3390/jcs7080338
[3] Rashid, F.L., Mohammed, H.I., Dulaimi, A., Al-Obaidi, M.A., Talebizadehsardari, P., Ahmad, S. and Ameen, A. (2023). Analysis of heat transfer in various cavity geometries with and without nano-enhanced phase change material: A review. Energy Reports, 10, pp.3757-3779. https://doi.org/10.1016/j.egyr.2023.10.036
[4] Choubani, K., Ghriss, O., Alrasheedi, N.H., Dhaoui, S. and Bouabidi, A. (2024). Experimental Investigation of a Phase-Change Material’s Stabilizing Role in a Pilot of Smart Salt-Gradient Solar Ponds. Frontiers in Heat and Mass Transfer, 22(1), pp.341-358. https://doi.org/10.32604/fhmt.2024.047016
[5] Rashid, F.L., Alyasari, H.I., Lafta, M.G., Mahdi, A.J., Al-Obaidi, M.A., Togun, H., Hammoodi, K.A. and Agyekum, E.B. (2025). Current developments, utilization, and effects of phase-change materials integrated with solar chimney: A comprehensive review. Journal of Energy Storage, 105, p.114684. https://doi.org/10.1016/j.est.2024.114684
[6] Kumar, G., & Kumar, P. (2025). Linear Fresnel Solar Collectors for Heat Generation: An Overview of Existing Prototypes. Journal of Solar Energy Research. ‏ https://doi.org/10.22059/jser.2025.395738.1572
[7] Kumar, G., Galphade, A., Solanki, A., BN, S., & Vasava, K. (2025). A Comparative Analysis of Standard and Flat Reflector Integrated Parabolic Trough Solar Collectors for Hot Water Generation. Journal of Solar Energy Research, 10(Emerging Trends in Photothermal Conversion for Solar Energy Harvesting), 1-11.‏   https://doi.org/10.22059/jser.2025.379565.1440
[8] Kumar, G., & Gupta, H. (2021). A Study of Linear Fresnel Solar Collector Reflector Field for Performance Improvement. In Recent Advances in Mechanical Infrastructure: Proceedings of ICRAM 2020 (pp. 353-371). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-33-4176-0_31‏
[9] Kumar, G., & Kumar, P. (2025). Linear Fresnel solar collector with point focus integration: a novel approach to enhance the performance. International Journal of Ambient Energy, 46(1), 2471977. https://doi.org/10.1080/01430750.2025.2471977
[10] Zhao, C. Y., Lu, W., and Tian, Y. (2010). Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs). Solar Energy, 84(8), 1402-1412. https://doi.org/10.1016/j.solener.2010.04.022
[11] Xiao, X., Zhang, P., and Li, M. (2013). Preparation and thermal characterization of paraffin/metal foam composite phase change material. Applied Energy, 112, 1357-1366. https://doi.org/10.1016/j.apenergy.2013.04.050
[12] Zhu, F., Zhang, C., and Gong, X. (2016). Numerical analysis and comparison of the thermal performance enhancement methods for metal foam/phase change material composite. Applied Thermal Engineering, 109, 373-383. https://doi.org/10.1016/j.applthermaleng.2016.08.088
[13] Ghahremannezhad, A., Xu, H., Salimpour, M. R., Wang, P., and Vafai, K. (2020). Thermal performance analysis of phase change materials (PCMs) embedded in gradient porous metal foams. Applied Thermal Engineering, 179, 115731. https://doi.org/10.1016/j.applthermaleng.2020.115731
[14] Senobar, H., Aramesh, M., and Shabani, B. (2020). Nanoparticles and metal foams for heat transfer enhancement of phase change materials: A comparative experimental study. Journal of Energy Storage, 32, 101911. https://doi.org/10.1016/j.est.2020.101911
[15] Ghalambaz, M., and Zhang, J. (2020). Conjugate solid-liquid phase change heat transfer in heatsink filled with phase change material-metal foam. International Journal of Heat and Mass Transfer, 146, 118832. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118832
[16] Li, W. Q., Guo, S. J., Tan, L., Liu, L. L., and Ao, W. (2021). Heat transfer enhancement of nano-encapsulated phase change material (NEPCM) using metal foam for thermal energy storage. International Journal of Heat and Mass Transfer, 166, 120737. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120737
[17] Shakibi, H., Afzal, S., Shokri, A., and Sobhani, B. (2022). Utilization of a phase change material with metal foam for the performance improvement of the photovoltaic cells. Journal of Energy Storage, 51, 104466. https://doi.org/10.1016/j.est.2022.104466
[18] Alipour, N., Jafari, B., and Hosseinzadeh, K. (2024). Analysis of the impact of metal foam with phase change material on solar photovoltaic thermal system efficiency. Journal of Energy Storage, 98, 113064. https://doi.org/10.1016/j.est.2024.113064
[19] Sharma, S., Micheli, L., Chang, W., Tahir, A. A., Reddy, K. S., & Mallick, T. K. (2017). Nano-enhanced phase change material for thermal management of BICPV. Applied Energy, 208, 719-733. ‏https://doi.org/10.1016/j.apenergy.2017.09.076
[20] Wołoszyn, J., & Szopa, K. (2023). Shell shape influence on latent heat thermal energy storage performance during melting and solidification. Energies, 16(23), 7822. ‏https://doi.org/10.3390/en16237822
[21] Boomsma, K., and Poulikakos, D. (2001). On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam. International Journal of Heat and Mass Transfer, 44(4), 823-832. https://doi.org/10.1016/S0017-9310(00)00123-X
[22] Gad, R., Mahmoud, H., & Hassan, H. (2025). Experimental work of low-concentrated solar cell cooled by different configurations of heat spreader/phase change material/metal foam: energy, exergy, environmental, and economic assessment. Environmental Science and Pollution Research, 1-22.‏    https://doi.org/10.1007/s11356-025-36443-y
[23] Bondareva, N. S., Gibanov, N. S., & Sheremet, M. A. (2020). Computational study of heat transfer inside different PCMs enhanced by Al2O3 nanoparticles in a copper heat sink at high heat loads. Nanomaterials, 10(2), 284.‏ https://doi.org/10.3390/nano10020284
[24] García-Fuente, M., González-Peña, D., & Alonso-Tristán, C. (2022). A numerical simulation of an experimental melting process of a phase-change material without convective flows. Applied Sciences, 12(7), 3640.‏ https://doi.org/10.3390/app12073640
[25] NematpourKeshteli, A., Mahmoudi, A., Iasiello, M., Langella, G., & Bianco, N. (2024). Experimental and numerical assessment of thermal characteristics of PCM in a U-shaped heat exchanger using porous metal foam and NanoPowder. Solar Energy Materials and Solar Cells, 274, 112970.‏ https://doi.org/10.1016/j.solmat.2024.112970
[26] Saad, H. A., & Hussin, A. M. (2022). Numerical modeling for transient heat transfer of PCM with inclusion of nanomaterial. The European Physical Journal Plus, 137(11), 1263.‏ https://doi.org/10.1140/epjp/s13360-022-03467-z
[27] Naldi, C., Dongellini, M., Biserni, C., & Morini, G. L. (2022, December). Numerical Modeling of Pure and Metal-Foam Loaded PCMs. In Defect and Diffusion Forum (Vol. 420, pp. 231-241). Trans Tech Publications Ltd.‏ https://doi.org/10.4028/p-23o6w9
[28] Chen, X., Li, X., Xia, X., Sun, C., & Liu, R. (2019). Thermal performance of a pcm-based thermal energy storage with metal foam enhancement. Energies, 12(17), 3275.‏ https://doi.org/10.3390/en12173275
[29] Diani, A., & Rossetto, L. (2021). Melting of PCMs embedded in copper foams: an experimental study. Materials, 14(5), 1195. ‏ https://doi.org/10.3390/ma14051195
[30] Khan, F. S. H., & Diani, A. (2025). Study of Heat Transfer Characteristics of PCMs Melting Inside Aluminum Foams. Materials, 18(22), 5130. ‏ https://doi.org/10.3390/ma18225130