Water Desalination and Power Generation Using a New and Innovative Single-slope Double-basin System

Document Type : Research Article

Authors

1 College of Health and Medical Techniques Al-Dour, Northern Technical University, Iraq

2 General Directorate of Education Salahaddin, Salahaddin, Iraq

3 Al-Dour Technical Institute, Northern Technical University, Iraq

10.22059/jser.2025.406743.1670

Abstract

While solar stills represent a sustainable solution for water desalination, their practical application is often hindered by modest productivity rates. This study presents a novel design aimed to enhance daily productivity through a double-basin configuration with a single condensation surface that separates the two. Peltier units enhance the condensation process by transferring heat between the two basins while simultaneously generating power. The redesigned setup, utilizing the upper basin as a water source, enhanced water extraction by increasing the condensation rate on the glass surface, as determined by productivity, absorption temperature, and generated voltage. The maximum water yield was recorded between 12:00 PM and 1:00 PM, reaching approximately 0.479 L/hour, corresponding to a thermal gradient of about 17˚C. The daily yield was recorded at 0.8 L/day, 1.328 L/day, and 1.770 L/day for the system without the upper basin, with the Peltier unit basin, and with the Peltier unit basin coupled with a distillation basin, respectively. These results represent productivity enhancements of approximately 66% and 121%, respectively, indicating that the final modification significantly outperformed the conventional solar still by 221% in terms of overall daily output.

Keywords

  1. Resen, I. S., Skheel, O. R., Al-Obaidi, M. A., Al-Musawi, S. S., & Hydrose, A. (2025). Augmentation of Solar Air Heater Performance by Experimental Modification. Journal of Solar Energy Research, 10(3), 2491-2500. https://doi.org/10.22059/jser.2025.402707.1639 
  2. Nazar, M., Saleem, A. M., & Alomar, O. R. (2024). Development of Compound Parabolic Concentrator based on Flat Plate Receiver Solar Air Heater and Phase Change Material. NTU Journal of Renewable Energy, 6(1), 1-9. https://doi.org/10.56286/ntujre.v6i1.642
  3. Nakade, A., Aglawe, A., More, K., & Kalbande, V. P. (2024). Experimental analysis of two stage solar still integrated with thermal storage based solar collector using nano-enhanced phase change materials. Desalination and Water Treatment, 320, 100755. https://doi.org/https://doi.org/10.1016/j.dwt.2024.100755
  4. Chinnappan, T., C.M, R., Dhairiyasamy, R., & Rajendran, S. (2024). Comparative Analysis of Polycarbonate and Glass Cover Configurations for Enhanced Thermal Efficiency in Flat Plate Solar Collectors for Water Heating. Journal of Solar Energy Research, 9(1), 1794-1810. https://doi.org/10.22059/jser.2024.374268.1394
  5. Aboulfotoh, A. M., Heikal, G. E., Abdo, A., & khadiga, y. e. g. (2023). Solar distillation Systems Design and Enhancements Review. The Egyptian International Journal of Engineering Sciences and Technology, 43(1), 1-18. https://doi.org/10.21608/eijest.2022.150949.1178
  6. Thabit, Q., Nassour, A., & Nelles, M. (2022). Innovative hybrid waste to energy–parabolic trough plant for power generation and water desalination in the Middle East North Africa region: Jordan as a case study. Energy Reports, 8, 13150-13169. https://doi.org/https://doi.org/10.1016/j.egyr.2022.09.144
  7. Abdullah, A. S., Omara, Z. M., Alarjani, A., & Essa, F. A. (2021). Experimental investigation of a new design of drum solar still with reflectors under different conditions. Case Studies in Thermal Engineering, 24, 100850. https://doi.org/https://doi.org/10.1016/j.csite.2021.100850
  8. Hyal, L. S., Jalil, J. M., & Hanfash, A. O. (2024). Enhancing the solar still performance using different designs of absorber with heat storage materials and different wick materials: A review. Engineering and Technology Journal, 42(1), 33-50. https://doi.org/10.30684/etj.2023.139522.1435
  9. Madhuri, R. V. S., Said, Z., Ihsanullah, I., & Sathyamurthy, R. (2025). Solar energy-driven desalination: A renewable solution for climate change mitigation and advancing sustainable development goals. Desalination, 602, 118575. https://doi.org/https://doi.org/10.1016/j.desal.2025.118575
  10. Kalidasan, B., Divyabharathi, R., Pandey, A. K., Subramaniyan, C., & Mohankumar, S. (2021). Technological Advancement of Solar Thermal System Desalination Process – A Review. IOP Conference Series: Materials Science and Engineering, 1059(1), 012061. https://doi.org/10.1088/1757-899X/1059/1/012061
  11. Diab, M. R., Abou-Taleb, F. S., & Essa, F. A. (2022). Effect of basin water depth on the performance of vertical discs’ solar still—experimental investigation. Environmental Science and Pollution Research, 29(60), 91368-91380. https://doi.org/10.1007/s11356-022-22220-8
  12. Dawoud, M. A., Sallam, G. R., Abdelrahman, M. A., & Emam, M. (2024). The Performance and Feasibility of Solar-Powered Desalination for Brackish Groundwater in Egypt. Sustainability, 16(4), 1630. https://doi.org/10.3390/su16041630
  13. Sasongko, S. B., Sanyoto, G. J., & Buchori, L. (2021). Study of Performance: An Improved Distillation Using Thermoelectric Modules. Chemical Engineering Transactions, 89, 649-654. https://doi.org/10.3303/CET2189109
  14. Ashour, A. M., Kadhim, S. A., Al-Ghezi, M. K. S., Omle, I., & Sathyamurthy, R. (2025). Performance analysis of a water desalination system using humidification and dehumidification techniques with thermoelectric cooling unit. Case Studies in Thermal Engineering, 73, 106671. https://doi.org/https://doi.org/10.1016/j.csite.2025.106671
  15. Al-Madhhachi, H., & Min, G. (2017). Effective use of thermal energy at both hot and cold side of thermoelectric module for developing efficient thermoelectric water distillation system. Energy Conversion and Management, 133, 14-19. https://doi.org/https://doi.org/10.1016/j.enconman.2016.11.055
  16. Al-Madhhachi, H. (2018). Effective Thermal Analysis of Using Peltier Module for Desalination Process. Advances in Science, Technology and Engineering Systems Journal, 3(1), 191–197. https://doi.org/10.25046/aj030122
  17. Hasanzadeh, H., Mohammadi, S., Shafii, M. B., & Daneshvar, M. (2025). Designing and constructing a solar thermal water desalination system: Evaluating the role of thermoelectric in enhancing evaporation and condensation process. Next Energy, 9, 100388. https://doi.org/https://doi.org/10.1016/j.nxener.2025.100388
  18. Mohammed Ajmi, A., & Alaa, Y. A. (2025). Effect of Innovative Glassy House and Secondary Reflectors Combination with Nanocoating on Fast and Slow Increase of Receiver Temperature in Parabolic Solar Collector. Eximia, 14(1), 104-116. https://doi.org/10.47577/eximia.v14i1.534
  19. Aqlan, A. M., Aklan, M., & Momin, A. E. (2021). Solar-powered desalination, a novel solar still directly connected to solar parabolic trough. Energy Reports, 7, 2245-2254. https://doi.org/https://doi.org/10.1016/j.egyr.2021.04.041
  20. Guo, D., Sheng, Q., Dou, X., Wang, Z., Xie, L., & Yang, B. (2020). Application of thermoelectric cooler in temperature control system of space science experiment. Applied Thermal Engineering, 168, 114888. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2019.114888
  21. Tian, M.-W., Aldawi, F., Anqi, A. E., Moria, H., Dizaji, H. S., & Wae-hayee, M. (2021). Cost-effective and performance analysis of thermoelectricity as a building cooling system; experimental case study based on a single TEC-12706 commercial module. Case Studies in Thermal Engineering, 27, 101366. https://doi.org/https://doi.org/10.1016/j.csite.2021.101366
  22. El Ghetany, H. H., Elgohary, H. M., & Mohammed, Y. M. (2021). Performance Improvement of Solar Water Distillation System Using Nanofluid Particles. Egyptian Journal of Chemistry, 64(8), 4425-4431. https://doi.org/10.21608/ejchem.2021.64067.3372
  23. Lin, L., Zhang, Y.-F., Liu, H.-B., Meng, J.-H., Chen, W.-H., & Wang, X.-D. (2019). A new configuration design of thermoelectric cooler driven by thermoelectric generator. Applied Thermal Engineering, 160, 114087. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2019.114087
  24. Kharmouch, A., Hasan, M. K., Sabik, E. Y., Bouali, H., Mamur, H., & Bhuiyan, M. R. (2025). Numerical Optimization of Multi-Stage Thermoelectric Cooling Systems Using Bi2Te3 for Enhanced Cryosurgical Applications. Thermo, 5(3), 22.
    https://doi.org/10.3390/thermo5030022
  25. Talugeri, V., Pattana, N. B., Nasi, V. B., Shahapurkar, K., Soudagar, M. E. M., Ahamad, T., Kalam, M. A., Chidanandamurthy, K. M., Mubarak, N. M., & Karri, R. R. (2023). Experimental investigation on a solar parabolic collector using water-based multi-walled carbon-nanotube with low volume concentrations. Scientific Reports, 13(1), 7398. https://doi.org/10.1038/s41598-023-34529-6
  26. Hassan, H. M. A., Amjad, M., Tahir, Z. u. R., Qamar, A., Noor, F., Hu, Y., Yaqub, T. B., & Filho, E. P. B. (2022). Performance analysis of nanofluid-based water desalination system using integrated solar still, flat plate and parabolic trough collectors. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44(9), 427. https://doi.org/10.1007/s40430-022-03734-1
  27. Shilpa, M. K., Raheman, M. A., Aabid, A., Baig, M., Veeresha, R. K., & Kudva, N. (2023). A Systematic Review of Thermoelectric Peltier Devices: Applications and Limitations. Fluid Dynamics \& Materials Processing, 19(1). https://doi.org/10.32604/fdmp.2022.020351
  28. Alshqirate, A. A., Badran, O., Quran, O., Al-Marahleh, G., Olimat, A. N., Al Alawin, A., Shorman, A. A., & Alahmer, A. (2024). Enhanced distilled water productivity using an innovative semi-cylindrical tent-shaped solar still coupled with evacuated tubes. International Journal of Thermofluids, 24, 100880. https://doi.org/https://doi.org/10.1016/j.ijft.2024.100880 
  29. Muthiah, C., Subramani, S., & Murugan, D. K. (2023). Productivity enhancement of solar stills using natural fibers: experimental investigation on the effect of Strychnos potatorum seeds and gooseberry stems. Desalination and Water Treatment, 310, 12-22. https://doi.org/https://doi.org/10.5004/dwt.2023.29962
  30. Mahgoub, A. A., Elsherbiny, S. M., El-Masry, O. A. A., & Elsamni, O. A. (2025). Enhanced distillate production of stepped solar still via integration with multi-stage membrane distillation. Scientific Reports, 15(1), 12541. https://doi.org/10.1038/s41598-025-95098-4
  31. Haghighat, M., Entezarian, M. M., Salimi, M., & Amidpour, M. (2025). Exploring interfacial solar evaporation heat transfer mechanisms of photothermal solar still systems. Case Studies in Thermal Engineering, 68, 105883. https://doi.org/https://doi.org/10.1016/j.csite.2025.105883 
  32. Touaref, F., Saadi, A., Farkas, I., & Seres, I. (2025). Design and implementation of parabolic trough solar concentrator distiller. Energy Reports, 13, 1138-1157. https://doi.org/https://doi.org/10.1016/j.egyr.2025.01.001
  33. Jamil, F., Hassan, F., Shoeibi, S., & Khiadani, M. (2023). Application of advanced energy storage materials in direct solar desalination: A state of art review. Renewable and Sustainable Energy Reviews, 186, 113663. https://doi.org/https://doi.org/10.1016/j.rser.2023.113663
  34. Khalaf, M. O., Özdemir, M. R., & Sultan, H. S. (2025). A Comprehensive Review of Solar Still Technologies and Cost: Innovations in Materials, Design, and Techniques for Enhanced Water Desalination Efficiency. Water, 17(10), 1515. https://doi.org/10.3390/w17101515
  35. Muftah, A. K., Zili-Ghedira, L., Abugderah, M. M., Hassen, W., Becheikh, N., Alshammari, B. M., & Kolsi, L. (2025). Sustainable Water Production: Solar Energy Integration in Multi-Effect Desalination Plants. Water, 17(5), 647. https://doi.org/10.3390/w17050647
  36. Wahab, A., Javid, W., Ahmed, H., Sheikh, A., Shahbaz, M., & Iqbal, S. (2024). Enhancing Fresh Water Production in Solar Parabolic Dish Desalination System. Materials Proceedings, 17(1), 22. https://doi.org/10.3390/materproc2024017022
  37. Shariah, A., & Hasan, E. (2023). Design of a new static solar concentrator with a high concentration ratio and a large acceptance angle based on bifacial solar cells. Clean Energy, 7(3), 509-518. https://doi.org/10.1093/ce/zkac068
  38. Muftah, A. F., Alghoul, M. A., Fudholi, A., Abdul-Majeed, M. M., & Sopian, K. (2014). Factors affecting basin type solar still productivity: A detailed review. Renewable and Sustainable Energy Reviews, 32, 430-447. https://doi.org/https://doi.org/10.1016/j.rser.2013.12.052
  39. Pisitsungkakarn,S.S.-h.,& Thomrungpiyathan, T. (2025). Evaluation of thermal efficiency in ethanol distillation by solar concentrating parabolic collector. Case Studies in Thermal Engineering, 66, 105779. https://doi.org/https://doi.org/10.1016/j.csite.2025.105779
  40. Al_qasaab, M. R., Abed, Q. A., & Abd Al-wahid, W. A. (2021). ENHANCEMENT THE SOLAR DISTILLER WATER BY USING PARABOLIC DISH COLLECTOR WITH SINGLE SLOPE SOLAR STILL. Journal of Thermal Engineering, 7(4), 1000-1015. https://doi.org/10.18186/thermal.931352
  41. Kadhim, S. A., Rashid, F. L., Hammoodi, K. A., Togun, H., Bouabidi, A., Askar, A. H., & Hussein, A. K. (2025). Performance enhancement of a single slope solar still using wick materials: A comparative experimental investigation with energy, exergy, and economic analysis. Scientific African, 28, e02733. https://doi.org/https://doi.org/10.1016/j.sciaf.2025.e02733
  42. Atta, A. E., Shehata, N., Mohamed, H. F. M., & Ali, M. R. O. (2021). A novel merging solar parabolic collector with thermoelectric generator using geothermal energy. IOP Conference Series: Materials Science and Engineering, 1046(1), 012019. https://doi.org/10.1088/1757-899X/1046/1/012019
  43. Freire, L. O., Navarrete, L. M., Corrales, B. P., & Castillo, J. N. (2021). Efficiency in thermoelectric generators based on Peltier cells. Energy Reports, 7, 355-361. https://doi.org/https://doi.org/10.1016/j.egyr.2021.08.099
  44. Shin, H.-C., & Pyun, S.-I. (2021). Some remarks on the Peltier heat in the thermoelectric phenomena. Journal of Solid State Electrochemistry, 25(12), 2737-2746. https://doi.org/10.1007/s10008-021-05019-4
  45. Lv, S., Ji, Y., Qian, Z., He, W., Hu, Z., & Liu, M. (2021). A novel strategy of enhancing sky radiative cooling by solar photovoltaic-thermoelectric cooler. Energy, 219,119625. https://doi.org/https://doi.org/10.1016/j.energy.2020.119625
  46. Radulov, A., Dechev, M., & Matsankov, M. (2025). Investigation of the Efficiency of a Peltier Element. Engineering Proceedings, 100(1), 8.
    https://doi.org/10.3390/engproc2025100008
  47. Korprasertsak, N., & Leephakpreeda, T. (2024). Maximizing cooling/heating performance of thermoelectric modules across variable thermal loads via optimal control based on COP curves. Heliyon, 10(1). https://doi.org/10.1016/j.heliyon.2024.e24063
  48. Cheng, P., Wang, D., & Schaaf, P. (2022). Simple and sustainable electric power generation by free evaporation of liquids from the surface of a conventional thermoelectric generator. Sustainable Energy & Fuels, 8(21), 4956–4961. https://doi.org/10.1039/d4se01156b