Upgrading Solar Thermal Performance with Engine Oil in Evacuated-Tube Collectors for Sustainable Energy Solutions

Document Type : Research Article

Authors

1 Ministry of Higher Education and Scientific Research/Scientific Research Authority, Iraq

2 Technical Instructor Training Institute, Middle Technical University, Baghdad 10074, Iraq

3 Petroleum Engineering Department, College of Engineering, University of Kerbala, Karbala 56001, Iraq

4 Al-Naji University, Baghdad 10015, Iraq;

5 College of Administrative and Financial Science, Gulf University, Sanad, 26489, Kingdom of Bahrain

10.22059/jser.2025.404409.1657

Abstract

The high-demand for solar power systems has stimulated research efforts to find better heat transfer fluids for evacuated tube solar collectors (ETSCs). This research aims to appraise the thermal characteristics of an ETSC, which utilises engine oil as a heat transfer vehicle within a new efficient system beyond conventional flat-plate collectors. Temperature elevation under solar radiation becomes rapid because the evacuated tube contains engine oil with Grade 20-w50, which possesses a high-boiling point of >350 °C and heat transfer properties including 2.5 kJ/kg K heat capacity and 88 kg/m³ density. Experiments are conducted for different ranges of solar radiation intensity with different ranges of engine oil temperatures. According to the results, this system reacts swiftly to solar radiation changes and reaches a maximum temperature of 198 °C at a solar radiation of 800 w/m2, which makes water evaporation and superheating possible. More importantly, in comparison to traditional flat-plate collectors, this collector demonstrates a high conversion efficiency and quick response to the influencing parameters. The introduced approach not only enhances energy efficiency but also brings into line with the United Nations Sustainable Development Goal (SDG 7) to deliver reasonable and clean energy solutions to conflict climate change and improve sustainable industrialization.

Keywords

[1] Hayat, M. B., Ali, D., Monyake, K. C., Alagha, L., & Ahmed, N. (2019). Solar energy—A look into power generation, challenges, and a solar‐powered future. International Journal of Energy Research, 43(3), 1049-1067. https://doi.org/10.1002/er.4252  
[2] Hussein, A. K., Rashid, F. L., Rasul, M. K., Basem, A., Younis, O., Homod, R. Z., Attia, M. E. H., Al-Obaidi, M. A., Hamida, M. B. B., Ali, B., & Abdulameer, S. F. (2024). A review of the application of hybrid nanofluids in solar still energy systems and guidelines for future prospects. Solar Energy, 272, 112485. https://doi.org/10.1016/j.solener.2024.112485
[3] Rashid, F. L., Al-Obaidi, M. A., Dulaimi, A., Bahlol, H. Y., & Hasan, A. (2023). Recent advances, development, and impact of using phase change materials as thermal energy storage in different solar energy systems: A review. Designs, 7(3), 66. https://doi.org/10.3390/designs7030066
[4] Al-Obaidi, M. A., Rasn, K. H., Aladwani, S. H., Kadhom, M., & Mujtaba, I. M. (2022). Flexible design and operation of multi-stage reverse osmosis desalination process for producing different grades of water with maintenance and cleaning opportunity. Chemical Engineering Research and Design, 182, 525-543. https://doi.org/10.1016/j.cherd.2022.04.028
[5] Olabi, A. G., Shehata, N., Maghrabie, H. M., Heikal, L. A., Abdelkareem, M. A., Rahman, S. M. A., Shah, S. K., & Sayed, E. T. (2022). Progress in solar thermal systems and their role in achieving the sustainable development goals. Energies, 15(24), 9501. https://doi.org/10.3390/en15249501
[6] Ghasemi, H., Ni, G., Marconnet, A. M., Loomis, J., Yerci, S., Miljkovic, N., & Chen, G. (2014). Solar steam generation by heat localization. Nature Communications, 5(1), 4449. https://doi.org/10.1038/ncomms5449
[7] Ahmed, S. F., Khalid, M., Vaka, M., Walvekar, R., Numan, A., Rasheed, A. K., & Mubarak, N. M. (2021). Recent progress in solar water heaters and solar collectors: A comprehensive review. Thermal Science and Engineering Progress, 25, 100981. https://doi.org/10.1016/j.tsep.2021.100981
[8] Ihnayyish, I. L., Ahmed, A. Q., Mohammad, A. T., & Al-Syyab, A. K. S. (2023). Numerical study to investigate the performance of U-shaped flat plate solar collector using phase change materials (PCMs). Journal of Techniques, 5(2), 74-80. https://doi.org/10.51173/jt.v5i2.1302
[9] Shang, W., & Deng, T. (2016). Solar steam generation: Steam by thermal concentration. Nature Energy, 1(9), 1-2. https://doi.org/10.1038/nenergy.2016.133
[10] Sabiha, M. A., Saidur, R., Mekhilef, S., & Mahian, O. (2015). Progress and latest developments of evacuated tube solar collectors. Renewable and Sustainable Energy Reviews, 51, 1038-1054. https://doi.org/10.1016/j.rser.2015.07.016
[11] Akram, N., Sadri, R., Kazi, S. N., Zubir, M. N. M., Ridha, M., Ahmed, W., Soudagar, M. E. M., & Arzpeyma, M. (2020). A comprehensive review on nanofluid operated solar flat plate collectors. Journal of Thermal Analysis and Calorimetry, 139, 1309-1343. https://doi.org/10.1007/s10973-019-08514-z
[12] Al-Tabbakh, A. A., & Mohammed, A. A. (2014). Experimental investigation of an evacuated-tube solar water collector with serpentine through-flow pipe. Journal of Engineering and Sustainable Development, 18(2), 122-132. https://jeasd.uomustansiriyah.edu.iq/index.php/jeasd/article/view/868
[13] Zhang, P., Liao, Q., Yao, H., Huang, Y., Cheng, H., & Qu, L. (2019). Direct solar steam generation system for clean water production. Energy Storage Materials, 18, 429-446. https://doi.org/10.1016/j.ensm.2018.10.006
[14] Alaskaree, È. H., Alkhafaji, O. R. S., & Al-Muhsen, N. F. O. (2020). Effect of chromium trioxide coating on the thermal performance of solar thermal collector. Karbala International Journal of Modern Science, 6(1). https://doi.org/10.33640/2405-609X.1311
[15] Ismail, F. B., Al-Muhsen, N. F. O., & Johari, A. A. (2021). Thermal comfort analysis for overhead and underfloor air distribution systems. CFD Letters, 13(12), 113-132. https://doi.org/10.37934/cfdl.13.12.113132 
[16[ Mehla, N., & Kumar, A. (2021). Experimental evaluation of used engine oil based thermal energy storage coupled with novel evacuated tube solar air collector (NETAC). Journal of Energy Storage, 39, 102656. https://doi.org/10.1016/j.est.2021.102656
[17] Jamshed, W., Uma Devi, S. S., Safdar, R., Redouane, F., Nisar, K. S., & Eid, M. R. (2021). Comprehensive analysis on copper-iron (II, III)/oxide-engine oil Casson nanofluid flowing and thermal features in parabolic trough solar collector. Journal of Taibah University for Science, 15(1), 619–636. https://doi.org/10.1080/16583655.2021.1996114
[18] Bhuddha Dev, P., Ganapathiraman, S., & Manickam, P. (2024). Experimental studies on evacuated tube collector with in-built energy storage - Waste car engine oil as sensible heat storage medium. Journal of Energy Storage, 84(Part B), 110929. https://doi.org/10.1016/j.est.2024.110929
[19] Iboh, U. A., Ebong, S. T., Robert, U. W., Sandy, C. F., & Efiang, J. A. (2023). Determination of the density and viscosity of engine oil with grade 20W-50 in Nigeria. International Journal of Natural and Practical Sciences, 5(1), 1-11. https://creativecommons.org/licenses/by-nc/4.0
[20] Hussein, A. K., Rashid, F. L., Togun, H., Sultan, H. S., Homod, R. Z., Sadeq, A. M., Attia, M. E. H., Ali, B., Biswal, U., Rout, S. K., Abdulkadhim, A. H., & Kolsi, L. (2023). A review of design parameters, advancement, challenges, and mathematical modeling of asphalt solar collectors. Journal of Thermal Analysis and Calorimetry. http://dx.doi.org/10.1007/s10973-023-12674-4
[21] Sabiha, M. A., Saidur, R., Mekhilef, S., & Mahian, O. (2015). Progress and latest developments of evacuated tube solar collectors. Renewable and Sustainable Energy Reviews, 51, 1038–1054. https://doi.org/10.1016/j.rser.2015.07.016
[22] Olfian, H., Ajarostaghi, S. S. M., & Ebrahimnataj, M. (2020). Development on evacuated tube solar collectors: A review of the last decade results of using nanofluids. Solar Energy, 211, 265–282. https://doi.org/10.1016/j.solener.2020.09.056
[23] Bocanegra, J. A., et al. (2025). Nanofluids in evacuated tube solar collectors. Clean Technologies and Environmental Policy, 27, 1753–1784. https://doi.org/10.1007/s10098-024-02964-2
[24] Abokersh, M. H., et al. (2017). Evaluation of direct flow evacuated tube solar collector with PCM. Energy, 139, 1111–1125. https://doi.org/10.1016/j.energy.2017.08.034
[25] Algarni, S., et al. (2020). Nano-enhanced PCM in an evacuated tube solar collector. Applied Thermal Engineering, 180, 115831. https://doi.org/10.1016/j.applthermaleng.2020.115831
[26] Singh, I., & Vardhan, S. (2021). Evacuated tube collector solar air heater with helical inserts. Renewable Energy, 163, 1963–1972. https://doi.org/10.1016/j.renene.2020.10.114
 
[27] Veera Kumar, A., et al. (2021). ETSC with inserted baffles for air heating. Solar Energy, 215, 131–143. https://doi.org/10.1016/j.solener.2020.12.037
[28] Olfian, M., et al. (2021). PCM melting/solidification in ETSC. Applied Thermal Engineering, 182, 116149. https://doi.org/10.1016/j.applthermaleng.2020.116149
[29] Thanikodi, S., et al. (2025). Thermal performance enhancement in evacuated tube solar collectors through nanofluids and advanced heat transfer fluids. Energy Reports. https://www.sciencedirect.com/science/article/pii/S2214157X25000498 
[30] Rahman, S., et al. (2025). Performance evaluation of evacuated tube solar collector using Al₂O₃/water nanofluid: Energy and exergy analysis. Journal of Cleaner Production. https://www.sciencedirect.com/science/article/abs/pii/S221313882500092X
[31] Agade, P. K., et al. (2025). Augmenting the performance of evacuated tube solar water heaters with perforated wavy tube inserts. Journal of Solar Energy and Sustainable Development. https://jsesd-ojs.csers.ly/ojs/index.php/jsesd/article/view/264
[32] Thanikodi, S., Giri, J., Saravanan, R., Ahmad, S. and Hourani, A.O., 2025. Thermal performance enhancement in evacuated tube solar collector with working fluid MWCNT/Al2O3/MgO tri-hybrid nanofluid. Case Studies in Thermal Engineering, 67, p.105789. https://doi.org/10.1016/j.csite.2025.105789
[33] Sood, T., Lee, D., Kumar, R. and Ağbulut, Ü., 2026. A detailed review of evacuated tube solar collectors for sustainable energy, current trends and future prospects. Solar Energy, 303, p.114054. https://doi.org/10.1016/j.solener.2025.114054
[34] Chinnasamy, V. and Kalimuthu, G.K., 2025. Development of Advanced Heat Transfer Fluids for High-Temperature Solar Thermal Systems. In Photon to Power: Harvesting the Sun (pp. 251-273). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-96-5914-2_7
[35] Bouarfa, I., El Ydrissi, M., Taj, A.M., Boujoudar, M., Bennouna, E.G. and Jamil, A., 2025. Techno-Economic Assessment of Vegetable Oils as Heat Transfer Fluids for Industrial Solar Thermal Systems Applications. Results in Engineering, p.108488. https://doi.org/10.1016/j.rineng.2025.108488
[36] Barbosa, L.T., Sarubbo, L.A., dos Santos, L.B. and dos Santos, V.A., 2025. Analysis of a photovoltaic-thermal with heat pump system for engine heating in thermal power plants. Revista Brasileira de Ciências Ambientais, 60, pp.e2218-e2218. https://doi.org/10.5327/Z2176-94782218