[1] Hayat, M. B., Ali, D., Monyake, K. C., Alagha, L., & Ahmed, N. (2019). Solar energy—A look into power generation, challenges, and a solar‐powered future.
International Journal of Energy Research, 43(3), 1049-1067.
https://doi.org/10.1002/er.4252
[2] Hussein, A. K., Rashid, F. L., Rasul, M. K., Basem, A., Younis, O., Homod, R. Z., Attia, M. E. H., Al-Obaidi, M. A., Hamida, M. B. B., Ali, B., & Abdulameer, S. F. (2024). A review of the application of hybrid nanofluids in solar still energy systems and guidelines for future prospects.
Solar Energy, 272, 112485.
https://doi.org/10.1016/j.solener.2024.112485
[3] Rashid, F. L., Al-Obaidi, M. A., Dulaimi, A., Bahlol, H. Y., & Hasan, A. (2023). Recent advances, development, and impact of using phase change materials as thermal energy storage in different solar energy systems: A review.
Designs, 7(3), 66.
https://doi.org/10.3390/designs7030066
[4] Al-Obaidi, M. A., Rasn, K. H., Aladwani, S. H., Kadhom, M., & Mujtaba, I. M. (2022). Flexible design and operation of multi-stage reverse osmosis desalination process for producing different grades of water with maintenance and cleaning opportunity.
Chemical Engineering Research and Design, 182, 525-543.
https://doi.org/10.1016/j.cherd.2022.04.028
[5] Olabi, A. G., Shehata, N., Maghrabie, H. M., Heikal, L. A., Abdelkareem, M. A., Rahman, S. M. A., Shah, S. K., & Sayed, E. T. (2022). Progress in solar thermal systems and their role in achieving the sustainable development goals.
Energies, 15(24), 9501.
https://doi.org/10.3390/en15249501
[6] Ghasemi, H., Ni, G., Marconnet, A. M., Loomis, J., Yerci, S., Miljkovic, N., & Chen, G. (2014). Solar steam generation by heat localization.
Nature Communications, 5(1), 4449.
https://doi.org/10.1038/ncomms5449
[7] Ahmed, S. F., Khalid, M., Vaka, M., Walvekar, R., Numan, A., Rasheed, A. K., & Mubarak, N. M. (2021). Recent progress in solar water heaters and solar collectors: A comprehensive review.
Thermal Science and Engineering Progress, 25, 100981.
https://doi.org/10.1016/j.tsep.2021.100981
[8] Ihnayyish, I. L., Ahmed, A. Q., Mohammad, A. T., & Al-Syyab, A. K. S. (2023). Numerical study to investigate the performance of U-shaped flat plate solar collector using phase change materials (PCMs).
Journal of Techniques, 5(2), 74-80.
https://doi.org/10.51173/jt.v5i2.1302
[10] Sabiha, M. A., Saidur, R., Mekhilef, S., & Mahian, O. (2015). Progress and latest developments of evacuated tube solar collectors.
Renewable and Sustainable Energy Reviews, 51, 1038-1054.
https://doi.org/10.1016/j.rser.2015.07.016
[11] Akram, N., Sadri, R., Kazi, S. N., Zubir, M. N. M., Ridha, M., Ahmed, W., Soudagar, M. E. M., & Arzpeyma, M. (2020). A comprehensive review on nanofluid operated solar flat plate collectors.
Journal of Thermal Analysis and Calorimetry, 139, 1309-1343.
https://doi.org/10.1007/s10973-019-08514-z
[13] Zhang, P., Liao, Q., Yao, H., Huang, Y., Cheng, H., & Qu, L. (2019). Direct solar steam generation system for clean water production.
Energy Storage Materials, 18, 429-446.
https://doi.org/10.1016/j.ensm.2018.10.006
[14] Alaskaree, È. H., Alkhafaji, O. R. S., & Al-Muhsen, N. F. O. (2020). Effect of chromium trioxide coating on the thermal performance of solar thermal collector.
Karbala International Journal of Modern Science, 6(1).
https://doi.org/10.33640/2405-609X.1311
[15] Ismail, F. B., Al-Muhsen, N. F. O., & Johari, A. A. (2021). Thermal comfort analysis for overhead and underfloor air distribution systems.
CFD Letters, 13(12), 113-132.
https://doi.org/10.37934/cfdl.13.12.113132
[16[ Mehla, N., & Kumar, A. (2021). Experimental evaluation of used engine oil based thermal energy storage coupled with novel evacuated tube solar air collector (NETAC). Journal of Energy Storage, 39, 102656. https://doi.org/10.1016/j.est.2021.102656
[17] Jamshed, W., Uma Devi, S. S., Safdar, R., Redouane, F., Nisar, K. S., & Eid, M. R. (2021). Comprehensive analysis on copper-iron (II, III)/oxide-engine oil Casson nanofluid flowing and thermal features in parabolic trough solar collector. Journal of Taibah University for Science, 15(1), 619–636. https://doi.org/10.1080/16583655.2021.1996114
[18] Bhuddha Dev, P., Ganapathiraman, S., & Manickam, P. (2024). Experimental studies on evacuated tube collector with in-built energy storage - Waste car engine oil as sensible heat storage medium. Journal of Energy Storage, 84(Part B), 110929. https://doi.org/10.1016/j.est.2024.110929
[19] Iboh, U. A., Ebong, S. T., Robert, U. W., Sandy, C. F., & Efiang, J. A. (2023). Determination of the density and viscosity of engine oil with grade 20W-50 in Nigeria. International Journal of Natural and Practical Sciences, 5(1), 1-11. https://creativecommons.org/licenses/by-nc/4.0
[20] Hussein, A. K., Rashid, F. L., Togun, H., Sultan, H. S., Homod, R. Z., Sadeq, A. M., Attia, M. E. H., Ali, B., Biswal, U., Rout, S. K., Abdulkadhim, A. H., & Kolsi, L. (2023). A review of design parameters, advancement, challenges, and mathematical modeling of asphalt solar collectors.
Journal of Thermal Analysis and Calorimetry.
http://dx.doi.org/10.1007/s10973-023-12674-4
[21] Sabiha, M. A., Saidur, R., Mekhilef, S., & Mahian, O. (2015). Progress and latest developments of evacuated tube solar collectors. Renewable and Sustainable Energy Reviews, 51, 1038–1054. https://doi.org/10.1016/j.rser.2015.07.016
[22] Olfian, H., Ajarostaghi, S. S. M., & Ebrahimnataj, M. (2020). Development on evacuated tube solar collectors: A review of the last decade results of using nanofluids. Solar Energy, 211, 265–282. https://doi.org/10.1016/j.solener.2020.09.056
[23] Bocanegra, J. A., et al. (2025). Nanofluids in evacuated tube solar collectors. Clean Technologies and Environmental Policy, 27, 1753–1784. https://doi.org/10.1007/s10098-024-02964-2
[24] Abokersh, M. H., et al. (2017). Evaluation of direct flow evacuated tube solar collector with PCM. Energy, 139, 1111–1125. https://doi.org/10.1016/j.energy.2017.08.034
[25] Algarni, S., et al. (2020). Nano-enhanced PCM in an evacuated tube solar collector. Applied Thermal Engineering, 180, 115831. https://doi.org/10.1016/j.applthermaleng.2020.115831
[26] Singh, I., & Vardhan, S. (2021). Evacuated tube collector solar air heater with helical inserts. Renewable Energy, 163, 1963–1972. https://doi.org/10.1016/j.renene.2020.10.114
[27] Veera Kumar, A., et al. (2021). ETSC with inserted baffles for air heating. Solar Energy, 215, 131–143. https://doi.org/10.1016/j.solener.2020.12.037
[30] Rahman, S., et al. (2025). Performance evaluation of evacuated tube solar collector using Al₂O₃/water nanofluid: Energy and exergy analysis. Journal of Cleaner Production. https://www.sciencedirect.com/science/article/abs/pii/S221313882500092X
[31] Agade, P. K., et al. (2025). Augmenting the performance of evacuated tube solar water heaters with perforated wavy tube inserts. Journal of Solar Energy and Sustainable Development. https://jsesd-ojs.csers.ly/ojs/index.php/jsesd/article/view/264
[32] Thanikodi, S., Giri, J., Saravanan, R., Ahmad, S. and Hourani, A.O., 2025. Thermal performance enhancement in evacuated tube solar collector with working fluid MWCNT/Al2O3/MgO tri-hybrid nanofluid. Case Studies in Thermal Engineering, 67, p.105789. https://doi.org/10.1016/j.csite.2025.105789
[33] Sood, T., Lee, D., Kumar, R. and Ağbulut, Ü., 2026. A detailed review of evacuated tube solar collectors for sustainable energy, current trends and future prospects. Solar Energy, 303, p.114054.
https://doi.org/10.1016/j.solener.2025.114054
[34] Chinnasamy, V. and Kalimuthu, G.K., 2025. Development of Advanced Heat Transfer Fluids for High-Temperature Solar Thermal Systems. In Photon to Power: Harvesting the Sun (pp. 251-273). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-96-5914-2_7
[35] Bouarfa, I., El Ydrissi, M., Taj, A.M., Boujoudar, M., Bennouna, E.G. and Jamil, A., 2025. Techno-Economic Assessment of Vegetable Oils as Heat Transfer Fluids for Industrial Solar Thermal Systems Applications. Results in Engineering, p.108488.
https://doi.org/10.1016/j.rineng.2025.108488
[36] Barbosa, L.T., Sarubbo, L.A., dos Santos, L.B. and dos Santos, V.A., 2025. Analysis of a photovoltaic-thermal with heat pump system for engine heating in thermal power plants. Revista Brasileira de Ciências Ambientais, 60, pp.e2218-e2218. https://doi.org/10.5327/Z2176-94782218