A Computational Study on The Effect of Geometrical Configurations on Axisymmetric Solar Chimney Performance

Document Type : Research Article

Authors

1 Gujarat Technological University, Ahmedabad, Gujarat, India

2 SLTIET, Gujarat Technological University, Ahmedabad, Gujarat, India

10.22059/jser.2025.404298.1652

Abstract

This work presents a CFD-based evaluation of the airflow behavior inside a solar chimney power plant, focusing on the buoyancy forces generated when solar energy heats the air beneath the collector. An axisymmetric model inspired by the Manzanares, Spain SCPP prototype with its central updraft tower was developed and simulated in ANSYS Fluent using a finite-volume framework. The analysis uses the standard k–ε turbulence model together with the Boussinesq approximation to represent density variations under moderate temperature differences. Predicted inlet velocities and temperatures at the chimney base were compared with available experimental measurements to confirm model accuracy. A soil layer beneath the collector was included as a thermal-storage medium, which increased heat retention and helped sustain stronger airflow, producing velocities up to approximately 17.49 m/s. Parametric studies showed that enlarging both the chimney height and collector radius yielded a noticeable rise in power potential. Temperature in the tower region increased from about 300 K to nearly 379.5 K depending on the operating conditions. Additional simulations conducted at solar irradiance levels of 400 and 1000 W/m² generated inlet velocities of roughly 11 m/s and 22 m/s, respectively. Upon examined, revealing its influence on the achievable pressure difference and power output.

Keywords

[1] Dai YJ, Huang HB, Wang RZ. Case study of solar chimney power plants in northwestern regions of China. Renewable Energy. 2003;28:1295–1304. doi:10.1016/S0960-1481(02)00227-6.
[2] Pastohr H, Kornadt O, Klaus G. Numerical and analytical calculations of the temperature flow field in the upwind power plant. International Journal of Energy Research. 2004;28:495–510. doi:10.1002/er.978.
[3] Pretorius JP, Kroger DP. Critical evaluation of solar chimney power plant performance. Solar Energy. 2006;80:535–544. doi:10.22059/JSER.2019.70911.
[4] Ming T, Liu W, Pan Y, Xu G. Numerical analysis of flow and heat transfer characteristics in solar chimney power plants with energy storage layer. Energy Conversion and Management. 2008;49:2872–2879. doi:10.1016/j.enconman.2008.03.004.
[5] Ming T, et al. Numerical simulation of the solar chimney power plant systems coupled with the turbine. Renewable Energy. 2008;33:897–905. doi:10.22059/JSER.2019.70911.
[6] Xinping Z, et al. Analysis of chimney height for solar chimney power plant. Applied Thermal Engineering. 2009;29:178–185. doi:10.2298/TSCI101110017A.
[7] Lorente S, Koonsrisuk A, Bejan A. Constructal distribution of solar chimney power plants: Few large and many small. International Journal of Green Energy. https://doi.org/10.1080/15435075.2010.529402
[8] Xu G, et al. Numerical analysis on the performance of solar chimney power plant system. Energy Conversion and Management. 2011;52:876–883.
[9] Ming T, et al. Numerical analysis on the influence of ambient cross wind on the performance of solar updraft power plant system. Renewable and Sustainable Energy Reviews. 2012;16:5567–5583. doi:10.1016/j.enconman.2010.08.014.
[10] Li J, Guo P, Wang Y. Effects of collector radius and chimney height on power output of a solar chimney power plant with turbines. Renewable Energy. 2012;47:21–28. doi:10.1016/j.renene.2012.03.018.
[11] Choi YJ, et al. Development of analytical model for solar chimney power plant with and without water storage system. Energy. 2012;112:200–207. doi:10.1016/j.energy.2016.06.023.
[12] Fasel HF, et al. CFD analysis for solar chimney power plants. Solar Energy. 2013;98:12–22. doi:10.1016/j.solener.2013.08.029.
[13] Cao F, et al. Design and simulation of solar chimney power plant with TRNSYS. Solar Energy. 2013;98:23–33. doi:10.1016/j.solener.2013.05.022.
[14] Ming T, et al. Numerical analysis on the solar updraft power plant system with a blockage. Solar Energy. 2013;98:58–69. doi:10.1016/j.solener.2013.02.027.
[15] Koonsrisuk A, Chitsomboon T. Effects of flow area changes on the potential of solar chimney power plants. Energy. 2013;51:400–406. doi:10.1016/j.energy.2012.12.051.
[16] Koonsrisuk A. Comparison of conventional solar chimney power plants and sloped solar chimney power plants using second law analysis. Solar Energy. 2013;98:78–84. doi:10.1016/j.solener.2013.02.037.
[17] Patel SK, Prasad DD, Ahmed MR. Computational studies on the effect of geometric parameters on the performance of a SCPP. Energy Conversion and Management. 2014;77:424–431. doi:10.1016/j.enconman.2013.09.056.
[18] Okada S, Uchida T, Karasudani T. Improvement in solar chimney power generation by using a diffuser tower. Journal of Solar Energy Engineering. 2015;137:031009. doi:10.1115/1.4029377.
[19] Gholamalizadeh MT, Wei L, Guoliang X. Analytical and numerical investigation of the solar chimney power plant systems. International Journal of Energy Research. 2006;30:861–873. doi:10.1002/er.1191.
[20] Cottam PJ, et al. Effect of canopy profile on solar thermal chimney performance. Solar Energy. 2016;129:286–296. doi:10.1016/j.solener.2016.01.052.
[21] Huang MH, et al. A two-dimensional simulation method of the solar chimney power plant with a new radiation model for the collector. Heat and Mass Transfer. 2017;85:100–106. doi:10.1016/j.icheatmasstransfer.2017.04.014.
[22] Semai H, Bouhdjar A, Larbi S. Canopy slope effect on the performance of the solar chimney power plant. International Journal of Green Energy. 2017;14:229–238. doi:10.1080/15435075.2016.1253580.
[23] Rabehi A, et al. CFD analysis on the performance of a solar chimney power plant system: Case study in Algeria. International Journal of Green Energy. 2017;14:971–972. doi:10.1080/15435075.2017.1339043.
[24] Zhou X, Xu Y, Hou Y. Effect of flow area to fluid power and turbine pressure drop factor of solar chimney power plant. Journal of Solar Energy Engineering. 2017;139:041012. doi:10.1115/1.4036774.
[25] Hu YCD, Chan CY. Impact of the geometry of divergent chimneys on the power output of a solar chimney power plant. Energy. 2017;16:31904. doi:10.1016/j.energy.2016.12.098.
[26] Xu Y, Zhou X. Performance of divergent-chimney solar power plants. Solar Energy. 2018;170:379–387. doi:10.1016/j.solener.2018.05.068.
[27] Haff W. Part II: Preliminary test results from the Manzanares pilot plant. International Journal of Solar Energy. 1984;2:141–161. doi:10.1080/01425918408909921.
[28] Cuce PM, Saxena A, Cuce E, Kontoleon KJ, Oztekin EK, Shaik S, Guo S. Thermal and energy analysis of a novel solar updraft tower design with divergent chimney and convergent collector concept: CFD analysis with experimental validation. Int J Low-Carbon Technol. 2024;19:714–722. https://doi.org/10.1093/ijlct/ctad152
[29] Benettayeb Y, Benbouali A, Tahri T, Cuce E. Performance analysis of the impact of sloped absorber dimensions on the performance of solar chimney power plants. J Therm Anal Calorim. 2025;150:9561–9571. https://doi.org/10.1007/s10973-025-14307-4
[30] Danook SH, Al-bonsrulah HAZ, Hashim I, Veeman D. CFD simulation of a 3D solar chimney integrated with an axial turbine for power generation. Energies. 2021;14:5771. https://doi.org/10.3390/en14185771
[31] Fertahi SED, Rehman S, Lahrech K, Samaouali A, Arbaoui A, Kadiri I, Agounoun R. A review of comprehensive guidelines for CFD validation in solar chimney power plants: methodology and Manzanares prototype case study. Fluids. 2024;9:251. https://doi.org/10.3390/fluids9110251
[32] Cuce PM, Cuce E, Omer S, Riffat S. Solar chimney power plant with integrated waste heat source on the ground: a numerical and statistical research with experimental validation. Int J Low-Carbon Technol. 2025;20:1272–1282. https://doi.org/10.1093/ijlct/ctaf077