Detection of Maximum Power Degradation in Photovoltaic Modules Using Support Vector Machines

Document Type : Research Article

Authors

Centre de Développement des Energies Renouvelables, CDER, 16340, Algiers, Algeria

10.22059/jser.2025.405467.1664

Abstract

In this paper, a Support Vector Machine (SVM) classifier is employed to analyze the degradation of photovoltaic (PV) modules in Algeria after five months of operation under moderate and humid climate conditions. The PV module examined has a nominal maximum power of 270 W. Using a comprehensive electrical and environmental dataset, the SVM model effectively classified the performance states of the module. The analysis of irradiance evolution over time shows that the peak power delivered during the day reaches approximately 249 W when solar irradiance ranges from 950 W/m² to 1050 W/m², representing about 92% of the module’s nominal power, during peak irradiation hours, the module operated under cloudy conditions for nearly 30% of the time, resulting in noticeable power fluctuations and contributing to degradation effects. The SVM-based classification enabled the creation of heatmaps that intuitively highlight degradation patterns, offering a clearer and more interpretable diagnostic tool compared to traditional analytical methods. The results demonstrate that the proposed methodology is effective for detecting degradation in individual PV modules and scalable to PV power plants, thereby supporting improved monitoring, maintenance, and performance optimization in similar climatic environments.

Keywords

[1]           Doyle, T., Erion‐Lorico, T., & Desharnais, R. (2020). PV module reliability scorecard. Relatório técnico, PVEL and DNV GL.  [2]  Seme, S., Sredenšek, K., Štumberger, B., & Hadžiselimović, M. (2019). Analysis of the performance of photovoltaic systems in Slovenia. Solar Energy, 180, 550-558.
[3]           Quansah, D. A., & Adaramola, M. S. (2019). Assessment of early degradation and performance loss in five co-located solar photovoltaic module technologies installed in Ghana using performance ratio time-series regression. Renewable energy, 131, 900-910.
[4]           Achour, Y., Berrada, A., Arechkik, A., & El Mrabet, R. (2023). Techno-economic assessment of hydrogen production from three different solar photovoltaic technologies. International Journal of Hydrogen Energy48(83), 32261-32276.
[5]           Chiteka, K., & Enweremadu, C. (2025). A Review on Modeling and Prediction of Soiling on Solar Photovoltaics and Thermal Collectors. Journal of Solar Energy Research. 10(1), 2135-2160
[6]           Ameur, A., Berrada, A., Bouaichi, A., & Loudiyi, K. (2022). Long-term performance and degradation analysis of different PV modules under temperate climate. Renewable Energy188, 37-51.
[7]           Mohamed, M. (2022). Comparison between P&O and SSO techniques based MPPT algorithm for photovoltaic systems. International Journal of Electrical and Computer Engineering (IJECE).
doi.org/10.11591/ijece.v12i1
[8]           Bayrak, F., Oztop, H. F., & Selimefendigil, F. (2020). Experimental study for the application of different cooling techniques in photovoltaic (PV) panels. Energy Conversion and Management, 212, 112789.
[9]           Parsa, H. R., & Sarvi, M. (2024). Analysis of Intra-String Line-Line Fault in Photovoltaic System. Journal of Solar Energy Research, 9(1), 1780-1793.
[10]         Ruiz-Gonzalez, R., Gomez-Gil, J., Gomez-Gil, F. J., & Martínez-Martínez, V. (2014). An SVM-based classifier for estimating the state of various rotating components in agro-industrial machinery with a vibration signal acquired from a single point on the machine chassis. Sensors, 14(11), 20713-20735.
doi.org/10.3390/s141120713
[11]         Hichem, H., & Djamel, B. (2015). Identification of Acoustics Microwaves (Bulk Acoustic Waves) in Piezoelectric Substrate (LiNbO3 Cut Y–Z) by Classification Using Neural Network. Journal of Nanoelectronics and Optoelectronics, 10(3), 314-319.
[12]         Hafdaoui, H., Bouchakour, S., & Belhaouas, N. (2022). Use an artificial intelligence method (Machine Learning) for analysis of the performance of photovoltaic systems. Journal of Renewable Energies, 25(2), 199-210.
[13]         Hafdaoui, H., Bouchakour, S., & Belhaouas, N. (2022). Using machine learning for analysis a database outdoor monitoring of photovoltaic system. International Journal of Integrated Engineering, 14(6), 275-280.
doi.org/10.30880/ijie.2022.14.06.024
[14]         Belhaouas, N., Hafdaoui, H., Nunzi, J. M., Khatir, S., Ernst, D., Mehareb, F., ... & Saheb-Koussa, D. (2025). Comprehensive analysis and insights into the relationship between temperature coefficients, PV failures, and investigating their correlation with other PV parameters. Solar Energy, 301, 113891.
[15]         Herteleer, B., Huyck, B., Catthoor, F., Driesen, J., & Cappelle, J. (2017). Normalised efficiency of photovoltaic systems: Going beyond the performance ratio. Solar Energy, 157, 408-418.
[16]         Hafdaoui, H., Belhaouas, N., Assem, H., Hadjrioua, F., & Madjoudj, N. (2023). Compare between the performance of different technologies of PV Modules using Artificial intelligence techniques. Journal of Renewable Energies, 99-106.
[17] Batiyah, S., Al-Subhi, A., Elsherbiny, O., Aldosari, O., & Aldawsari, M. (2025). Deep neural networks model for accurate photovoltaic parameter estimation under variable weather conditions. Solar Energy299, 113734.
[18] Lee, C. H., Lim, S. K., Park, S. J., & Kim, B. H. (2025). Photovoltaic Module Degradation Detection Using V–P Curve Derivatives and LSTM-Based Classification. Sensors25(20), 6475.
doi.org/10.3390/s25206475
[19] Ebied, M. A., Munshi, A., Alhuzali, S. A., El-Sotouhy, M. M., Shehta, A. I., & Elborlsy, M. S. (2025). Advanced deep learning modeling to enhance detection of defective photovoltaic cells in electroluminescence images. Scientific Reports15(1), 31640.
doi.org/10.1038/s41598-025-14478-y
[20] Song, Z., Xiao, F., Chen, Z., & Madsen, H. (2025). Probabilistic ultra-short-term solar photovoltaic power forecasting using natural gradient boosting with attention-enhanced neural networks. Energy and AI20, 100496.
[21] Hameed, M. A., Gottschalg, R., Scheer, R., & Alias, Q. M. (2025, February). Performance analysis with risk identifications and its economic impact on PV plant in harsh climates: Baghdad site case. In AIP Conference Proceedings (Vol. 3169, No. 1, p. 040136). AIP Publishing LLC.