Computational Analysis of Radial Turbine Design and Performance for Renewable Power Generation in Solar Chimney

Document Type : Research Article

Authors

1 Department of Mechanical Engineering,Faculty Sciences and Technology, University of Abbas Laghrour Khenchela, 40004 Khenchela, Algeria

2 Department of Mechanical Engineering,Faculty Sciences and Technology, University of Abbas Laghrour Khenchela, 40004 Khenchela, Algeria Laboratory of Studies of Industrial Energy Systems LESEI, Faculty of Technology, University of Batna, Algeria

3 Laboratory of Studies of Industrial Energy Systems LESEI, Faculty of Technology, University of Batna 2, 05000 Batna, Algeria

4 Unité de Recherche Appliquée en Energies Renouvelables, URAER, Centre de Développement des Energies Renouvelables, CDER, Ghardaïa, Algeria

Abstract

This study examines the performance improvement of Solar Chimneys Power Plants (SCPPs) through optimized turbine design using three-dimensional numerical simulation. The research contributes to ongoing efforts to advance clean and advanced renewable-energy systems intended to limit reliance on traditional fossil fuels. A simplified 3D computational model of an SCPP, based on the Manzanares prototype, was developed and analyzed in ANSYS Fluent to evaluate three radial turbine configurations. The designs incorporate exit angles of 72.5°, 75°, and 78.5°, coupled with appropriate blade numbers of 12, 14, and 16, respectively. The numerical results reveal that the 14-blade configuration (Design B) achieves the highest performance, generating 70.6 kW of power representing a 43.9% improvement over the reference Manzanares model (49.06 kW), while maintaining stable airflow and thermodynamic characteristics. The obtained results emphasize the critical role of turbine geometry on SCPP efficiency and further demonstrate the system’s potential as a reliable and sustainable renewable energy solution, particularly for regions with strong solar resources.

Keywords

  1. Kaplan, M. (2025). The effect of chimney entrance slope and constricted section on the performance of solar chimney power plants: A CFD approach. In E3S Web of Conferences (Vol. 601, pp. 00003): EDP Sciences.https://doi.org/10.1051/e3sconf/202560100003.
  2. Abdelsalam, E., F. Almomani, H. Alnawafah, D. Habash, and M. Jamjoum. (2024). Sustainable production of green hydrogen, electricity, and desalinated water via a Hybrid Solar Chimney Power Plant (HSCPP) water-splitting process. International Journal of Hydrogen Energy, 52, 1356–1369. https://doi.org/10.1016/j.ijhydene.2023.06.165.
  3. Abdelsalam, E., F. Kafiah, F. Almomani, M. Tawalbeh, S. Kiswani, A. Khasawneh, D. Ibrahim, and M. Alkasrawi. (2021). An innovative design of a solar double-chimney power plant for electricity generation. Energies, 14(19), 6235. https://doi.org/10.3390/en14196235.
  4. Cuce, E., A. Saxena, P.M. Cuce, H. Sen, S. Guo, and K. Sudhakar. (2021). Performance assessment of solar chimney power plants with the impacts of divergent and convergent chimney geometry. International Journal of Low-Carbon Technologies, 16(3), 704–714. https://doi.org/10.1093/ijlct/ctaa097.
  5. Wang, J., J. Nie, J. Jia, H. Su, R. Tian, S. Yan, and H. Gao. (2022). Structural optimization to reduce the environmental crosswind negative influence on the performance of a solar chimney power plant system. Solar Energy, 241, 693–711. https://doi.org/10.1016/j.solener.2022.06.015.
  6. Abdelsalam, E., F. Almomani, S. Ibrahim, F. Kafiah, M. Jamjoum, and M. Alkasrawi. (2023). A novel design of a hybrid solar double-chimney power plant for generating electricity and distilled water. Sustainability, 15(3), 2729. https://doi.org/10.3390/su15032729.
  7. Badis, B., B. Hani, N. Haythem, and D. Zied. (2023). Experimental Study of Solar Chimney Power Plant. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 101(1), 207–214. https://doi.org/10.37934/arfmts.101.1.207214.
  8. Ayadi, A., Z. Driss, and M.S. Abid. (2020). The impact of placing obstacles on the distribution of the airflow inside a solar chimney. Environmental Progress & Sustainable Energy, 39(3), e13379. https://doi.org/10.1002/ep.13379.
  9. Mustafa, A.T. (2015). A review of convective and artificial vortices for power generation. International Journal of Sustainable Development and Planning. https://doi.org/10.2495/sdp-v10-n5-650-665.
  10. Aziz, M.A. and A.M. Elsayed. (2022). Thermofluid effects of solar chimney geometry on performance parameters. Renewable Energy, 200, 674–693. https://doi.org/10.1016/j.renene.2022.10.022.
  11. Caicedo, P., D. Wood, and C. Johansen. (2021). Radial turbine design for solar chimney power plants. Energies, 14(3), 674. https://doi.org/10.3390/en14030674.
  12. Danook, S.H., H.A. AL-bonsrulah, I. Hashim, and D. Veeman. (2021). CFD simulation of a 3D solar chimney integrated with an axial turbine for power generation. Energies, 14(18), 5771. https://doi.org/10.3390/en14185771.
  13. Kaplan, M. (2023). Influence of inclination angle at the chimney inlet on the power generation in solar chimney power plants through 3D CFD model. International Journal of Photoenergy, 2023(1), 7394007. https://doi.org/10.1155/2023/7394007.
  14. Kasaeian, A.B., M. Amirifard, M.H. Ahmadi, and F. Kasaeian. (2017). Investigation of the effects of ambient temperature and dimensional parameters on the performance of solar chimney power plants. International Journal of Low-Carbon Technologies, 12(4), 335–348. https://doi.org/10.1093/ijlct/ctw016.
  15. Jameei, A., P. Akbarzadeh, H. Zolfagharzadeh, and S. Eghbali. (2019). Numerical study of the influence of geometric form of chimney on the performance of a solar updraft tower power plant. Energy & Environment, 30(4), 685–706. https://doi.org/10.1177/0958305x18802908.
  16. Kasaeian, A., A.R. Mahmoudi, F.R. Astaraei, and A. Hejab. (2017). 3D simulation of solar chimney power plant considering turbine blades. Energy Conversion and Management, 147, 55–65. https://doi.org/10.1016/j.enconman.2017.05.029.
  17. Kebabsa, H., M.S. Lounici, and A. Daimallah. (2021). Numerical investigation of a novel tower solar chimney concept. Energy, 214, 119048. https://doi.org/10.1016/j.energy.2020.119048.
  18. Nasraoui, H., Z. Driss, and H. Kchaou. (2020). Novel collector design for enhancing the performance of solar chimney power plant. Renewable Energy, 145, 1658–1671. https://doi.org/10.1016/j.renene.2019.07.062.
  19. Ayadi, A., Z. Driss, and M.S. Abid. (2019). Experimental and computational analysis of the collector geometry of a solar chimney. Environmental Progress & Sustainable Energy, 38(6), e13238. https://doi.org/10.1002/ep.13238.
  20. Maghrebi, M.J., R. Masoudi Nejad, and S. Masoudi. (2017). Performance analysis of sloped solar chimney power plants in the southwestern region of Iran. International Journal of Ambient Energy, 38(6), 542–549. https://doi.org/10.1080/01430750.2016.1155487.
  21. Torabi, M.R., M. Hosseini, O.A. Akbari, H.H. Afrouzi, D. Toghraie, A. Kashani, and A.a. Alizadeh. (2021). Investigation the performance of solar chimney power plant for improving the efficiency and increasing the outlet power of turbines using computational fluid dynamics. Energy Reports, 7, 4555–4565. https://doi.org/10.1016/j.egyr.2021.07.044.
  22. Mandal, D.K., N. Biswas, N.K. Manna, D.K. Gayen, and A.C. Benim. (2024). An application of artificial neural network (ANN) for comparative performance assessment of solar chimney (SC) plant for green energy production. Scientific Reports, 14(1), 979. https://doi.org/10.1038/s41598-023-46505-1.
  23. Esmail, M.F.C., W.M. A-Elmagid, T. Mekhail, I.M. Al-Helal, and M.R. Shady. (2021). A numerical comparative study of axial flow turbines for solar chimney power plant. Case Studies in Thermal Engineering, 26, 101046. https://doi.org/10.1016/j.csite.2021.101046.
  24. Biswas, N., D.K. Mandal, S. Bose, N.K. Manna, and A.C. Benim. (2023). Experimental Treatment of Solar Chimney Power Plant—A Comprehensive Review. Energies, 16(17). https://doi.org/10.3390/en16176134.
  25. Cuce, E., P.M. Cuce, and H. Sen. (2020). A thorough performance assessment of solar chimney power plants: Case study for Manzanares. Cleaner Engineering and Technology, 1, 100026. https://doi.org/10.1016/j.clet.2020.100026.
  26. Hasan, M.K., A. Gross, L. Bahrainirad, and H.F. Fasel. (2022). Investigation of collector flow for 1:30 scale solar chimney power plant model. Solar Energy, 241, 220–230. https://doi.org/10.1016/j.solener.2022.05.059.
  27. Ganguli, A.A., S.S. Deshpande, and A.B. Pandit. (2021). CFD Simulations for Performance Enhancement of a Solar Chimney Power Plant (SCPP) and Techno-Economic Feasibility for a 5 MW SCPP in an Indian Context. Energies, 14(11). https://doi.org/10.3390/en14113342.
  28. Buckland, G. and J. Booker. (2025). Scaled Designs of Solar Chimneys for Different Locations. Designs, 9(1). https://doi.org/10.3390/designs9010001.
  29. Araya, H.G. and S.T. Teferi. (2025). Performance Comparison of Cylindrical and Diverging Solar Chimney Power Plants. Results in Engineering, 105485. https://doi.org/10.1016/j.rineng.2025.105485.
  30. Hashemian, N. and A. Noorpoor. (2023). Thermo-eco-environmental investigation of a newly developed solar/wind powered multi-generation plant with hydrogen and ammonia production options. Journal of Solar Energy Research, 8(4), 1728–1737. https://doi.org/10.22059/jser.2024.374028.1388.
  31. Benettayeb, Y., A. Benbouali, T. Tahri, and E. Cuce. (2025). Performance analysis of the impact of sloped absorber dimensions on the performance of solar chimney power plants. Journal of Thermal Analysis and Calorimetry, 150(12), 9561–9571. https://doi.org/10.1007/s10973-025-14307-4.
  32. Hashemian, N. and A. Noorpoor. (2019). Assessment and multi-criteria optimization of a solar and biomass-based multi-generation system: Thermodynamic, exergoeconomic and exergoenvironmental aspects. Energy Conversion and Management, 195, 788–797. https://doi.org/10.1016/j.enconman.2019.05.039.
  33. Natarajan, R., S. Yaknesh, K.B. Prakash, M. Al Awadh, and Q.M. Al-Mdallal. (2025). Parametric optimization of flow in a solar chimney power plant under variable semi elliptical constraints. Scientific Reports, 15(1), 331. https://doi.org/10.1038/s41598-024-82953-z.
  34. Cuce, P.M., E. Cuce, S. Alshahrani, S. Saboor, H. Sen, I. Veza, and C.A. Saleel. (2022). Performance Evaluation of Solar Chimney Power Plants with Bayburt Stone and Basalt on the Ground as Natural Energy Storage Material. Sustainability, 14(17), 10960. https://doi.org/10.3390/su141710960.
  35. Reid, A., R. Rossi, C. Cottini, and A. Benassi. (2025). CFD simulation of a Rushton turbine stirred-tank using open-source software with critical evaluation of MRF-based rotation modeling. Meccanica, 60(6), 1613–1637. https://doi.org/10.1007/s11012-024-01824-z.
  36. Haaf, W. (1984). Solar Chimneys. International Journal of Solar Energy, 2(2), 141–161. https://doi.org/10.1080/01425918408909921.
  37. Glassman, A.J. (1976). Computer program for design analysis of radial-inflow turbines (NASA-TN-D-8164).