[1] D. Benmenine, E. El-Bialy, D. Belatrache, A. Benmenine, and S. M. Shalaby, “Experimental investigation of a direct solar dryer equipped with parabolic-trough solar concentrator for drying Moringa leaves in the region of Algerian sahara, Ouargla city,” J. Atmos. Solar-Terrestrial Phys., vol. 274, no. March, p. 106595, 2025, doi: 10.1016/j.jastp.2025.106595.
[2] A. P. Singh, A. Gupta, A. Biswas, and B. Das, “Experimental study of a novel photovoltaic-thermal-thermoelectric generator-based solar dryer for grapes drying,” Int. J. Green Energy, vol. 21, no. 5, pp. 1161–1173, 2024, doi: 10.1080/15435075.2023.2244046.
[3] N. Kalita, P. Muthukumar, and A. Dalal, “Performance investigation of a hybrid solar dryer with electric and biogas backup air heaters for chilli drying,” Therm. Sci. Eng. Prog., vol. 52, no. April, p. 102646, 2024, doi: 10.1016/j.tsep.2024.102646.
[4] G. G. Radhakrishnan, M. Sattanathan, R. K. G. Radhakrishnan, and A. K. Jeevan, “Phase-change material-based solar dryer: An experimental investigation for drying mango pulp,” Sol. Energy, vol. 277, no. March, p. 112716, 2024, doi: 10.1016/j.solener.2024.112716.
[5] S. Suherman, D. D. Anggoro, S. Sugiharto, and M. A. Asy-Syaqiq, “Investigation of a mixed-mode solar dryer assisted with an air recycling system and phase change material unit for coffee beans drying: An experimental study,” Renew. Energy, vol. 254, no. June, p. 123762, 2025, doi: 10.1016/j.renene.2025.123762.
[6] M. Mokhtarian, A. Kalbasi-Ashtari, and H. W. Xiao, “Effects of solar drying operation equipped with a finned and double-pass heat collector on energy utilization, essential oil extraction and bio-active compounds of peppermint (Mentha Piperita L.),” Dry. Technol., vol. 40, no. 5, pp. 897–923, 2022, doi: 10.1080/07373937.2020.1836650.
[7] C. N. Deepak and A. K. Behura, “Experimental analysis of a mixed mode solar tunnel dryer for drying tomato: Energy, exergy and environmental assessment,” Therm. Sci. Eng. Prog., vol. 63, no. June 2024, p. 103707, 2025, doi: 10.1016/j.tsep.2025.103707.
[8] B. Das, P. Singh, and P. Kalita, “Performance Evaluation of a Mixed-Mode solar dryer with PCM-based energy storage for efficient drying of Baccaurea ramiflora,” Sol. Energy, vol. 288, no. January, p. 113279, 2025, doi: 10.1016/j.solener.2025.113279.
[9] M. U. H. Suzihaque and R. Driscoll, “Effects of Solar Radiation, Buoyancy of Air Flow and Optimization Study of Coffee Drying in a Heat Recovery Dryer,” Procedia Eng., vol. 148, pp. 812–822, 2016, doi: 10.1016/j.proeng.2016.06.617.
[10] N. Arbaoui et al., “Impact of a solar greenhouse converted into a solar dryer on the performance indicators (energy efficiency, bio-chemical, economic and environmental) during summer season,” Sol. Energy, vol. 291, no. March, p. 113416, 2025, doi: 10.1016/j.solener.2025.113416.
[11] Y. Luo et al., “ur na l P of,” Carbohydr. Polym., p. 115713, 2019, doi: 10.1016/j.csite.2025.106786.
[12] V. Joseph et al., “An innovative method based on CFD to simulate the influence of photovoltaic panels on the microclimate in agrivoltaic conditions,” Sol. Energy, vol. 297, no. May, p. 113571, 2025, doi: 10.1016/j.solener.2025.113571.
[13] H. Dadhaneeya, P. K. Nema, V. K. Arora, S. B. Kokane, and K. R. Pawar, “Smart next-gen drying solution: A study of design, development and performance evaluation of IoT-enabled IR-assisted refractance window dryer,” Dry. Technol., vol. 42, no. 15, pp. 2212–2231, 2024, doi: 10.1080/07373937.2024.2415422.
[14] M. Aktaş, A. Khanlari, B. Aktekeli, and A. Amini, “Analysis of a new drying chamber for heat pump mint leaves dryer,” Int. J. Hydrogen Energy, vol. 42, no. 28, pp. 18034–18044, 2017, doi: 10.1016/j.ijhydene.2017.03.007.
[15] S. Srivastava and A. Yadav, “Economic analysis of water production from atmospheric air using Scheffler reflector,” Appl. Water Sci., vol. 9, no. 1, pp. 1–10, 2019, doi: 10.1007/s13201-018-0883-7.
[16] P. Qu, M. Zhang, A. S. Mujumdar, and D. Yu, “Efficient drying of laser-treated raspberry in a pulse-spouted microwave freeze dryer,” Dry. Technol., vol. 40, no. 12, pp. 2433–2444, 2022, doi: 10.1080/07373937.2022.2058959.
[17] G. N. Abdel-Rahman, E. M. Saleh, A. Hegazy, A. S. M. Fouzy, and M. A. Embaby, “Safety improvement of the open sun dried Egyptian Siwi dates using closed solar dryer,” Heliyon, vol. 9, no. 11, p. e22425, 2023, doi: 10.1016/j.heliyon.2023.e22425.
[18] E. Hürdoğan, K. N. Çerçi, D. B. Saydam, and C. Ozalp, “Experimental and Modeling Study of Peanut Drying in a Solar Dryer with a Novel Type of a Drying Chamber,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 44, no. 2, pp. 5586–5609, 2022, doi: 10.1080/15567036.2021.1974126.
[19] V. M. Swami, A. T. Autee, and A. T R, “Experimental analysis of solar fish dryer using phase change material,” J. Energy Storage, vol. 20, no. 669, pp. 310–315, 2018, doi: 10.1016/j.est.2018.09.016.
[20] M. C. Ndukwu et al., “Drying kinetics and thermo-economic analysis of drying hot water blanched ginger rhizomes in a hybrid composite solar dryer with heat exchanger,” Heliyon, vol. 9, no. 2, p. e13606, 2023, doi: 10.1016/j.heliyon.2023.e13606.
[21] R. J. Mongi and S. J. Ngoma, “Effect of Solar Drying Methods on Proximate Composition, Sugar Profile and Organic Acids of Mango Varieties in Tanzania,” Appl. Food Res., vol. 2, no. 2, 2022, doi: 10.1016/j.afres.2022.100140.
[22] S. Ghafari and M. Behzad, “Enhancing solar dryer performance with combined flat plate absorber and parabolic trough collector : A comprehensive techno-economic and environmental study ☆,” Sustain. Energy Technol. Assessments, vol. 82, no. June 2024, p. 104486, 2025, doi: 10.1016/j.seta.2025.104486.
[23] P. Ganesan and T. M. Eikevik, “Current scientific progress in solar-assisted vapor compression heat pump technology: Advanced design and configuration, refrigerant, performance, economic and environmental assessments,” Int. J. Thermofluids, vol. 23, no. July, p. 100783, 2024, doi: 10.1016/j.ijft.2024.100783.
[24] A. K. Hussein, "Applications of nanotechnology in renewable energies—A comprehensive overview and understanding". Renewable and Sustainable Energy Reviews, 42, pp.460-476,2015, doi:10.1016/j.rser.2014.10.027.
[25] A.K. Hussein, A. Walunj, and L. Kolsi, "Applications of nanotechnology to enhance the performance of the direct absorption solar collectors". Journal of Thermal Engineering, 2(1), pp.529-540, 2016, doi: 10.18186/jte.46009.
[26] A. K. Hussein, "Applications of nanotechnology to improve the performance of solar collectors–Recent advances and overview". Renewable and Sustainable Energy Reviews, 62, pp.767-792, 2016, doi: 10.1016/j.rser.2016.04.050.
[27] A. K. Hussein, D. Li, L. Kolsi, S. Kata, and B. Sahoo, "A review of nano fluid role to improve the performance of the heat pipe solar collectors". Energy Procedia, 109, pp.417-424, 2017, doi: 10.1016/j.energy.2021.122794.
[28] N. Hashemian, and A. Noorpoor, "Thermo-eco-environmental investigation of a newly developed solar/wind powered multi-generation plant with hydrogen and ammonia production options". Journal of Solar Energy Research, 8(4), pp.1728-1737, 2023, doi: 10.22059/jser.2024.374028.1388.
[29] N. Hashemian, and A. Noorpoor, "Assessment and multi-criteria optimization of a solar and biomass-based multi-generation system: Thermodynamic, exergoeconomic and exergoenvironmental aspects". Energy conversion and management, 195, pp.788-797, 2019, doi: 10.1016/j.enconman.2019.05.039.
[30] S. Suherman, M. A. Asy-Syaqiq, F. A. Rosyid, A. R. Nugroho, A. H. Marpaung, and B. W. H. E. Prasetiyono, “Effect of loading capacity on drying characteristics and techno-economic analysis of maize kernels dried using a large-scale greenhouse solar dryer,” Therm. Sci. Eng. Prog., vol. 65, no. July, 2025, doi: 10.1016/j.tsep.2025.103914.
[31] M. C. Gilago, V. R. Mugi, and C. V.P., “Performance assessment of passive indirect solar dryer comparing without and with heat storage unit by investigating the drying kinetics of carrot,” Energy Nexus, vol. 9, no. November 2022, p. 100178, 2023, doi: 10.1016/j.nexus.2023.100178.
[32] M. C. Gilago, V. R. Mugi, and V. P. Chandramohan, “Evaluation of drying kinetics of carrot and thermal characteristics of natural and forced convection indirect solar dryer,” Results Eng., vol. 18, no. April, p. 101196, 2023, doi: 10.1016/j.rineng.2023.101196.
[33] V. V. Tyagi et al., “Sustainable growth of solar drying technologies: Advancing the use of thermal energy storage for domestic and industrial applications,” J. Energy Storage, vol. 99, no. August, 2024, doi: 10.1016/j.est.2024.113320.
[34] M. N. Musembi, K. S. Kiptoo, and N. Yuichi, “Design and Analysis of Solar Dryer for Mid-Latitude Region,” Energy Procedia, vol. 100, no. September, pp. 98–110, 2016, doi: 10.1016/j.egypro.2016.10.145.
[35] A. R. Umayal Sundari and E. Veeramanipriya, “Performance evaluation, morphological properties and drying kinetics of untreated Carica Papaya using solar hybrid dryer integrated with heat storage material,” J. Energy Storage, vol. 55, no. PC, p. 105679, 2022, doi: 10.1016/j.est.2022.105679.
[36] V. S. Krishna, S. K. Jain, N. L. Panwar, and R. Sree, “An overview on Phase Change Material incorporated in convective solar dryers,” J. Energy Storage, vol. 131, no. PA, p. 117486, 2025, doi: 10.1016/j.est.2025.117486.
[37] J. P. Ekka and M. Palanisamy, “Determination of heat transfer coefficients and drying kinetics of red chilli dried in a forced convection mixed mode solar dryer,” Therm. Sci. Eng. Prog., vol. 19, no. January, p. 100607, 2020, doi: 10.1016/j.tsep.2020.100607.
[38] S. Tiwari, G. N. Tiwari, and I. M. Al-Helal, “Development and recent trends in greenhouse dryer: A review,” Renew. Sustain. Energy Rev., vol. 65, pp. 1048–1064, 2016, doi: 10.1016/j.rser.2016.07.070.
[39] P. Sukkanta, K. Eiamkij, N. Junset, and K. Mongkoldhumrongkul, “Oyster mushroom drying efficiency using a solar dryer,” Energy Reports, vol. 9, pp. 479–486, 2023, doi: 10.1016/j.egyr.2023.01.062.
[40] S. Vijayan, T. V. Arjunan, and A. Kumar, “Mathematical modeling and performance analysis of thin layer drying of bitter gourd in sensible storage based indirect solar dryer,” Innov. Food Sci. Emerg. Technol., vol. 36, pp. 59–67, 2016, doi: 10.1016/j.ifset.2016.05.014.
[41] G. P. Arul, S. Shanmugam, A. R. Veerappan, and P. Kumar, “Mathematical modeling and experimental studies on a dual inclined oscillating bed with double pass solar dryer for drying of non - parboiled paddy grains,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 43, no. 22, pp. 2935–2946, 2021, doi: 10.1080/15567036.2019.1670754.
[42] F. Chabane, N. Moummi, and A. Brima, “An experimental study and mathematical modeling of solar drying of moisture content of the mint, apricot, and green pepper,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 45, no. 2, pp. 4697–4711, 2023, doi: 10.1080/15567036.2019.1670755.
[43] R. Kumar, S. V. M. Navaneethakrishnan, and S. Solaiachari, “Hybrid glass-carbon fiber composites for solar greenhouse dryer trays: a 3D computational analysis,” Adv. Compos. Mater., vol. 00, no. 00, pp. 1–22, 2024, doi: 10.1080/09243046.2024.2365474.
[44] S. Shoeibi et al., “Recent advancements in applications of encapsulated phase change materials for solar energy systems: A state of the art review,” J. Energy Storage, vol. 94, no. June, p. 112401, 2024, doi: 10.1016/j.est.2024.112401.
[45] S. M. Shalaby, M. A. Bek, and A. A. El-Sebaii, “Solar dryers with PCM as energy storage medium: A review,” Renew. Sustain. Energy Rev., vol. 33, pp. 110–116, 2014, doi: 10.1016/j.rser.2014.01.073.