Experimental Study of Solar-Compatible Adsorption Refrigeration Systems Using Calcium Chloride and Activated Carbon for Improved Coefficient of Performance and Specific Cooling Power

Document Type : Research Article

Authors

1 Department of Mechanical Engineering, National Institute of Technology Kurukshetra, Haryana 136119, India

2 Department of Mechanical Engineering, Parul Institute of Engineering & Technology, FET, Parul University, Waghodia, Vadodara-391760, Gujarat, India.

3 Department of Applied Science, School of Engineering and Technology, CGC University Mohali, Punjab- 140307, India.

4 Department of Mechanical Engineering, Maharishi Markandeswar (Deemed to be) University, Mullana- Ambala, Haryana-134103, India.

5 Department of Mechanical Engineering, Manav Rachna International Institute of Research and studies, Haryana 121004 India

10.22059/jser.2025.397369.1584

Abstract

This study presents a novel approach to optimizing adsorption refrigeration systems by integrating mass and heat recovery processes, using CaCl₂ and activated carbon as adsorbent materials. The purpose of the test environment was to examine whether recovery mechanisms and temperature conditions affected the Coefficient of Performance (COP) and Specific Cooling Power (SCP). Tests were conducted under controlled conditions, including a heating power of 3.6 kW and an evaporating temperature of approximately -20°C. The system reached 514.3 W/kg SCP without recovery. Mass recovery raised SCP by 28.7% to 797.5 W/kg, while mass and heat recovery increased it by 70.8% to 1026.2 W/kg. COP values also increased, indicating energy efficiency. Prior research explored cooling water temperatures (14°C–26°C) and changes in heating power (1.64–1.96 kW). With higher cooling water temperatures, SCP dropped from 340 W/kg to 280.5 W/kg and COP from 0.14 to 0.10. Heating power fluctuations reduced SCP from 338 W/kg to 282 W/kg and COP from 0.14 to 0.10, demonstrating the system's thermal sensitivity. This work presents a rarely explored combination of CaCl₂–activated carbon composite and integrated heat–mass recovery, demonstrating significant improvements in adsorption refrigeration performance for sustainable cooling.

Keywords

[1]         D. Kumar, S. Angra, and S. Singh, ‘Investigation of Corrosion Behavior of Stir-Cast Hybrid Aluminum Composite Reinforced with CeO2 and GNPs Nanoparticles’, vol. 59, no. 6, pp. 1210–1218, 2023, doi: 10.1134/S2070205123701186.
[2]         A. V Cherpakova, M. V Solovyeva, A. D. Grekova, Y. I. Aristov, and L. G. Gordeeva, ‘Mesoporous silica gels for waste heat recovery and adsorption cooling of Big Data Centers’, Energy, vol. 316, no. November 2024, p. 134427, 2025, doi: 10.1016/j.energy.2025.134427.
[3]         R. P. Sah, B. Choudhury, R. K. Das, and A. Sur, ‘An overview of modelling techniques employed for performance simulation of low – grade heat operated adsorption cooling systems’, Renewable and Sustainable Energy Reviews, vol. 74, no. January 2016, pp. 364–376, 2017, doi: 10.1016/j.rser.2017.02.062.
[4]         T. X. Li, R. Z. Wang, L. W. Wang, Z. S. Lu, and J. Y. Wu, ‘Influence of mass recovery on the performance of a heat pipe type ammonia sorption refrigeration system using CaCl 2 / activated carbon as compound adsorbent’, vol. 28, pp. 1638–1646, 2008, doi: 10.1016/j.applthermaleng.2007.10.027.
[5]         N. D. Afify and M. B. Sweatman, ‘Monte Carlo simulation of ammonia adsorption in high-silica zeolites for refrigeration applications’, Chemical Engineering Journal Advances, vol. 18, no. April, p. 100612, 2024, doi: 10.1016/j.ceja.2024.100612.
[6]         D. Kumar, ‘Qualitative and quantitative interdependence of physical and mechanical properties of stir-casted hybrid aluminum composites’, vol. 51, no. 6, pp. 14–23, 2023, doi: 10.18149/MPM.5162023.
[7]         R. P. Sah, B. Choudhury, and R. K. Das, ‘A review on adsorption cooling systems with silica gel and carbon as adsorbents A review on adsorption cooling systems with silica gel and carbon as adsorbents’, no. May, 2020, doi: 10.1016/j.rser.2015.01.039.
[8]         I. Boukholda, N. Ben Ezzine, and A. Bellagi, ‘Experimental investigation and simulation of commercial absorption chiller using natural refrigerant R717 and powered by Fresnel solar collector’, International Journal of Thermofluids, vol. 27, no. April, p. 101213, 2025, doi: 10.1016/j.ijft.2025.101213.
[9]         A. Tamraparni, J. Rendall, Z. Shen, D. Hun, and S. Shrestha, ‘Experimental investigation on phase change material – based finned tube heat exchanger for thermal energy storage and building envelope thermal management’, Applied Thermal Engineering, vol. 273, no. December 2024, p. 126490, 2025, doi: 10.1016/j.applthermaleng.2025.126490.
[10]       L. Su, Q. Yan, Y. Yang, J. Ren, M. Qiao, and Y. Xu, ‘Numerical simulation and experimental study of ARS for the resourceful utilization of low-grade heat hazards from high-geothermal tunnels’, Renewable Energy, vol. 248, no. April, p. 123209, 2025, doi: 10.1016/j.renene.2025.123209.
[11]       M. Shiri, M. Hosseinzadeh, S. Shiri, and S. Javanshir, ‘Adsorbent based on MOF ‑ 5 / cellulose aerogel composite for adsorption of organic dyes from wastewater’, Scientific Reports, pp. 1–13, 2024, doi: 10.1038/s41598-024-65774-y.
[12]       S. O. Yu, M. K. Cho, and K. L. Baek, ‘Numerical assessment of LOCA experiments of RD-14M using MARS-KS code’, International Journal of Advanced Nuclear Reactor Design and Technology, vol. 2, pp. 1–9, 2020, doi: 10.1016/j.jandt.2020.04.001.
[13]       Q. W. Pan, R. Z. Wang, Z. S. Lu, and L. W. Wang, ‘Experimental investigation of an adsorption refrigeration prototype with the working pair of composite adsorbent-ammonia’, vol. 72, 2014, doi: 10.1016/j.applthermaleng.2014.06.054.
[14]       A. S. A, V. Baiju, R. S. Rehna, T. Suzuki, H. Singh, and M. Ichiyanagi, ‘Performance investigations of carbon based consolidated composite adsorbents effective for adsorption cooling systems’, Applied Thermal Engineering, vol. 217, no. April, p. 119199, 2022, doi: 10.1016/j.applthermaleng.2022.119199.
[15]       F. Saadat et al., ‘Experimental investigation of two-bed adsorption desalination cum cooling system with mass and heat recovery’, International Journal of Refrigeration, vol. 170, no. December 2024, pp. 423–439, 2025, doi: 10.1016/j.ijrefrig.2024.12.008.
[16]       Y. Feng et al., ‘Experiment investigation and machine learning prediction of a biomass-fired organic Rankine cycle combined heating and power system under various heat source temperatures and mass flow rates’, Energy, vol. 324, no. November 2024, 2025, doi: 10.1016/j.energy.2025.135841.
[17]       M. Hassan, I. I. El-sharkawy, and K. Harby, ‘Case Studies in Thermal Engineering Study of an innovative combined absorption-adsorption cooling system employing the same evaporator and condenser’, Case Studies in Thermal Engineering, vol. 42, no. December 2022, p. 102690, 2023, doi: 10.1016/j.csite.2022.102690.
[18]       Z. Yang and K. Gluesenkamp, ‘Model-Based Performance Comparison of Ammonia Chemisorption Heat Pumps for Cold Climate with Different Working Pairs and Cycle Configurations’, International Refrigeration and Air Conditioning Conference, 2018, doi: docs.lib.purdue.edu/iracc/2066.
[19]       M. Pons et al., ‘Thermodynamic based comparison of sorption systems for cooling and heat pumping Á mes Comparaison des performances thermodynamiques des syste Á chaleur a Á sorption dans des applications de de pompes a refroidissement et de chauffage’,  International Journal of Refrigeration, vol. 22, 1999, doi:10.1016/S0140-7007(98)00048-6.
[20]       X. Chen, L. Wei, L. Deng, F. Yang, and Z. Zhang, ‘A Review on the Metal Hydride Based Hydrogen Purification and Separation A review on the metal hydride based hydrogen purification and separation technology’, Scientific Net Journal, 2016, doi: 10.4028/www.scientific.net/AMM.448-453.3027.
[21]       I. Girnik, A. Grekova, L. Gordeeva, and Y. Aristov, ‘Activated Carbons as Methanol Adsorbents for a New Cycle “ Heat from Cold”, Fibers, 8(8), 51; 2020, doi:10.3390/fib8080051.
[22]       R. P. Sah, B. Choudhury, and R. K. Das, ‘A review on adsorption cooling systems with silica gel and carbon as adsorbents’, Renewable and Sustainable Energy Reviews, vol. 45, pp. 123–134, 2015, doi: 10.1016/j.rser.2015.01.039.
[23]       Y. I. Aristov, ‘New composite sorbents of water and ammonia for chemical and adsorption heat pumps NEW COMPOSITE SORBENTS OF WATER AND AMMONIA’, Journal of Engineering Physics and Thermophysics, 2015, doi: 10.1007/s10891-006-0225-8.
[24]       M. Beydaghdari, F. H. Saboor, A. Babapoor, V. V Karve, and M. Asgari ‘Recent Advances in MOF-Based Adsorbents for Dye Removal’, Energies, 15(6), 2023; doi:10.3390/en15062023.
[25]       K. Grabowska, M. Sosnowski, J. Krzywanski, A. Zylka, A. Kulakowska, and D. Skrobek, ‘Implementation of coupled CFD & DEM model for heat and mass transfer analysis in adsorption fluidized reactors ☆’, Applied Thermal Engineering, vol. 278, no. PB, p. 127301, 2025, doi: 10.1016/j.applthermaleng.2025.127301.
[26]       C. R. Hiremath and R. Kadoli, ‘Adsorption and desorption through packed and fluidized clay-based composite desiccant beds: a comparison study’, Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 44, no. 4, pp. 1–19, 2022, doi: 10.1007/s40430-022-03455-5.
[27]       H. A. Tariq, A. Altamirano, R. Collignon, B. Stutz, and A. Coronas, ‘Experimental study on the effect of an ionic liquid as anti-crystallization additive in a bi-adiabatic H 2 O-LiBr absorption chiller prototype’, Applied Thermal Engineering, vol. 259, no. November 2024, p. 124756, 2025, doi: 10.1016/j.applthermaleng.2024.124756.
[28]       G. Sachdeva, B. Sharma, P. Anuradha, and S. Verma, ‘Irreversibility Analysis of an Ejector Refrigeration Cycle by Modified Gouy-Stodola Formulation’, Evergreen, vol. 10, no. 1, pp. 252–271, 2023, doi: 10.5109/6781075.
[29]       R. H. Mohammed, E. S. Ali, and A. Askalany, ‘Limits of coefficient of performance of adsorption cooling cycle based on refrigerant ’ s type’, Thermal Science and Engineering Progress, vol. 51, no. April, p. 102629, 2024, doi: 10.1016/j.tsep.2024.102629.
[30]       M. A. H. Ammar, B. Benhaoua, and F. Bouras, ‘Thermodynamic analysis and performance of an adsorption refrigeration system driven by solar collector’, Applied Thermal Engineering, vol. 112, pp. 1289–1296, 2017, doi: 10.1016/j.applthermaleng.2016.09.119.
[31]       F. Shabir, M. Sultan, Y. Niaz, and M. Usman, ‘Steady-State Investigation of Carbon-Based Adsorbent-Adsorbate Pairs for sustainability Steady-State Investigation of Carbon-Based Adsorbent – Adsorbate Pairs for Heat Transformation Application’, no. March 2021, 2020, doi: 10.3390/su12177040.
[32]       F. M. Makahleh, A. A. Badran, H. Attar, A. Amer, and A. A. Al-maaitah, ‘Modeling and Simulation of a Two-Stage Air Cooled Adsorption Chiller with Heat Recovery Part I : Physical and Mathematical Performance Model’, Applied Science, 12(13), 6542; doi:10.3390/app12136542.
[33]       H. Banda et al., ‘International Journal of Heat and Mass Transfer Preparation and assessment of ionic liquid and few-layered graphene composites to enhance heat and mass transfer in adsorption cooling and desalination systems’, International Journal of Heat and Mass Transfer, vol. 221, no. August 2023, p. 125095, 2024, doi: 10.1016/j.ijheatmasstransfer.2023.125095.
[34]       M. Ashouri, C. Chhokar, and M. Bahrami, ‘Stationary thin film microgroove-based sorber reactor for sorption heat transformers : Surface modification , sorption dynamics , and crystallization’, Energy Conversion and Management, vol. 315, no. April, p. 118780, 2024, doi: 10.1016/j.enconman.2024.118780.
[35]       P. Satheeshkumar and I. S. A, ‘Results in Engineering Experimental studies of activated carbon / graphite composite adsorbent for improved performance of packed and coated bed adsorption cooling system’, Results in Engineering, vol. 23, no. July, p. 102800, 2024, doi: 10.1016/j.rineng.2024.102800.
[36]       S. Huang, S. Li, R. Gu, S. Gao, and H. Guo, ‘Experimental study on the enhancement effect of ultrasonic oscillation on an ammonia-water falling film absorber’, Applied Thermal Engineering, vol. 263, no. June 2024, p. 125351, 2025, doi: 10.1016/j.applthermaleng.2024.125351.
[37]       T. Takote, B. Clausel, C. N. Anyanwu, M. Eke, F. Abam, and O. Ojike, ‘Results in Engineering Performance modelling of a two-bed silica gel-water pair adsorption chiller Coefficient of Performance Parabolic Through collector’, Results in Engineering, vol. 25, no. February, p. 104286, 2025, doi: 10.1016/j.rineng.2025.104286.
[38]       P. Kwakye-boateng, L. Tartibu, and T. Jen, ‘Performance Optimization of a Silica Gel – Water Adsorption Chiller Using Grey Wolf-Based Multi-Objective Algorithms and Regression Analysis Performance Optimization of a Silica Gel – Water Adsorption Chiller Using Grey Wolf-Based’, pp. 0–36, 2025, doi: 10.20944/preprints202507.0846.v1.
[39]       T. Takote, B. Clausel, C. Anyanwu, M. Eke, and C. Mokom, ‘Case Studies in Thermal Engineering Performance analysis of control valves for a novel adsorption chiller with thermal energy storage’, Case Studies in Thermal Engineering, vol. 69, no. March, p. 106015, 2025, doi: 10.1016/j.csite.2025.106015.
[40]       J. Krzywanski et al., ‘Performance enhancement of adsorption cooling and desalination systems by fluidized bed integration : Experimental and big data optimization’, Energy, vol. 315, no. January, p. 134347, 2025, doi: 10.1016/j.energy.2024.134347.
[41]       M. El, A. Chikh, M. Benramdane, A. Aliane, and B. Abdesselam, ‘Impact of ammonia-water concentrations on solar absorption refrigeration performance Impact of Ammonia-water Concentrations on Solar Absorption Refrigeration Performance’, Renewable Energy, no. April, 2025, doi: 10.21622/resd.2025.11.1.1223.
[42]       M. Q. Alomary and S. H. Hammadi, ‘Lithium Bromide-Water Absorption Refrigeration System Driven by Automobile Exhaust Gas : Thermodynamic Study’, Journal AREFMHT, vol. 1(1), pp. 102–120, 2025, doi:10.37934/arefmht.20.1.102120.