[1] Makul, N. (2025). Graphene Oxide Dictionary of Concrete Technology (pp. 663-665). Singapore: Springer Nature Singapore. doi: 10.1007/978-981-97-2998-2_367
[2] Mahmoudi, T., Wang, Y., & Hahn, Y.-B. (2018). Graphene and its derivatives for solar cells application Nano Energy, 47, 51-65. doi: 10.1016/j.nanoen.2018.02.047
[3] Neves, A. I. S., Rodrigues, D. P., De Sanctis, A., Alonso, E. T., Pereira, M. S., Amaral, V. S., . . . Craciun, M. F. (2017). Towards conductive textiles: coating polymeric fibres with graphene. Scientific Reports, 7(1), 4250. doi: 10.1038/s41598-017-04453-7
[4] Suresh, P. A., Kumar, K. V. A., Abraham, A. R., & Haghi, A. K. (2026). Introduction to Solar Energy Perovskite Solar Cells Technology: Next Generation Clean Energy Solution (pp. 1-11). Cham: Springer Nature Switzerland. doi: 10.1007/978-3-031-90750-0_1
[5] Liu, Y., Xiao, Y., Jia, J., Wang, H., Yan, W., & Zhu, M. (2024). Perovskite solar cells: From planar designs to fiber-based innovations. Wearable Electronics, 1, 150-159. doi: 10.1016/j.wees.2024.07.004
[6] Suresh, P. A., Kumar, K. V. A., Abraham, A. R., & Haghi, A. K. (2026). Perovskite Materials Perovskite Solar Cells Technology: Next Generation Clean Energy Solution (pp. 13-22). Cham: Springer Nature Switzerland. doi: 10.1007/978-3-031-90750-0_2
[7] Pande, S., Pandit, B., Shaikh, S. F., & Ubaidullah, M. (2024). Electrochemical Properties of Nanocarbon. In: Gupta, R.K. (eds) . NanoCarbon: A Wonder Material for Energy Applications. Singapore: Springer. doi: 10.1007/978-981-99-9931-6
[8] Faruk, O., Ahmed, A., Khadem, A. H., Jia, L., & Sun, L. (2025). Graphene-functionalized textile composites for wearable Joule heating applications. Advanced Nanocomposites, 2, 108-123. doi: 10.1016/j.adna.2025.03.001
[9] Srivastava, A., & Khan, S. A. (2025). Graphene Quantum Dots-Based Heterojunction Solar Cells. In S. Ameen, M. S. Akhtar & I. Kong (Eds.), Nanomaterials for Sensors and Sustainable Energy Volume 1 (pp. 219-240). Singapore: Springer Nature Singapore. doi: 10.1007/978-981-96-0660-3_10
[10] Segura, J., Proaño, A. R., & Chapi, D. (2025). Design of a backup system powered by renewable energy sources for the operation of a textile industry in Quito. IET Conference Proceedings, 2025(4), 90-94. doi: 10.1049/icp.2025.1250
[11] Dehshiri, S. S. H., & Firoozabadi, B. (2025). Hydrogen Penetration in Textile Industry: A Hybrid Renewable Energy System, Evolution Programming and Feasibility Analysis. Energy, 134785. doi: 10.1016/j.energy.2025.134785
[12] Kumar, G., Galphade, A., Solanki, A., BN, S., & Vasava, K. (2025). A Comparative Analysis of Standard and Flat Reflector Integrated Parabolic Trough Solar Collectors for Hot Water Generation. Journal of Solar Energy Research, 10(SI: Emerging Trends in Photothermal Conversion for Solar Energy Harvesting), 1-11. doi: 10.22059/jser.2025.379565.1440
[13] Hedayati, K., Ghanbari, D., & Hassanpoor, F. (2021). Green synthesis and Photo-catalyst study of ZnS-(Ni and Li) doped nanoparticles under solar irradiation. Journal of Solar Energy Research, 6(1), 648-655. doi: 10.22059/jser.2021.317386.1188
[14] Wieszczycka, K., Staszak, K., Woźniak-Budych, M. J., Litowczenko, J., Maciejewska, B. M., & Jurga, S. (2021). Surface functionalization – The way for advanced applications of smart materials. Coordination Chemistry Reviews, 436, 213846. doi: 10.1016/j.ccr.2021.213846
[15] Parker, P. P. M. (2024). The 2025-2030 World Outlook for Solar Cells and Modules. UK: ICON Group International, Inc. doi: B0CZ2938H5
[16] Younes, B. (2025). Nano-Fibers and Modern Solar Cell: A Short Review. The Journal of the Textile Institute, under press, 1–10. doi: 10.1080/00405000.2025.2472092
[17] Wahile, G. S., Londhe, S. D., Malwe, P. D., & Shaik, F. (2025). A Review On Cooling Techniques for Performance Improvement of Solar Photovoltaic Systems. Journal of Solar Energy Research, 10(SI: Emerging Trends in Photothermal Conversion for Solar Energy Harvesting), 12-44. doi: 10.22059/jser.2025.384682.1490
[18] Yoshikawa, K., Kawasaki, H., Yoshida, W., Irie, T., Konishi, K., Nakano, K., . . . Uzu, H. (2017). Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nature Energy, 2(5), 1-8. doi: 10.1038/nenergy.2017.32
[19] Qarony, W., Hossain, M. I., Hossain, M. K., Uddin, M. J., Haque, A., Saad, A., & Tsang, Y. H. (2017). Efficient amorphous silicon solar cells: characterization, optimization, and optical loss analysis. Results in physics, 7, 4287-4293. doi: 10.1016/j.rinp.2017.09.030
[20] Yu, Z., Zhang, X., Zhang, H., Huang, Y., Li, Y., Zhang, X., & Gan, Z. (2019). Improved power conversion efficiency in radial junction thin film solar cells based on amorphous silicon germanium alloys. Journal of Alloys and Compounds, 803, 260-264. doi: 10.1016/j.jallcom.2019.06.276
[21] Hsu, C.-H., Zhang, X.-Y., Zhao, M. J., Lin, H.-J., Zhu, W.-Z., & Lien, S.-Y. (2019). Silicon heterojunction solar cells with p-type silicon carbon window layer. Crystals, 9(8), 402. doi: 10.3390/cryst9080402
[22] Moutinho, H., Hasoon, F., Abulfotuh, F., & Kazmerski, L. (1995). Investigation of polycrystalline CdTe thin films deposited by physical vapor deposition, close‐spaced sublimation, and sputtering. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 13(6), 2877-2883. doi: 10.1116/1.579607
[23] Oni, A. M., Mohsin, A. S. M., Rahman, M. M., & Hossain Bhuian, M. B. (2024). A comprehensive evaluation of solar cell technologies, associated loss mechanisms, and efficiency enhancement strategies for photovoltaic cells. Energy Reports, 11, 3345-3366. doi: 10.1016/j.egyr.2024.03.007
[24] Li, H., Zhou, J., Tan, L., Li, M., Jiang, C., Wang, S., . . . Ye, Y. (2022). Sequential vacuum-evaporated perovskite solar cells with more than 24% efficiency. Science advances, 8(28), eabo7422. doi: 10.1126/sciadv.abo7422
[25] Znaki, F. z., Said, K., Znaki, J., Adadi, M., Moustabchir, H., Chtita, S., . . . El khattabi, S. (2025). Enhancing the Photovoltaic Performance of lead-free CH3NH3SnBr3 Solar Cells via Compressive Strain Engineering: A Numerical Investigation. Journal of Solar Energy Research, -. doi: 10.22059/jser.2025.396766.1580
[26] Chao, Y.-C., Lin, H.-I., Lin, J.-Y., Tsao, Y.-C., Liao, Y.-M., Hsu, F.-C., & Chen, Y.-F. (2023). Unconventional organic solar cell structure based on hyperbolic metamaterial. Journal of Materials Chemistry C, 11(6), 2273-2281. doi: 10.1039/d2tc04723c
[27] Cui, Y., Yao, H., Zhang, J., Zhang, T., Wang, Y., Hong, L., . . . Hou, J. (2019). Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nature Communications, 10(1), 2515. doi: 10.1038/s41467-019-10351-5
[28] Sharma, K., Sharma, V., & Sharma, S. (2018). Dye-sensitized solar cells: fundamentals and current status. Nanoscale Research Letters, 13, 1-46. doi: 10.1186/s11671-018-2760-6
[29] Zhou, Y., Herz, L. M., Jen, A. K., & Saliba, M. (2022). Advances and challenges in understanding the microscopic structure–property–performance relationship in perovskite solar cells. Nature Energy, 7(9), 794-807. doi: 10.1038/s41560-022-01096-5
[30] Zhang, C., Wang, S., Zhang, H., Feng, Y., Tian, W., Yan, Y., . . . Zakeeruddin, S. M. (2019). Efficient stable graphene-based perovskite solar cells with high flexibility in device assembling via modular architecture design. Energy & Environmental Science, 12(12), 3585-3594. doi: 10.1039/c9ee02391g
[31] Liu, J., Xue, Y., Zhang, M., & Dai, L. (2012). Graphene-based materials for energy applications. MRS Bulletin, 37(12), 1265-1272. doi: 10.1557/mrs.2012.179
[32] Karami, S., Nikoufard, M., Shariatmadar, S. M., & Javadi, S. (2021). Plasmonic hyperbolic metamaterial and nanosphere composite for light trapping as a solar cell: numerical study. Optical Materials, 122, 111740. doi: 10.1016/j.optmat.2021.111740
[33] Yu, P., Besteiro, L. V., Huang, Y., Wu, J., Fu, L., Tan, H. H., . . . Wiederrecht, G. P. (2019 ). Broadband metamaterial absorbers. Advanced Optical Materials, 7(3). doi: 10.1002/adom.201800995
[34] Pourasl, H. H., Barenji, R. V., & Khojastehnezhad, V. M. (2023). Solar energy status in the world: A comprehensive review. Energy Reports, 10, 3474-3493. doi: 10.1016/j.egyr.2023.10.022
[35] Rehman, U. U., Almufarij, R. S., Abd-Elwahed, A. R., Sahar, K. U., Hussain, E., Ashfaq, A., . . . Wang, C.-M. (2025). Improving efficiency of germanium-based perovskite solar cells with graphene interface layer: A strategy to minimize charge recombination. Journal of Physics and Chemistry of Solids, 198. doi: 10.1016/j.jpcs.2024.112487
[36] Sivasankar, S. M., Amorim, C. d. O., & Cunha, A. F. d. (2025). Progress in Thin-Film Photovoltaics: A Review of Key Strategies to Enhance the Efficiency of CIGS, CdTe, and CZTSSe Solar Cells. Journal of Composites Science, 9(3), 143. doi: 10.3390/jcs9030143
[37] Mercure, J. F., Salas, P., Vercoulen, P., Semieniuk, G., Lam, A., Pollitt, H., . . . Vakilifard, N. (2021). Reframing incentives for climate policy action. Nature Energy, 6, 1133-1143. doi: 10.1038/s41560-021-00934-2
[38] Vercoulen, P., Lee, S., Han, X., Zhang, W., Cho, Y., & Pang, J. (2023). Carbon-Neutral Steel Production and Its Impact on the Economies of China, Japan, and Korea: A Simulation with E3ME-FTT:Steel. Energies, 16, 4498. doi: 10.3390/en16114498
[39] Mercure, J. F. (2015). An age structured demographic theory of technological change. Journal of Evolutionary Economics, 25. doi: 10.1007/s00191-015-0413-9
[40] Ueckerdt, F., Pietzcker, R., Scholz, Y., Stetter, D., Giannousakis, A., & Luderer, G. (2017). Decarbonizing global power supply under region-specific consideration of challenges and options of integrating variable renewables in the REMIND model. Energy Economics, 64, 665-684. doi: 10.1016/j.eneco.2016.05.012
[41] Hoogwijk, M. (2004). On the global and regional potential of renewable energy sources. Utrecht University. doi: NASA -90-393-3640-7
[42] Mercure, J.-F., Pollitt, H., Edwards, N. R., Holden, P. B., Chewpreecha, U., Salas, P., . . . Vinuales, J. E. (2018). Environmental impact assessment for climate change policy with the simulation-based integrated assessment model E3ME-FTT-GENIE. Energy Strategy Reviews, 20, 195-208. doi: 10.1016/j.esr.2018.03.003
[43] Trutnevyte, E., Hirt, L. F., Bauer, N., Cherp, A., Hawkes, A., Edelenbosch, O. Y., . . . Vuuren, D. P. v. (2019). Societal Transformations in Models for Energy and Climate Policy: The Ambitious Next Step. One Earth, 1, 423-433. doi: 10.1016/j.oneear.2019.12.002
[44] Deshmukh, M. A., Park, S.-J., Hedau, B. S., & Ha, T.-J. (2021). Recent progress in solar cells based on carbon nanomaterials. Solar Energy, 220, 953-990. doi: 10.1016/j.solener.2021.04.001
[45] Moore, K., & Wei, W. (2021). Applications of carbon nanomaterials in perovskite solar cells for solar energy conversion. Nano Materials Science, 3, 276-290. doi: 10.1016/j.nanoms.2021.03.005
[46] Tiihonen, A., Siipola, V., Lahtinen, K., Pajari, H., Widsten, P., Tamminen, T., . . . Miettunen, K. (2021). Biocarbon from brewery residues as a counter electrode catalyst in dye solar cells. Electrochimica Acta, 368. doi: 10.1016/j.electacta.2020.137583
[47] Fu, X., Xu, L., Li, J., Sun, X., & Peng, H. (2018). Flexible solar cells based on carbon nanomaterials. Carbon(139), 1063-1073. doi: 10.1016/j.carbon.2018.08.017
[48] Shanmugam, B., & Kumar, S. R. (2020). A Study on Modern Innovations in Nano Technology for Harvesting Solar Energy and Energy Storage. Research Journal of Chemistry and Environment, 24(1), 22-26. doi: RJCESpecial(I)2020/5
[49] Zheng, X., Qiaole Hu, Zhou, X., Nie, W., Li, C., & Yuan, N. (2021). Graphene-based fibers for the energy devices application: A comprehensive review. Materials & Design, 201. doi: 10.1016/j.matdes.2021.109476
[50] Liu, P., Gao, Z., Xu, L., & Shi, X. (2018). polymer solar cell textile vianterlaced cathode and anode fibes. Journal of Materials Chemistry A, 6(41). doi: 10.1039/C8TA06510A
[51] Czerniak-Reczulska, M., Niedzielska, A., & Jędrzejczak, A. (2015). Graphene as a Material for Solar Cells Applications. Advances in Materials Science, 15(4). doi: 10.1515/adms-2015-0024
[52] Muchuweni, E., Mombeshora, E. T., Martincigh, B. S., & Nyamori, V. O. (2021). Recent Applications of Carbon Nanotubes in Organic Solar Cells. Frontiers in Chemistry, 9. doi: 10.3389/fchem.2021.733552
[53] Muchuweni, E., Bice, S. M., & Vincent, Q. (2020). Recent advances in graphene-based materials for dye-sensitized solar cell fabrication. RSC Advances, 10, 44453-44469. doi: 10.1039/d0ra08851j
[54] Sun, H., Zhang, Y., Zhang, J., Sun, X., & Peng, H. (2017). Energy harvesting and storage in 1D devices. Nature Reviewer Matter, 2. doi: 10.1038/natrevmats.2017.23
[55] Wang, L., Fu, X., He, J., Shi, X., Chen, T., Chen, P., . . . Peng, H. (2020). Application challenges in fiber and textile electronics. Advance Material, 32. doi: 10.1002/adma.201901971
[56] Wilson, J., & Mather, R. (2022). Solar Textiles: The Flexible Solution for Solar Power. UK: CRC Press. doi: 9780367706029
[57] Kalantarian, H., N Alshurafa, Pourhomayoun, M., & Sarrafzadeh, M. (2015). Power optimization for wearable devices. In Proceedings of the 2015 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), St. Louis, MO, USA, 568-573. doi: 10.1109/PERCOMW.2015.7134100
[58] Junger, I. J., Wehlage, D., Böttjer, R., Grothe, T., Juhász, L., Grassmann, C., . . . Ehrmann, A. (2018). Dye-sensitized solar cells with electrospun nanofiber mat-based counter electrodes. Materials, 11, 1604. doi: 10.3390/ma11091604
[59] Lv, D., Jiang, Q., Shang, Y., & Liu, D. (2022). Highly efficient fiber-shaped organic solar cells toward wearable flexible electronics. npj Flexible Electronics, 6(38). doi: 10.1038/s41528-022-00172-w
[60] Vasu, S., Singh, S., & Sharma, S. C. (2025). Modelling and simulation of plasma-assisted 2D graphene based solar cells. Journal of Computational Electronics, 24(2), 66. doi: 10.1007/s10825-025-02301-w
[61] Bandara, T. M. W. J., Gunathilake, S. M. S., Dissanayake, M. A. K. L., Pemasiri, B. M. K., Albinsson, I., & Mellander, B. E. (2024). A review of the development of graphene-incorporated dye-sensitized solar cells. Ionics, 30(11), 6789-6809. doi: 10.1007/s11581-024-05752-6
[62] Kalaivani, G., Sumathi, T., Nath, S. S., Manikandababu, C. S., Al-Taisan, N. A., Souayeh, B., . . . Alam, M. W. (2025). Enhancement of photovoltaic performance of graphene-TiO2 photoanode for dye-sensitized solar cells (DSSCs). Journal of Materials Science: Materials in Electronics, 36(2), 89. doi: 10.1007/s10854-024-14153-4
[63] Tiwari, A., Jain, R., Swarnkar, H., Bansal, P., Mathur, M., & Vasnani, H. (2025). Effect of graphene-based paraffin composite on performance enhancement of IoT-integrated box-type solar cooker. Environmental Science and Pollution Research. doi: 10.1007/s11356-025-36456-7
[64] Das, S., Sen, R., & Sharma, S. (2025). Design and Numerical Analysis of a Fractal Tree Shaped Graphene Based Metasurface Solar Absorber. Plasmonics, 20(4), 1889-1899. doi: 10.1007/s11468-024-02418-x
[65] Tran, Q. T., Mikhailova, I. A., Pavlov, I. N., & Ibragimova, E. I. (2025). Development of Research on Graphene-Based Nanofluids as Heat Carriers in Direct Absorption Solar Collectors. Colloid Journal. doi: 10.1134/S1061933X25600186
[66] Moulefera, I., Pastor, A. R., Fuster, M. G., Delgado-Marín, J. J., Montalbán, M. G., Rodríguez-Pastor, I., . . . Víllora, G. (2024). Novel application for graphene oxide-based ionanofluids in flat plate solar thermal collectors. Scientific Reports, 14(1), 17610. doi: 10.1038/s41598-024-67874-1
[67] Afzal, A. M., Imran, M., Iqbal, M. W., Iqbal, M. Z., Mumtaz, S., Azeem, M., . . . Ali, A. (2024). Surface modification and interface engineering to enhance the performance of 2D-graphene/3D-silicon Schottky junction solar cells. Journal of Materials Science: Materials in Electronics, 35(34), 2165. doi: 10.1007/s10854-024-13880-y
[68] Alsaati, S. A. A., Abdoon, R. S., Hussein, E. H., Abduljalil, H. M., Mohammad, R. K., Al-Seady, M. A., . . . Allan, L. (2024). Unveiling the potential of graphene and S-doped graphene nanostructures for toxic gas sensing and solar sensitizer cell devices: insights from DFT calculations. Journal of Molecular Modeling, 30(6), 191. doi: 10.1007/s00894-024-05994-1
[69] Sepahvandi, V., Rahimi Kazerooni, A., Ramtinfard, S., Kakesh, N., & Saghaei, H. (2024). Enhancing perovskite solar cell efficiency through core–shell Ni@SiO2@graphene nanoparticles. Optical and Quantum Electronics, 57(1), 26. doi: 10.1007/s11082-024-07775-9
[70] Moharana, S., Rout, L., & Sagadevan, S. (2024). Carbon Nanotube-Polymer Nanocomposites: Spectroscopic, Physiochemical, Electrochemical, and Recent Applications. USA: Springer. doi: 10.1007/978-981-97-6329-0_5
[71] Yerkar, S. A., Bisane, M. C., & Waghchore, D. (2017). Carbon Nanotubes in Solar Panel Technology. IETE Zonal Seminar: Recent Trends in Engineering & Technology, 93-97. doi: IETE Zonal Seminar
[72] Abraham, J., Thomas, S., & Kalarikkal, N. (2022). Handbook of Carbon Nanotubes. UK: Springer. doi: 10.1007/978-3-030-91346-5
[73] Nieto, A., Agarwal, A., Lahiri, D., Bisht, A., & Bakshi, S. R. (2024). Carbon Nanotubes Reinforced Metal Matrix Composites, 2nd Edition. UK: CRC Press. doi: 10.1201/9780429299582
[74] Hughes, K. J., Iyer, K. A., Bird, R. E., Ivanov, J., Banerjee, S., Georges, G., & Zhou, Q. A. (2024). Review of Carbon Nanotube Research and Development: Materials and Emerging Applications. ACS Applied Nano Materials, 7(16), 18695-18713. doi: 10.1021/acsanm.4c02721
[75] Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F., & Smalley, R. E. (1985). C60: Buckminsterfullerene. Nature, 318(6042), 162-163. doi: 10.1038/318162a0
[76] Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354(6348), 56-58. doi: 10.1038/354056a0
[77] Ebbesen, T. W., & Ajayan, P. M. (1992). Large-scale synthesis of carbon nanotubes. Nature, 358(6383), 220-222. doi: 10.1038/358220a0
[78] Iijima, S., & Ichihashi, T. (1993). Single-shell carbon nanotubes of 1-nm diameter. Nature, 363(6430), 603-605. doi: 10.1038/363603a0
[79] Ajayan, P. M., Stephan, O., Colliex, C., & Trauth, D. (1994). Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer Resin—Nanotube Composite. Science, 265(5176), 1212-1214. doi: 10.1126/science.265.5176.1212
[80] Guo, T., Nikolaev, P., Thess, A., Colbert, D. T., & Smalley, R. E. (1995). Catalytic growth of single-walled nanotubes by laser vaporization. Chemical physics letters, 243(1-2), 49-54. doi: 10.1016/0009-2614(95)00825-o
[81] Tans, S. J., Verschueren, A. R., & Dekker, C. (1998). Room-temperature transistor based on a single carbon nanotube. Nature, 393(6680), 49-52. doi: 10.1038/29954
[82] Kumar, M., & Ando, Y. (2003). Camphor–a botanicalprecursor producing garden of carbon nanotube. Diamond Related Materials, 12, 998-1002. doi: 10.1016/s0925-9635(02)00341-2
[83] Kumar, M., & Ando, Y. (2003). Single-wall and multiwallcarbon nanotubes from camphor-a botanicalhydrocarbon. Diamond and Related Materials, 12, 1845-1850. doi: 10.1016/s0925-9635(03)00217-6
[84] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D.-e., Zhang, Y., Dubonos, S. V., . . . Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666-669. doi: 10.1126/science.1102896
[85] Lee, C., Wei, X., Kysar, J. W., & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887), 385-388. doi: 10.1126/science.1157996
[86] Dresselhaus, M. S., & Araujo, P. T. (2010). Perspectives on the 2010 Nobel Prize in Physics for Graphene. ACS Nano, 4(11), 6297-6302. doi: 10.1021/nn1029789
[87] Sun, L., & Fugetsu, B. (2013). Mass production of graphene oxide from expanded graphite. Materials Letters, 109, 207-210. doi: https://doi.org/10.1016/j.matlet.2013.07.072
[88] Sharma, P. P., Wu, J., Yadav, R. M., Liu, M., Wright, C. J., Tiwary, C. S., . . . Zhou, X. D. (2015). Nitrogen-Doped Carbon Nanotube Arrays for High-Efficiency Electrochemical Reduction of CO2: On the Understanding of Defects, Defect Density, and Selectivity. Angew Chem Int Ed Engl, 54(46), 13701-13705. doi: 10.1002/anie.201506062
[89] Rao, R., Pint, C. L., Islam, A. E., Weatherup, R. S., Hofmann, S., Meshot, E. R., . . . Hart, A. J. (2018). Carbon Nanotubes and Related Nanomaterials: Critical Advances and Challenges for Synthesis toward Mainstream Commercial Applications. ACS Nano, 12(12), 11756-11784. doi: 10.1021/acsnano.8b06511
[90] Pyo, S., Eun, Y., Sim, J., Kim, K., & Choi, J. (2022). Carbon nanotube-graphene hybrids for soft electronics, sensors, and actuators. Micro and Nano Systems Letters, 10. doi: 10.1186/s40486-022-00151-w
[91] Giri, P., Abdallah, S., Kim, W. K., Alverez, N. T., & Schulz, M. (2024). Investigation of carbon nanotube sheet for lunar dust shielding. Journal of Industrial Textiles, 54, 15280837231224077. doi: 10.1177/15280837231224077
[92] Nag, A., Alahi, M. E. E., & Mukhopadhyay, S. C. (2021). Recent progress in the fabrication of graphene fibers and their composites for applications of monitoring human activities. Applied Materials Today, 22. doi: 10.1016/j.apmt.2021.100953
[93] Hasanlou, S., Vaseghi, M., & Sameezadeh, M. (2017). Graphene Synthesis Methods for Graphene Based Supercapacitors of the Solar Energy Systems. Journal of Solar Energy Research, 2(4), 309-314. doi: article_64918
[94] Kong, H. X. (2013). Hybrids of carbon nanotubes and graphene/graphene oxide. Current Opinion in Solid State and Materials Science, 17(1), 31-37. doi: 10.1016/j.cossms.2012.12.002
[95] Chen, Q., Zhong, Y., Zhang, Z., Zhao, X., Huang, M., Zhen, Z., . . . Zhu, H. (2018). Long-term electrical conductivity stability of graphene under uncontrolled ambient conditions. Carbon, 133, 410-415. doi: 10.1016/j.carbon.2018.03.056
[96] Lin, H., Dong, H., Xu, S., Wang, X., Zhang, J., & Wang, Y. (2016). Thermal transport in graphene fiber fabricated by wet-spinning method. Materials Letters, 183, 147-150. doi: 10.1016/j.matlet.2016.07.092
[97] Cheng, H., Hu, C., Zhao, Y., & Qu, L. (2014). Graphene fiber: a new material platform for unique applications. NPG Asia Materials, 6(7), e113-e113. doi: 10.1038/am.2014.48
[98] Hu, C., Zhao, Y., Cheng, H., Wang, Y., Dong, Z., Jiang, C., . . . Qu, L. (2012). Graphene microtubings: controlled fabrication and site-specific functionalization. Nano Letters, 12(11), 5879-5884. doi: 10.1021/nl303243h
[99] Cheng, H., Dong, Z., Hu, C., Zhao, Y., Hu, Y., Qu, L., . . . Dai, L. (2013). Textile electrodes woven by carbon nanotube–graphene hybrid fibers for flexible electrochemical capacitors. Nanoscale, 5(8), 3428-3434. doi: 10.1039/c3nr00320e
[100] Cao, Y., Zhou, T., Wu, K., Yong, Z., & Zhangabc, Y. (2021). Aligned carbon nanotube fibers for fiber-shaped solar cells, supercapacitors and batteries. RSC Advances, 11, 6628. doi: 10.1039/d0ra09482j
[101] Agrawal, P., Ebrahim, S., & Ponnamma, D. (2025). Advancements in nanocarbon-based catalysts for enhanced fuel cell performance: a comprehensive review. International Journal of Energy and Water Resources, 9(2), 1005-1027. doi: 10.1007/s42108-024-00324-w
[102] Martínez-Barón, C., Calvo, V., Álvarez-Sánchez, M. Á., Pascual, F. J., Maser, W. K., Benito, A. M., . . . González-Domínguez, J. M. (2025). Carbon nanotube film electrodes enabled by nanostructured biopolymers through aqueous processing. Physical Chemistry Chemical Physics. doi: 10.1039/D5CP01536G
[103] Yan, S., Jin, S., He, X., Xu, J., Feng, H., Xing, W., . . . Shou, D. (2025). Direct synthesis of composite conductive carbon nanofiber aerogels with continuous internal networks for collaborative physiological signal monitoring under complex environments. Sensors and Actuators B: Chemical, 426, 136975. doi: 10.1016/j.snb.2024.136975
[104] Durañona, A. P. R., & Ornaghi, J. H. L. (2025). Advances and Applications of Graphene-Enhanced Textiles: A 10-Year Review of Functionalization Strategies and Smart Fabric Technologies. Textiles, 5(3), 28. doi: 10.3390/textiles5030028
[105] Zhu, J., Zu, J., Liu, J., Wang, Y., Pei, M., & Xu, Y. (2020). Self-assembled reduced graphene oxide films with different thicknesses as high performance supercapacitor electrodes. Journal of Energy Storage, 32, 101795. doi: 10.1016/j.est.2020.101795
[106] Hu, X., Tian, M., Qu, L., Zhu, S., & Han, G. (2015). Multifunctional cotton fabrics with graphene/polyurethane coatings with far-infrared emission, electrical conductivity, and ultraviolet-blocking properties. Carbon, 95, 625-633. doi: 10.1016/j.carbon.2015.08.099
[107] Lee, S., Shin, S., Lee, S., Seo, J., Lee, J., Son, S., . . . Kim, D. E. (2015). Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics. Advanced Functional Materials, 25(21), 3114-3121. doi: 10.1002/adfm.201500628
[108] Qu, Y., Nguyen‐Dang, T., Page, A. G., Yan, W., Das Gupta, T., Rotaru, G. M., . . . Sorin, F. (2018). Superelastic multimaterial electronic and photonic fibers and devices via thermal drawing. Advanced Materials, 30(27), 1707251. doi: 10.1002/adma.201707251
[109] Cheng, Y., Zhang, H., Wang, R., Wang, X., Zhai, H., Wang, T., . . . Sun, J. (2016). Highly stretchable and conductive copper nanowire based fibers with hierarchical structure for wearable heaters. ACS Applied Materials & Interfaces, 8(48), 32925-32933. doi: 10.1021/acsami.6b09293.s001
[110] Yuan, D., Li, B., Cheng, J., Guan, Q., Wang, Z., Ni, W., . . . Wang, B. (2016). Twisted yarns for fiber-shaped supercapacitors based on wetspun PEDOT: PSS fibers from aqueous coagulation. Journal of Materials Chemistry A, 4(30), 11616-11624. doi: 10.1039/c6ta04081k
[111] Zhang, Z., Cui, L., Shi, X., Tian, X., Wang, D., Gu, C., . . . Hu, Y. (2018). Textile display for electronic and brain‐interfaced communications. Advanced Materials, 30(18), 1800323. doi: 10.1002/adma.201800323
[112] Shang, Y., He, X., Li, Y., Zhang, L., Li, Z., Ji, C., . . . Peng, Q. (2012). Super-stretchable spring-like carbon nanotube ropes. Advanced Materials (Deerfield Beach, Fla.), 24(21), 2896-2900. doi: 10.1002/adma.201200576
[113] Wang, X., Qiu, Y., Cao, W., & Hu, P. (2015). Highly stretchable and conductive core–sheath chemical vapor deposition graphene fibers and their applications in safe strain sensors. Chemistry of Materials, 27(20), 6969-6975. doi: 10.1021/acs.chemmater.5b02098
[114] Wang, R., Xu, Z., Zhuang, J., Liu, Z., Peng, L., Li, Z., . . . Gao, C. (2017). Highly stretchable graphene fibers with ultrafast electrothermal response for low-voltage wearable heaters. Advanced Electronic Materials, 3(1). doi: 10.1002/aelm.201600425
[115] Yin, Z., Zhu, J., He, Q., Cao, X., Tan, C., Chen, H., . . . Zhang, H. (2014). Graphene-based materials for solar cell applications. Advanced Energy Materials, 4(1). doi: 10.1201/b11259-14
[116] Wekalao, J. (2025). High-Efficiency Broadband Solar Absorber Based on Graphene/YBCO/LaAlO₃/Ti for Enhanced Solar Thermal Performance Using Random Forest Regression. Plasmonics. doi: 10.1007/s11468-025-02862-3
[117] Pei, S., Zhao, J., Du, J., Ren, W., & Cheng, H. M. (2010). Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon, 48(4466). doi: 10.1016/j.carbon.2010.08.006
[118] Moon, I. K., Lee, J., Ruoff, R. S., & Lee, H. (2010). Reduced graphene oxide by chemical graphitization. Nature Communications, 1(1), 73. doi: 10.1038/ncomms1067
[119] Jian, G. (2010). Environment-Friendly Method To Produce Graphene That Employs Vitamin C and Amino Acid. Chemistry of Materials, 22(7), 2213-2218. doi: 10.1021/cm902635j
[120] Fernández-Merino, M. J., Guardia, L., Paredes, J. I., Villar-Rodil, S., Solís-Fernández, P., Martínez-Alonso, A., & Tascón, J. M. (2010 ). Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. The Journal of Physical Chemistry C, 114(14), 6426-6432. doi: 10.1021/jp100603h
[121] Kiang, C. C. (2014). Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chemical Society Reviews, 43(1), 291-312. doi: 10.1039/c3cs60303b
[122] McAllister, M. J. (2007). Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite. Chemistry of Materials, 19(18), 4396-4404. doi: 10.1021/cm0630800
[123] Younes, B. (2023). Smart E-textiles: A review of their aspects and applications. Journal of Industrial Textiles, 35(3). doi: 10.1177/15280837231215493
[124] Younes, B. (2023). Textronics: A Review of their Technological Aspects and Applications. The Journal of the Textile Institute, 115(3), 1-17. doi: 10.1080/00405000.2023.2236320
[125] Sun, H., Zhou, X., Yang, W., Gao, Y., Zhang, R., Liu, J., . . . Wang, Z. (2020). High Performance Dye-Sensitized Solar Cells Based on Electrospun MoS2-Carbon Nanofiber Composite Counter Electrode. Original Research, 7, 1-7. doi: 10.3389/fmats.2020.593345
[126] Radamson, H. H. (2017). Graphene. Berlin: Springer. doi: 10.1007/978-3-319-48933-9
[127] Duan, S.-z., Wu, X.-w., Wang, Y.-f., Feng, J., Hou, S.-y., Huang, Z.-h., . . . Kang, F.-y. (2023). Recent progress in the research and development of natural graphite for use in thermal management, battery electrodes and the nuclear industry Author links open overlay panel. New Carbon Materials, 38(1), 73-91. doi: 10.1016/j.carbon.2023.02.028
[128] Dubey, P. (2025). From Waste Plastics to Carbon/Graphene Quantum Dots: A Journey Towards Value-Added Carbon Nanostructures for Various Applications. Waste and Biomass Valorization. doi: 10.1007/s12649-025-03118-1
[129] Sadana, S., Rajamohan, N., Manivasagan, R., Raut, N., Paramasivam, S., Gatto, G., & Kumar, A. (2025). Graphene-based materials for photocatalytic and environmental sensing applications. Results in Engineering, 27, 105725. doi: 10.1016/j.rineng.2025.105725
[130] Crapnell, R. D., & Banks, C. E. (2024). The Handbook of Graphene Electrochemistry [2 ed.]. London: Springer. doi: 10.1007/978-1-4471-7536-0
[131] Cai, X., Lai, L., Shen, Z., & Lin, J. (2017). Graphene and graphene-based composites as Li-ion battery electrode materials and their application in full cells. Journal of Materials Chemistry A, 5, 15423-15446. doi: 10.1039/c7ta04354f
[132] Cheng, Q., Okamoto, Y., Tamura, N., Tsuji, M., Maruyama, S., & Matsuo, Y. (2017). Graphene-like-graphite as fast-chargeable and high-capacity anode materials for lithium ion batteries. Scientific Reports, 7, 14782. doi: 10.1038/s41598-017-14504-8
[133] Wang, S., Liang, L., & Chen, S. (2024). Tensile strength and toughness of carbon nanotube-graphene foam composite materials and the corresponding microscopic influence mechanism. Materials & Design, 237, 112529. doi: 10.1016/j.matdes.2023.112529
[134] Wu, X., Li, Z., Zhu, Y., Wang, J., & Yang, S. (2021). Ultralight GO-Hybridized CNTs Aerogels with Enhanced Electronic and Mechanical Properties for Piezoresistive Sensors. ACS Applied Materials & Interfaces, 13(22), 26352-26361. doi: 10.1021/acsami.1c04080
[135] Papageorgiou, D. G., Ian, A. K., & Robert, J. Y. (2017). Mechanical properties of graphene and graphene-based nanocomposites. Progress in Materials Science, 90, 75-127. doi: 10.1016/j.pmatsci.2017.07.004
[136] Nguyen, B. H., & Nguyen, V. H. (2016). Promising applications of graphene and graphene-based nanostructures. Advances in Natural Sciences: Nanoscience and Nanotechnology, 7. doi: 10.1088/2043-6262/7/2/023002
[137] Yoon, D., Son, Y.-W., & Cheong, H. (2011). Negative Thermal Expansion Coefficient of Graphene Measured by Raman Spectroscopy. Nano Letters, 11(8), 3227-3231. doi: 10.1021/nl201488g
[138] Grynko, D. A., Fedoryak, A. N., Smertenko, P. S., Dimitriev, O. P., Ogurtsov, N. A., & Pud, A. A. (2016). Hybrid solar cell on a carbon fiber. Nanoscale Research Letters, 11(265). doi: 10.1186/s11671-016-1469-7
[139] Sarkhoush, M., Rasooli Saghai, H., & Soofi, H. (2023). Type-I Graphene/Si Quantum Dot Superlattice for Intermediate Band Applications. Journal of Solar Energy Research, 8(1), 1317-1325. doi: 10.22059/jser.2022.349258.1257
[140] Yousef Hayek, S. S., Fayzullaev, N., Asiri, M., Kanjariya, P., M, R. M., Pathak, P. K., . . . Yaqob, M. (2025). High-efficiency fiber-shaped dye-sensitized solar cells with cost-effective ZnCo2O4/Carbon fiber counter electrodes for low-light environments. Materials Science in Semiconductor Processing, 192, 109432. doi: 10.1016/j.mssp.2025.109432
[141] Chaudhary, V., Gautam, A., Silotia, P., Malik, S., Hansen, R. d. O., Khalid, M., . . . Mishra, Y. K. (2022). Internet-of-nano-things (IoNT) driven intelligent face masks to combat airborne health hazard. MatrialsToday, 60, 201-226. doi: 10.1016/j.mattod.2022.08.019
[142] Hahn, Y. B., Mahmoudi, T., & Wang, Y. (2024). Next-Generation Solar Cells, Principles and Materials. Singapore: United Square. doi: 9789814968669
[143] Seifpanah Sowmehsaraee, M., Ranjbar, M., & Abedi, M. (2022). Investigating the effect of nano-structured magnetic particles lanthanum strontium manganite on perovskite solar cells. Journal of Solar Energy Research, 7(1), 945-956. doi: 10.22059/jser.2021.325062.1205
[144] Di Giacomo, F., Fakharuddin, A., Jose, R., & Brown, T. M. (2016). Progress, challenges and perspectives in flexible perovskite solar cells. Energy & Environmental Science, 9(10), 3007-3035. doi: 10.1039/C6EE01137C
[145] Howlader, A. H., & Uddin, A. (2025). Progress and Challenges of Three-Dimensional/Two-Dimensional Bilayered Perovskite Solar Cells: A Critical Review. Nanomaterials, 15(12), 876. doi: 10.3390/nano15120876
[146] Zhang, Z., Li, L., Gao, S., & Yang, P. (2025). Graphene interface modification to improve efficiency and stability at MAPbI3/ZnO interface for perovskite solar cells: A first-principles study. Solar Energy, 287. doi: 10.1016/j.solener.2024.113236
[147] Thavasi, V., Singh, G., & Ramakrishna, S. (2008). Electrospun nanofibers in energy and environmental applications. Energy & Environmental Science, 1, 205-221. doi: 10.1039/b809074m
[148] Gopal Krishna, B., Rathore, G. S., Shukla, N., & Tiwari, S. (2021). Perovskite solar cells: A review of architecture, processing methods, and future prospects. In I. Khan, A. Khan, M. M. A. Khan, S. Khan, F. Verpoort & A. Umar (Eds.), Hybrid Perovskite Composite Materials (pp. 375-412): Woodhead Publishing. doi: 10.1016/B978-0-12-819977-0.00018-4
[149] Afre, R. A., & Pugliese, D. (2024). Perovskite Solar Cells: A Review of the Latest Advances in Materials, Fabrication Techniques, and Stability Enhancement Strategies. Micromachines, 15(2), 192. doi: 10.3390/mi15020192.
[150] Kashtiban, R. J., Patrick, C. E., Ramasse, Q., Walton, R. I., & Sloan, J. (2023). Picoperovskites: The Smallest Conceivable Isolated Halide Perovskite Structures Formed within Carbon Nanotubes. Advanced Materials, 35(10). doi: 10.1002/adma.202208575
[151] Hatton, R. A., Miller, A. J., & Silva, S. R. P. (2008). Carbon nanotubes: A multi-functional material for organic optoelectronics. Journal of material chemistry, 18, 1183-1192. doi: 10.1039/b713527k
[152] Jeon, I., Delacou, C., Kaskela, A., Kauppinen, E. I., Maruyama, S., & Matsuo, Y. (2016). Metal-electrode-free Window-like Organic Solar Cells with p-Doped Carbon Nanotube Thin-film Electrodes. Scientific Reports, 6(31348). doi: 10.1038/srep31348
[153] Miah, M. H., Khandaker, M. U., Rahman, M. B., Nur-E-Alam, M., & Islam, M. A. (2024). Band gap tuning of perovskite solar cells for enhancing the efficiency and stability: issues and prospects. RSC Advances, 14(23), 15876-15906. doi: 10.1039/d4ra01640h
[154] Bello, S., Urwick, A., Bastianini, F., Nedoma, A. J., & Dunbar, A. (2022). An introduction to perovskites for solar cells and their characterisation. Energy Reports, 8, 89-106. doi: 10.1016/j.egyr.2022.08.205
[155] Krishna, B. G., Sundar Ghosh, D., & Tiwari, S. (2021). Progress in ambient air-processed perovskite solar cells: Insights into processing techniques and stability assessment. Solar Energy, 224, 1369-1395. doi: 10.1016/j.solener.2021.07.002
[156] Gopal Krishna, B., Ghosh, D. S., & Tiwari, S. (2023). Device simulation of perovskite/silicon tandem solar cell with antireflective coating. Optical and Quantum Electronics, 55(3), 197. doi: 10.1007/s11082-022-04470-5
[157] Ye, Y., Li, R., Qu, B., Wang, H., Liu, Y., Chen, Z., . . . Xiao, L. (2025). Machine learning for energy band prediction of halide perovskites. Materials Futures, 4(3), 035601. doi: 10.1088/2752-5724/adeead
[158] Suresh, P. A., Kumar, K. V. A., Abraham, A. R., & Haghi, A. K. (2026). Fabrication of Perovskite Solar Cell Perovskite Solar Cells Technology: Next Generation Clean Energy Solution (pp. 23-34). Cham: Springer Nature Switzerland. doi: 10.1007/978-3-031-90750-0_3
[159] Younes, B., & Fotheringham, A. (2008). Statistical modelling of the extrusion of starch-based fibres, poster presentation. e, World Textile Conference, Città Studi, Biella, Italy. doi: AUTEX 2008
[160] Younes, B. (2013). Classification, characterization, and the production processes of biopolymers used in the textiles industry. The Journal of the Textile Institute, 108(5), 674-682. doi: 10.1080/00405000.2016.1180731
[161] Younes, B., Ward, S. C., & Christie, R. M. (2020). Textile Applications of Commercial Photochromic Dyes: Part8. A Statistical Investigation of the Influence of Photochromic Dyes on Thermoplastic Fibres Using a UV-irradiation Technique",. The Journal of the Textile Institute, 111(9), 1246-1259. doi: 10.1080/00405000.2019.1693219
[162] Younes, B., Ward, S. C., Christie, R. M., & Vettese, S. (2019). Textile applications of commercial photochromic dyes: part 7. A statistical investigation of the influence of photochromic dyes on the mechanical properties of thermoplastic fibres. The Journal of the Textile Institute, 110(5), 780-790. doi: 10.1080/00405000.2018.1526444
[163] Zhu, J., Yan, C., Li, G., Cheng, H., Li, Y., Liu, T., . . . Zhang, X. (2024). Recent developments of electrospun nanofibers for electrochemical energy storage and conversion. Energy Storage Materials, 65, , 103-111. doi: 10.1016/j.ensm.2023.103111
[164] Pereira, C., Pereira, A. M., Freire, C., Pinto, T. V., Costa, R. S., & Teixeira, J. S. (2020). Nanoengineered textiles: from advanced functional nanomaterials to groundbreaking high-performance clothing. In C. M. Hussain (Ed.), Handbook of Functionalized Nanomaterials for Industrial Applications (pp. 611-714): Elsevier. doi: 10.1016/b978-0-12-816787-8.00021-1
[165] Gorgutsa, S., Gu, J. F., & Skorobogatiy, M. (2012). A woven 2D touchpad sensor and a 1D slide sensor using soft capacitor fibers. Smart Materials Structure, 21, 15- 10. doi: 10.1088/0964-1726/21/1/015010
[166] Alsamarah, W., Younes, B., & Yousef, M. (2022). Reducing waste in garment factories by intelligent planning of optimal cutting orders. The Journal of the Textile Institute, 113(9), 1917-1925 doi: 10.1080/00405000.2021.1956711
[167] Hassabo, A., Hegazy, B. M., Elmorsy, H. M., & Gamal, N. (2024). Intelligent Smart Textiles: Wearable Textile Devices for Solar Cells. Journal of Art Design and Music, 3(2). doi: 10.55554/2785-9649.1034
[168] Zięba, J., & Frydrysiak, M. (2006). Textronics – Electrical and Electronic Textiles. Sensors for Breathing Frequency Measurement. FIBRES & TEXTILES in Eastern Europe, 14(5), 43-48. doi: 10.3390/s22186788
[169] Cai, Z., Ye, K., Luo, H., Tang, J., Yang, G., Xie, H., . . . Xu, K. (2025). Textile Hybrid Electronics for Multifunctional Wearable Integrated Systems. Research, 8, 0779. doi: 10.34133/research.0779
[170] Satharasinghe, A., Hughes-Rile, T., & Dias, T. (2020). A Review of Solar Energy Harvesting Electronic Textiles. Sensors, 20(20), 5938. doi: 10.3390/s20205938
[171] Zhang, Y., Wang, H., Lu, H., Li, S., & Zhang, Y. (2021). Electronic fibers and textiles: Recent progress and perspective. iScience, 24(7), 102716. doi: 10.1016/j.isci.2021.102716
[172] Sahasrabudhe, A., Rupprecht, L. E., Orguc, S., Khudiyev, T., Tanaka, T., Sands, J., . . . Allen, H. (2024). Multifunctional microelectronic fibers enable wireless modulation of gut and brain neural circuits. Nature Biotechnology, 42(6), 892-904. doi: 10.1038/s41587-023-01833-5
[173] He, X., Shi, J., Hao, Y., He, M., Cai, J., Qin, X., . . . Yu, J. (2022). Highly stretchable, durable, and breathable thermoelectric fabrics for human body energy harvesting and sensing. Carbon Energy, 4(4), 621-632. doi: 10.1002/cey2.186
[174] Zhu, C., Ruohao, L., Xue, C., Evelyn, C., Xiaoteng, L., Yuqi, W., . . . Xuqing, L. (2020). Ultraelastic yarns from curcumin‐assisted ELD toward wearable human-machine interface textiles. Advanced Science, 7(23). doi: 10.1002/advs.202002009
[175] Ge, J. (2016). A Stretchable Electronic Fabric Artificial Skin with Pressure-, Lateral Strain-, and Flexion-Sensitive Properties. Advanced Materials, 28(4), 722-728. doi: 10.1002/adma.201504239
[176] Yang, Z., Jia, Y., Niu, Y., Zhang, Y., Zhang, C., Li, P., . . . Li, Q. (2020). One-step wet-spinning assembly of twisting-structured graphene/carbon nanotube fiber supercapacitor. Journal of Energy Chemistry, 51, 434-441. doi: 10.1016/j.jechem.2020.02.023
[177] Cheng, H., Hu, Y., Zhao, F., Dong, Z., Wang, Y., Chen, N., . . . Qu, L. (2014). Moisture-activated torsional graphene-fiber motor. Advanced Materials (Deerfield Beach, Fla.), 26(18), 2909-2913. doi: 10.1002/adma.201305708
[178] Xu, L., Liu, Z., Zhai, H., Chen, X., Sun, R., Lyu, S., . . . Jin, L. (2020). Moisture-resilient graphene-dyed wool fabric for strain sensing. ACS Applied Materials & Interfaces, 12(11), 13265-13274. doi: 10.1021/acsami.9b20964.s001
[179] Wang, R., Du, Z., Xia, Z., Liu, J., Li, P., Wu, Z., . . . Liu, D. (2022). Magnetoelectrical clothing generator for high‐performance transduction from biomechanical energy to electricity. Advanced Functional Materials, 32(6), 2107682. doi: 10.1002/adfm.202107682
[180] Song, Y. J., Kim, J.-W., Cho, H.-E., Son, Y. H., Lee, M. H., Lee, J., . . . Lee, S.-M. (2020). Fibertronic organic light-emitting diodes toward fully addressable, environmentally robust, wearable displays. ACS Nano, 14(1), 1133-1140. doi: 10.1021/acsnano.9b09005.s002
[181] Chen, J., Guo, H., Pu, X., Wang, X., Xi, Y., & Hu, C. (2018). Traditional weaving craft for one-piece self-charging power textile for wearable electronics. Nano Energy, 50, 536-543. doi: 10.1016/j.nanoen.2018.06.009
[182] Sharma, S., Selvan T, M., Naskar, S., Mondal, S., Adhya, P., Mukhopadhyay, T., & Mondal, T. (2022). Printable graphene-sustainable elastomer-based cross talk free sensor for point of care diagnostics. ACS Applied Materials & Interfaces, 14(51), 57265-57280. doi: 10.1021/acsami.2c17805.s002
[183] Sharma, S., Thapa, A., Pramanik, S., Sengupta, C., & Mondal, T. (2024). Graphene‐Infused Sustainable Rubber‐Based Triboelectric Nanogenerator For Real‐Time Human Motion Monitoring. Small, 20(46), 2404771. doi: 10.1002/smll.202404771
[184] Liu, Z., Li, Z., Zhai, H., Jin, L., Chen, K., Yi, Y., . . . Yao, S. (2021). A highly sensitive stretchable strain sensor based on multi-functionalized fabric for respiration monitoring and identification. Chemical Engineering Journal, 426, 130869. doi: 10.1016/j.cej.2021.130869
[185] Zhang, M., Wang, C., Wang, Q., Jian, M., & Zhang, Y. (2016). Sheath–core graphite/silk fiber made by dry-meyer-rod-coating for wearable strain sensors. ACS Applied Materials & Interfaces, 8(32), 20894-20899. doi: 10.1021/acsami.6b06984.s001
[186] Krebs, F., & Hösel, M. (2015). The Solar Textile Challenge: How It Will Not Work and Where It Might. ChemSusChem, 8, 966-969. doi: 10.1002/cssc.201403377
[187] Afroj, S., Karim, N., Wang, Z., Tan, S., He, P., Holwill, M., . . . Novoselov, K. S. (2019). Engineering graphene flakes for wearable textile sensors via highly scalable and ultrafast yarn dyeing technique. ACS Nano, 13(4), 3847-3857. doi: 10.1021/acsnano.9b00319
[188] Syama, S., & Mohanan, P. V. (2016). Safety and biocompatibility of graphene: A new generation nanomaterial for biomedical application. International journal of biological macromolecules, 86, 546-555. doi: 10.1016/j.ijbiomac.2016.01.116
[189] Li, Y., Zhu, H., Zhu, S., Wan, J., Liu, Z., Vaaland, O., . . . Li, T. (2015). Hybridizing wood cellulose and graphene oxide toward high-performance fibers. NPG Asia Materials, 7(1), e150-e150. doi: 10.1038/am.2014.111
[190] Cui, J., & Zhou, S. (2018). Highly conductive and ultra-durable electronic textiles via covalent immobilization of carbon nanomaterials on cotton fabric. Journal of Materials Chemistry C, 6(45), 12273-12282. doi: 10.1039/c8tc04017f
[191] Cheng, H., Li, Q., Zhu, L., & Chen, S. (2021). Graphene Fiber‐Based wearable supercapacitors: recent advances in design, construction, and application. Small Methods, 5(9), 2100502. doi: 10.1002/smtd.202100502
[192] Agresti, A., Pescetelli, S., Taheri, B., Del Rio Castillo, A., Cinà, L., Bonaccorso, F., & Di Carlo, A. (2016). Graphene-Perovskite Solar Cells Exceed 18 % Efficiency: A Stability Study. ChemSusChem, 9. doi: 10.1002/cssc.201600942
[193] Nazir, G., Rehman, A., Gautam, J., Ikram, M., Hussain, S., Aftab, S., . . . Park, S.-J. (2025). Advancements in flexible Perovskite solar cells and their integration into self-powered wearable optoelectronic systems. Advanced Powder Materials, 4(4), 100304. doi: 10.1016/j.apmate.2025.100304
[194] de Alencar, D. A. M., Koch, G., De Rossi, F., Generosi, A., Ferraro, G., Bonomo, M., . . . Paci, B. (2025). Phenothiazine‐Modified PTAA Hole Transporting Materials for Flexible Perovskite Solar Cells: A Trade‐Off Between Performance and Sustainability. Advanced Sustainable Systems, 9(1), 2400674. doi: 10.1002/adsu.202400674
[195] Goje, A. A., Ludin, N. A., Fahsyar, P. N. A., Syafiq, U., Chelvanathan, P., Syakirin, A. D. A.-G., . . . Sepeai, S. (2024). Review of flexible perovskite solar cells for indoor and outdoor applications. Materials for Renewable and Sustainable Energy, 13(1), 155-179. doi: 10.1007/s40243-024-00257-8
[196] Zhang, H., Cheng, J., Lin, F., He, H., Mao, J., Wong, K. S., . . . Choy, W. C. (2016). Pinhole-free and surface-nanostructured NiO x film by room-temperature solution process for high-performance flexible perovskite solar cells with good stability and reproducibility. ACS Nano, 10(1), 1503-1511. doi: 10.1021/acsnano.5b07043.s001
[197] Nikolaev, D. V., Evseev, Z. I., Smagulova, S. A., & Antonova, I. V. (2021). Electrical Properties of Textiles Treated with Graphene Oxide Suspension. Materials, 14(8), 1999. doi: 10.3390/ma14081999
[198] An, H. J., Sarkheil, M., Park, H. S., Yu, I. J., & Johari, S. A. (2019). Comparative toxicity of silver nanoparticles (AgNPs) and silver nanowires (AgNWs) on saltwater microcrustacean, Artemia salina. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 218, 62-69. doi: 10.1016/j.cbpc.2019.01.002
[199] Ashayer-Soltani, R., Hunt, C., & Thomas, O. (2016). Fabrication of highly conductive stretchable textile with silver nanoparticles. Textile Research Journal, 86(10), 1041-1049. doi: 10.1177/0040517515603813
[200] Wilcox, B. T., Williams, E. T., & Bartlett, M. D. (2025). Textile-integrated multilayer liquid metal soft circuits for multienvironment wearable electronics. Materials Horizons, UNDER PRESS. doi: 10.1039/d5mh00911a
[201] Zheng, X., Nie, W., Hu, Q., Wang, X., Wang, Z., Zou, L., . . . Li, C. (2021). Multifunctional RGO/Ti3C2Tx MXene fabrics for electrochemical energy storage, electromagnetic interference shielding, electrothermal and human motion detection. Materials & Design, 200, 109442. doi: 10.1016/j.matdes.2020.109442
[202] Wang, C., Guo, R., Lan, J., Jiang, S., & Zhang, Z. (2017). Microwave-assisted synthesis of silver/reduced graphene oxide on cotton fabric. Cellulose, 24, 4045-4055. doi: 10.1007/s10570-017-1392-9
[203] Fu, Z., Wang, X., Cai, M., Zhang, C., Fan, W., Qin, J., . . . Xia, L. (2024). Flexible graphene/PPy/cotton fabric with great Joule heating performance and sensing capabilities for thermal management and motion sensing. Industrial Crops and Products, 222, 120096. doi: 10.1016/j.indcrop.2024.120096
[204] Hao, Y., Tian, M., Zhao, H., Qu, L., Zhu, S., Zhang, X., . . . Ran, J. (2018). High efficiency electrothermal graphene/tourmaline composite fabric joule heater with durable abrasion resistance via a spray coating route. Industrial & Engineering Chemistry Research, 57(40), 13437-13448. doi: 10.1021/acs.iecr.8b03628
[205] Park, C., Kim, T., Samuel, E. P., Kim, Y.-I., An, S., & Yoon, S. S. (2021). Superhydrophobic antibacterial wearable metallized fabric as supercapacitor, multifunctional sensors, and heater. Journal of Power Sources, 506, 230142. doi: 10.1016/j.jpowsour.2021.230142
[206] Zhai, H., Liu, J., Liu, Z., & Li, Y. (2025). Functional Graphene Fiber Materials for Advanced Wearable Applications. Advanced Fiber Materials, 7, 443–468. doi: 10.1007/s42765-025-00512-1
[207] Hatamvand, M., Kamrani, E., Lira-Cantu, M., & Madsen, M. (2020). Recent Advances in Fiber-Shaped and Planar-Shaped Textile Solar Cells. Nano Energy, 71. doi: 10.1016/j.nanoen.2020.104609
[208] Galagan, Y., Rubingh, J. E. J., Andriessen, R., Fan, C. C., Blom, P. W., Veenstra, S. C., & Kroon, J. M. (2011). ITO-free flexible organic solar cells with printed current collecting grids. Solar Energy Materials & Solar Cells, 95, 1339-1343. doi: 10.1016/j.solmat.2010.08.011
[209] Alamer, F. A., & Alzahrani, A. (2025). Advancements and innovations in textile engineering: An In-Depth analysis of SWCNTs and PANI integration in smart textile technologies. Composites Part A: Applied Science and Manufacturing, 193, 108872. doi: 10.1016/j.compositesa.2025.108872
[210] Xu, L., Fu, X., Liu, F., & Shi, X. (2020). Perovskite solar cell textile working at -40 to 160 °C. Journal of Materials Chemistry A, 8(11). doi: 10.1039/c9ta13785h
[211] Elnashar, E. A. (2022). Sustainable textiles industries in brand technology between technologies of brands. 6th International Conference on Nanotechnology and Nanomedicine, 7. doi: 2329-9568
[212] Wilcox, B., Williams, E., & Bartlett, M. (2025). Textile-integrated multilayer liquid metal soft circuits for multienvironment wearable electronics. Materials Horizons. doi: 10.1039/d5mh00911a
[213] Bartlett, M. D., Case, S. W., Kinloch, A. J., & Dillard, D. A. (2023). Peel tests for quantifying adhesion and toughness: A review. Progress in Materials Science, 137, 101086. doi: 10.1016/j.pmatsci.2023.101086
[214] Liu, M., Lake-Thompson, G., Wescott, A., Beeby, S., Tudor, J., & Yang, K. (2024). Design and development of a stretchable electronic textile and its application in a knee sleeve targeting wearable pain management. Sensors and Actuators A: Physical, 369, 115102. doi: 10.1016/j.sna.2024.115102
[215] Bagade, S. S., Patel, S., Malik, M. M., & Patel, P. K. (2023). Recent Advancements in Applications of Graphene to Attain Next-Level Solar Cells. Journal of Carbon Research: Advances in Bilayer Graphen, 9(3). doi: 10.3390/c9030070
[216] Firoozi, A. A., Firoozi, A. A., & Maghami, M. R. (2025). Harnessing photovoltaic innovation: Advancements, challenges, and strategic pathways for sustainable global development. Energy Conversion and Management: X, 27, 101058. doi: 10.1016/j.ecmx.2025.101058
[217] Alturaif, H. A., ALOthman, Z. A., Shapter, J. G., & Wabaidur, S. M. (2014). Use of Carbon Nanotubes (CNTs) with Polymers in Solar Cells. Molecules, 19, 17329-17344. doi: 10.3390/molecules191117329
[218] alahmar, M., Younes, B., & Alghoraibi, I. (2023). Improving cotton yarns conductivity treated by electricity-conductive graphene ink. The Journal of the Textile Institute, Acepted , Under press. doi: 10.1016/j.cej.2023.143912
[219] Zdyb, A. (2022). Third Generation Solar Cells. USA: Routledge. doi: 10.1201/9781003196785
[220] Madaka, R., Pandey, B., Sahoo, D. K., Peddigari, M., Dasari, J. R., Boruah, B. D., & Rath, J. K. (2025). Waste-Derived Carbon Nanomaterials for Solar Cell Applications. In N. Talreja, D. Chauhan & M. Ashfaq (Eds.), Waste-Derived Carbon Nanostructures: Synthesis and Applications (pp. 307-340). Cham: Springer Nature Switzerland. doi: 10.1007/978-3-031-75247-6_13
[221] Das, S., Sudhagar, P., Kang, Y. S., & Choi, W. (2014). Graphene synthesis and application for solar cells. Journal of Materials Research, 29, 299-319. doi: 10.1557/jmr.2013.297
[222] Krishna, K. M., & Muthuvinayagam, M. (2023). Graphene nanotechnology for renewable energy systems. In Graphene: Fabrication, Properties and Applications. Singapore: Springer Nature. doi: 10.1007/978-981-99-1206-3_8
[223] Chen, D., Zhang, H., Liu, Y., & Li, J. (2013). Graphene and its derivatives for the development of solar cells, photoelectrochemical, and photocatalytic applications. Energy & Environmental Science, 6, 1362-1138. doi: 10.1039/c3ee23586f
[224] Davoise, L. V., Díez-Pascual, A. M., & Capilla, R. P. (2022). Application of graphene-related materials in organic solar cells. Materials, 15. doi: 10.3390/ma15031171
[225] Nithya, V. D. (2025). Recent Research in the Development of Integrated Solar Cell Supercapacitors. Journal of Electronic Materials, 54(3), 1572-1591. doi: 10.1007/s11664-024-11657-x
[226] Pati, M. K., Pattojoshi, P., & Roy, G. S. (2016). Synthesis of graphene-based nanocompos- ite and investigations of its thermal and electrical properties. Journal of Nanotechnology, 2016. doi: 10.1155/2016/5135420
[227] Zhao, F., Zhao, Y., Cheng, H., & Qu, L. (2015). A graphene fibriform responsor for sensing heat, humidity, and mechanical changes. Angewandte Chemie, 127, 15164-15168. doi: 10.1002/ange.201508300
[228] Bagade, S. S., Barik, S. B., Malik, M. M., & Patel, P. K. (2023). Impact of band alignment at interfaces in perovskite-based solar cell devices. Materials Today: Proceedings, Inpress. doi: 10.1016/j.matpr.2023.02.117
[229] Nijsse, F. J. M. M., Mercure, J.-F., Ameli, N., Larosa, F., Kothari, S., Rickman, J., . . . Pollitt, H. (2023). The momentum of the solar energy transition. Nature Communications, 14,. doi: 10.1038/s41467-023-41971-7
[230] Alasmari, A., Shariq, M., Alhazmi, N. E., Alzahrani, H. S., Bouzgarrou, S. M., Alkhayri, F., . . . Azeez, N. A. (2024). Enhancing perovskite solar cells with graphene-based nanocomposites for sustainable energy: A comprehensive review. Diamond and Related Materials, 148. doi: 10.1016/j.diamond.2024.111517
[231] Wiedmann, T. O., Suh, S., Feng, K., Lenzen, M., Acquaye, A., Scott, K., & Barrett, J. R. (2011). Application of hybrid life cycle approaches to emerging energy technologies–the case of wind power in the UK. Environmental science & technology, 45(13), 5900-5907. doi: 10.1021/es2007287
[232] Ibn-Mohammed, T., Koh, S., Reaney, I., Acquaye, A., Wang, D., Taylor, S., & Genovese, A. (2016). Integrated hybrid life cycle assessment and supply chain environmental profile evaluations of lead-based (lead zirconate titanate) versus lead-free (potassium sodium niobate) piezoelectric ceramics. Energy & Environmental Science, 9(11), 3495-3520. doi: 10.1039/c6ee02429g
[233] Acquaye, A. A., Wiedmann, T., Feng, K., Crawford, R. H., Barrett, J., Kuylenstierna, J., . . . McQueen-Mason, S. (2011). Identification of ‘carbon hot-spots’ and quantification of GHG intensities in the biodiesel supply chain using hybrid LCA and structural path analysis. Environmental science & technology, 45(6), 2471-2478. doi: 10.1021/es103410q
[234] Čuček, L., Klemeš, J. J., & Kravanja, Z. (2012). A review of footprint analysis tools for monitoring impacts on sustainability. Journal of Cleaner Production, 34, 9-20. doi: 10.1016/j.jclepro.2012.02.036
[235] Maxwell, D., & Van der Vorst, R. (2003). Developing sustainable products and services. Journal of Cleaner Production, 11(8), 883-895. doi: 10.1016/S0959-6526(02)00164-6
[236] Finnveden, G., Hauschild, M. Z., Ekvall, T., Guinée, J., Heijungs, R., Hellweg, S., . . . Suh, S. (2009). Recent developments in life cycle assessment. Journal of environmental management, 91(1), 1-21. doi: 10.1016/j.jenvman.2009.06.018
[237] Fthenakis, V., & Zweibel, K. (2003). G. National Renewable Energy Lab.(NREL), CO (United States). doi: NREL/CP-520-33561
[238] Espinosa, N., Serrano-Luján, L., Urbina, A., & Krebs, F. C. (2015). Solution and vapour deposited lead perovskite solar cells: Ecotoxicity from a life cycle assessment perspective. Solar Energy Materials and Solar Cells, 137, 303-310. doi: 10.1016/j.solmat.2015.02.013
[239] Ibn-Mohammed, T., Koh, S. C. L., Reaney, I. M., Acquaye, A., Schileo, G., Mustapha, K. B., & Greenough, R. (2017). Perovskite solar cells: An integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies. Renewable and Sustainable Energy Reviews, 80, 1321-1344. doi: 10.1016/j.rser.2017.05.095
[240] Chen, T., & Dai, L. (2015). Macroscopic graphene fibers directly assembled from CVD‐grown fiber‐shaped hollow graphene tubes. Angewandte Chemie International Edition, 54(49), 14947-14950. doi: 10.1002/ange.201507246
[241] Yang, Z., Sun, H., Chen, T., Qiu, L., Luo, Y., & Peng, H. (2013). Photovoltaic wire derived from a graphene composite fiber achieving an 8.45% energy conversion efficiency. Angew. Chem. Int. Ed, 52(29), 7545-7548. doi: 10.1002/ange.201301776
[242] Liu, K., Chen, Z., Lv, T., Yao, Y., Li, N., Li, H., & Chen, T. (2020). A self-supported graphene/carbon nanotube hollow fiber for integrated energy conversion and storage. Nano-Micro Letters, 12, 1-11. doi: 10.1007/s40820-020-0390-x
[243] Yao, Y., Lv, T., Li, N., Chen, Z., Zhang, C., & Chen, T. (2020). Selected functionalization of continuous graphene fibers for integrated energy conversion and storage. Science Bulletin, 65(6), 486-495. doi: 10.1016/j.scib.2019.11.013
[244] Yin, Y., Xiao, K., Wang, Y.-F., Cao, J.-M., Dong, J.-P., Zhu, D., & Zhu, Y.-G. (2025). Nanoplastics released from textile washing enrich antibiotic resistance and virulence genes in sewage sludge microbiomes. Environment International, 202, 109611. doi: 10.1016/j.envint.2025.109611
[245] Priyadarshini, S., Jagatee, S., & Das, A. P. (2024). Synthetic fabrics and microfiber pollution–an assessment of their global impact Renewable Energy Generation and Value Addition from Environmental Microfiber Pollution Through Advanced Greener Solution (pp. 137-157): Springer. doi: 10.1007/978-3-031-51792-1_8
[246] Allen, D., Allen, S., Abbasi, S., Baker, A., Bergmann, M., Brahney, J., . . . Evangeliou, N. (2022). Microplastics and nanoplastics in the marine-atmosphere environment. Nature Reviews Earth & Environment, 3(6), 393-405. doi: 10.1038/s43017-022-00292-x
[247] Festus-Ikhuoria, I., Nwankwo, C., Adebayo, R., & Olajiga, O. (2023). Nanotechnology in consumer products: A review of applications and safety considerations. World Journal of Advanced Research and Reviews, 21, 2050-2059. doi: 10.30574/wjarr.2024.21.3.0923
[248] Koivisto, A. J., & Burrueco-Subirà, D. (2024). Exposure assessment and risks associated with wearing silver nanoparticle-coated textiles. 4, 100. doi: 10.12688/openreseurope.17254.2
[249] von Goetz, N., Lorenz, C., Windler, L., Nowack, B., Heuberger, M., & Hungerbühler, K. (2013). Migration of Ag- and TiO2-(Nano)particles from textiles into artificial sweat under physical stress: experiments and exposure modeling. Environ Sci Technol, 47(17), 9979-9987. doi: 10.1021/es304329w
[250] Wohlleben, W., Bossa, N., Mitrano, D. M., & Scott, K. (2024). Everything falls apart: How solids degrade and release nanomaterials, composite fragments, and microplastics. NanoImpact, 34, 100510. doi: 10.1016/j.impact.2024.100510
[251] Mohammadi, P., & Galera, A. (2023). Occupational exposure to nanomaterials: A bibliometric study of publications over the last decade. International Journal of Hygiene and Environmental Health, 249, 114132. doi: 10.1016/j.ijheh.2023.114132
[252] Al-Osta, M. A., Al-Tamimi, A. S., Al-Tarbi, S. M., Al-Amoudi, O. S. B., Al-Awsh, W. A., & Saleh, T. A. (2022). Development of sustainable concrete using recycled high-density polyethylene and crumb tires: Mechanical and thermal properties. Journal of Building Engineering, 45, 103399. doi: 10.1016/j.jobe.2021.103399
[253] Conti, J. A., Killpack, K., Gerritzen, G., Huang, L., Mircheva, M., Delmas, M., . . . Holden, P. A. (2008). Health and Safety Practices in the Nanomaterials Workplace: Results from an International Survey. Environmental science & technology, 42(9), 3155-3162. doi: 10.1021/es702158q
[254] Lead, J. R., Batley, G. E., Alvarez, P. J. J., Croteau, M. N., Handy, R. D., McLaughlin, M. J., . . . Schirmer, K. (2018). Nanomaterials in the environment: Behavior, fate, bioavailability, and effects—An updated review. Environmental Toxicology and Chemistry, 37(8), 2029-2063. doi: 10.1002/etc.4147
[255] Baalousha, M., Ju‐Nam, Y., Cole, P. A., Gaiser, B., Fernandes, T. F., Hriljac, J. A., . . . Lead, J. R. (2012). Characterization of cerium oxide nanoparticles—Part 1: Size measurements. Environmental Toxicology and Chemistry, 31(5), 983-993. doi: 10.1002/etc.1785
[256] Lee, W. M., Kim, S. W., Kwak, J. I., Nam, S. H., Shin, Y. J., & An, Y. J. (2010). Research trends of ecotoxicity of nanoparticles in soil environment. Toxicol Res, 26(4), 253-259. doi: 10.5487/tr.2010.26.4.253
[257] Tończyk, A., Niedziałkowska, K., & Lisowska, K. (2025). Ecotoxic effect of mycogenic silver nanoparticles in water and soil environment. Scientific Reports, 15(1), 10815. doi: 10.1038/s41598-025-95485-x
[258] Khalili Fard, J., Jafari, S., & Eghbal, M. A. (2015). A Review of Molecular Mechanisms Involved in Toxicity of Nanoparticles. Adv Pharm Bull, 5(4), 447-454. doi: 10.15171/apb.2015.061
[259] Elsaesser, A., & Howard, C. V. (2012). Toxicology of nanoparticles. Advanced drug delivery reviews, 64(2), 129-137. doi: 10.1016/j.addr.2011.09.001
[260] Cypriyana P J, J., S, S., Angalene J, L. A., Samrot, A. V., Kumar S, S., Ponniah, P., & Chakravarthi, S. (2021). Overview on toxicity of nanoparticles, it's mechanism, models used in toxicity studies and disposal methods – A review. Biocatalysis and Agricultural Biotechnology, 36, 102117. doi: 10.1016/j.bcab.2021.102117
[261] Manzoor, Q., Sajid, A., Ali, Z., Nazir, A., Sajid, A., Imtiaz, F., . . . Iqbal, M. (2024). Toxicity spectrum and detrimental effects of titanium dioxide nanoparticles as an emerging pollutant: A review. Desalination and Water Treatment, 317, 100025. doi: 10.1016/j.dwt.2024.100025
[262] Suresh, P. A., Kumar, K. V. A., Abraham, A. R., & Haghi, A. K. (2026). Future of PSC Perovskite Solar Cells Technology: Next Generation Clean Energy Solution (pp. 65-81). Cham: Springer Nature Switzerland. doi: 10.1007/978-3-031-90750-0_6
[263] Español, A., Bjurström, A., Birdsong, B., Nilsson, F., Pandey, A., Ren, X., . . . Olsso, R. T. (2025). Making Synthetic 2D Graphene Oxide Nanosheets by Electrochemical Oxidation of Commercial Carbon Fibres. Small, 21(16). doi: 10.1002/smll.202408972
[264] Gautneb, H., & Tveten, E. (2000). The geology, exploration and characterisation of graphite deposits in the Jennestad area. northern Norway: Vesterålen. doi: Corpus ID: 55392787
[265] Pourrahimi, A. M., Andersson, R. L., Tjus, K., Ström, V., Björk, A., & Olsson, R. T. (2019). Making an ultralow platinum content bimetallic catalyst on carbon fibres for electro-oxidation of ammonia in wastewater. Sustainable Energy & Fuels, 3(8), 2111-2124. doi: 10.1039/c9se00161a
[266] Donnet, J. B., Bahl, O. P., Bansal, R. C., & Wang, T. K. (2003). Encyclopedia of Physical Science and Technology ( Third Edition). New York: Academic Press]. doi: 978-0-12-227410-7
[267] Bhandari, M., & Nam, I. W. (2024). A critical review on the application of recycled carbon fiber to concrete and cement composites. Recycling, 9(1), 17. doi: 10.3390/recycling9010017
[268] Parvazian, E., & Watson, T. (2024). The roll-to-roll revolution to tackle the industrial leap for perovskite solar cells. Nature Communications, 15(3983). doi: 10.1038/s41467-024-48518-4
[269] Weerasinghe, H. C., Macadam, N., Kim, J.-E., Sutherland, L. J., Angmo, D., & Ng, L. W. T. (2024). The first demonstration of entirely roll-to-roll fabricated perovskite solar cell modules under ambient room conditions. Nature Communications, 15(1656 ). doi: 10.1038/s41467-024-46016-1
[270] Marques, M. J. M., Lin, W., Taima, T., Umezu, S., & Shahiduzzaman, M. (2024). Unleashing the potential of industry viable roll-to-roll compatible technologies for perovskite solar cells: Challenges and prospects. Materials Today, 78, 112-141. doi: 10.1016/j.mattod.2024.06.013
[271] Rodriguez, B., Felipe, J., Dehong, C., Mei, G., & Rachel, C. (2021). Roll‐to‐Roll Processes for the Fabrication of Perovskite Solar Cells under Ambient Conditions. Solar RRL, 5. doi: 10.1002/solr.202100341
[272] Zhou, Y., Wang, Z., Chen, X., Ji, J., Zhang, L., & Meng, C. (2025). Advancing robust all-weather desalination: a critical review of emerging photothermal evaporators and hybrid systems. Communications Materials, 6(1), 29. doi: 10.1038/s43246-025-00747-w
[273] Rotzler, S., & Schneider-Ramelow, M. (2021). Washability of E-Textiles: Failure Modes and Influences on Washing Reliability. Textiles, 1(1), 37-54. doi: 10.3390/textiles1010004
[274] Rotzler, S., Krshiwoblozki, M., & Schneider-Ramelow, M. (2021). Washability of e-textiles: current testing practices and the need for standardization. Textile Research Journal, 91. doi: 10.1177/0040517521996727
[275] Shah, M. A., Pirzada, B. M., Price, G., Shibiru, A. L., & Qurashi, A. (2022). Applications of nanotechnology in smart textile industry: A critical review. Journal of Advanced Research, 38, 55-75. doi: 10.1016/j.jare.2022.01.008
[276] Ruckdashel, R. R., Khadse, N., & Park, J. H. (2022). Smart E-Textiles: Overview of Components and Outlook. Sensors, 22(16), 6055. doi: 10.3390/s22166055
[277] Beh, B., Dyson, M., & Skyrme, T. (2022). E-Textiles and Smart Clothing Markets 2023-2033: Technologies, Players, and Applications (Publication no. 9781915514554). from IDTechEx
[278] Choudhry, N. A., Arnold, L., Rasheed, A., Khan, I. A., & Wang, L. (2021). Textronics : A Review of Textile-Based Wearable Electronics. Adnavced Engineering Materials, 23(12). doi: 10.1080/00405000.2023.2236320
[279] Chen, G., Li, Y., Bick, M., & Chen, J. (2020). Smart Textiles for Electricity Generation. Chemical Reviews Journal, 120, 3668-3720. doi: 10.1021/acs.chemrev.9b00821
[280] Ali, A. O., Elgohr, A. T., El-Mahdy, M. H., Zohir, H. M., Emam, A. Z., Mostafa, M. G., . . . Elhadidy, M. S. (2025). Advancements in photovoltaic technology: A comprehensive review of recent advances and future prospects. Energy Conversion and Management: X, 26, 100952. doi: 10.1016/j.ecmx.2025.100952
[281] Allen, T. G., Ugur, E., Aydin, E., Subbiah, A. S., & De Wolf, S. (2025). A Practical Efficiency Target for Perovskite/Silicon Tandem Solar Cells. ACS Energy Letters, 10(1), 238-245. doi: 10.1021/acsenergylett.4c02152
[282] Bamisile, O., Acen, C., Cai, D., Huang, Q., & Staffell, I. (2025). The environmental factors affecting solar photovoltaic output. Renewable and Sustainable Energy Reviews, 208, 115073. doi: 10.1016/j.rser.2024.115073
[283] Mohammad, A. (2023). Synergizing Solar Cell Innovation, Radio Wave TECHNOLOGY, and AI for Sustainable Business Growth: A Comprehensive Review. International Journal of Social, Humanities and Life Sciences, 1(1), 19-28. doi: 10.47709/ijmdsa.v3i01.3559
[284] Ali, I., Islam, M. R., Yin, J., Eichhorn, S. J., Chen, J., Karim, N., & Afroj, S. (2024). Advances in Smart Photovoltaic Textiles. ACS Nano, 18(5), 3871-3915. doi: 10.1021/acsnano.3c10033
[285] Obeidat, F. (2018). A comprehensive review of future photovoltaic systems. Solar Energy, 163, 545-551. doi: 10.1016/j.solener.2018.01.050
[286] Yang, D., Nam, H. K., Lee, Y., Kwon, S., Lee, J., Yoon, H., & Kim, Y.-J. (2025). Laser-Induced Graphene Smart Textiles for Future Space Suits and Telescopes. Advanced Functional Materials, 35(1). doi: 10.1002/adfm.202411257
[287] Dejene, B. K. (2025). The future of fabric: A comprehensive review of self-powered smart textiles and their emerging applications. Energy Reports, 14, 898-943. doi: 10.1016/j.egyr.2025.07.002
[288] Kyriakarakos, G. (2025). Artificial Intelligence and the Energy Transition. Sustainability, 17(3), 1140. doi: 10.3390/su17031140
[289] Liang, Z., Deng, Y., Shi, Z., Liao, X., Zong, H., Ren, L., . . . Chen, F. (2026). AI-driven design of powder-based nanomaterials for smart textiles: from data intelligence to system integration. Advanced Powder Materials, 5(1), 100356. doi: 10.1016/j.apmate.2025.100356
[290] Yousif, A. J., Zaidan, F. K., & Al-Mahdawi, H. K. (2025). Fault Detection in Solar PV Panels Using Artificial Intelligence and Embedded Systems. Journal of Solar Energy Research, Under Press. doi: 10.22059/jser.2025.402899.1640