[1] Hussain, A., Arif, S. M., and Aslam, M. (2017). Emerging renewable and sustainable energy technologies: State of the art. Renewable and Sustainable Energy Reviews
, 71, 12-28. doi:
https://doi.org/10.1016/j.rser.2016.12.033.
[2] Latake, P. T., Pawar, P., and Ranveer, A. C. (2015). The greenhouse effect and its impacts on environment. International Journal of Innovative Research and Creative Technology, 1(3), 333-337. .
[3] Vohra, K., Vodonos, A., Schwartz, J., Marais, E. A., Sulprizio, M. P., and Mickley, L. J. (2021). Global mortality from outdoor fine particle pollution generated by fossil fuel combustion: Results from GEOS-Chem. Environmental research, 195, 110754. doi:10.1016/j.envres.2021.110754.
[4] Bertrand, S. (2021). Fact Sheet| Climate, Environmental, and Health Impacts of Fossil Fuels (2021): Environmental and Energy Study Institute.
[6] Shaikh, E. N., Patil, A. V., Tupe, U. J., and Dighavkar, C. G. (2021). A Review on: Renewable Energy Sources and Generation of Photovoltaic Solar Technology. International Journal of Scientific Development and Research, 6(4), 613-622. doi:ijsdr.org/papers/IJSDR2104102.pdf.
[7] Devabhaktuni, V., Alam, M., Depuru, S. S. S. R., Green II, R. C., Nims, D., and Near, C. (2013). Solar energy: Trends and enabling technologies. Renewable and Sustainable Energy Reviews, 19, 555-564. doi:10.1016/j.rser.2012.11.024.
[8] Demirbas, A. (2000). Recent advances in biomass conversion technologies. Energy Education Science and Technology, 6, 19-41. .
[9] Muhammad, J. Y. u., Waziri, A. B., Shitu, A. M., Ahmad, U. M., Muhammad, M. H., Alhaji, Y., Olaniyi, A. T., and Bala, A. A. (2019). Recent progressive status of materials for solar photovoltaic cell: A comprehensive review. Science Journal of Energy Engineering, 7(4), 77-89. doi:10.11648/j.sjee.20190704.14 .
[11] Salman, A., Homsirikamol, E., and Shih, P.-J. (2014). Solar Panels Support Systems in Tropical Countries: An Inexpensive Approach. ALAM CIPTA, International Journal of Sustainable Tropical Design Research and Practice, 6(2), 53-58. .
[12] Parida, B., Iniyan, S., and Goic, R. (2011). A review of solar photovoltaic technologies. Renewable and sustainable energy reviews, 15(3), 1625-1636. doi:10.1016/j.rser.2010.11.032.
[13] Environmental, F. (2014). Solar Radiation and Photosynethically Active Radiation. Retrieved from https://www.fondriest.com/environmental-measurements/parameters/ weather/solar-radiation/.
[15] Sutherland, B. R. (2020). Solar materials find their band gap. Joule, 4(5), 984-985. doi:10.1016/j.joule.2020.05.001.
[16] Liu, Y., Li, Y., Wu, Y., Yang, G., Mazzarella, L., Procel-Moya, P., Tamboli, A. C., Weber, K., Boccard, M., and Isabella, O. (2020). High-efficiency silicon heterojunction solar cells: materials, devices and applications. Materials Science and Engineering: R: Reports, 142, 100579. doi:10.1016/j.mser.2020.100579.
[17] Green, Martin A., Dunlop, Ewan D., Yoshita, M., Kopidakis, N., Bothe, K., Siefer, G., Hao, X., and Jiang, Jessica Y. (2025). Solar Cell Efficiency Tables (Version 66). Progress in Photovoltaics: Research and Applications, 33(7), 795-810. doi:10.1002/pip.3919.
[19] Matsui, T., Bidiville, A., Maejima, K., Sai, H., Koida, T., Suezaki, T., Matsumoto, M., Saito, K., Yoshida, I., and Kondo, M. (2015). High-efficiency amorphous silicon solar cells: Impact of deposition rate on metastability. Applied physics letters, 106(5). doi:10.1063/1.4907001.
[20] Sai, H., Matsui, T., Kumagai, H., and Matsubara, K. (2018). Thin-film microcrystalline silicon solar cells: 11.9% efficiency and beyond. Applied Physics Express, 11(2), 022301. doi:10.1109/PVSC.2011.6185831.
[21] Kayes, B. M., Nie, H., Twist, R., Spruytte, S. G., Reinhardt, F., Kizilyalli, I. C., and Higashi, G. S. (2011). 27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination. Paper presented at the 2011 37th IEEE photovoltaic specialists conference.
[22] Wanlass, M. (2017). Systems and methods for advanced ultra-high-performance InP solar cells. Retrieved from.
[23] Nakamura, M., Yamaguchi, K., Kimoto, Y., Yasaki, Y., Kato, T., and Sugimoto, H. (2019). Cd-free Cu (In, Ga)(Se, S) 2 thin-film solar cell with record efficiency of 23.35%. IEEE journal of photovoltaics, 9(6), 1863-1867. doi:10.1109/JPHOTOV.2019.2937218.
[24] Jeong, M., Choi, I. W., Go, E. M., Cho, Y., Kim, M., Lee, B., Jeong, S., Jo, Y., Choi, H. W., and Lee, J. (2020). Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science, 369(6511), 1615-1620. doi:10.1126/science. abb7167.
[25] Komiya, R., Fukui, A., Murofushi, N., Koide, N., Yamanaka, R., and Katayama, H. (2011). Improvement of the conversion efficiency of a monolithic type dye-sensitized solar cell module. Paper presented at the Technical Digest, 21st International Photovoltaic Science and Engineering Conference.
[26] Faisst, J., Jiang, E., Bogati, S., Pap, L., Zimmermann, B., Kroyer, T., Würfel, U., and List, M. (2023). Organic Solar Cell with an Active Area> 1 cm2 Achieving 15.8% Certified Efficiency using Optimized VIS‐NIR Antireflection Coating. Solar RRL, 7(24), 2300663. doi:10.1002/solr.202300663.
[27] Chiu, P., Law, D., Woo, R., Singer, S., Bhusari, D., Hong, W., Zakaria, A., Boisvert, J., Mesropian, S., and King, R. (2014). 35.8% space and 38.8% terrestrial 5J direct bonded cells. Paper presented at the 2014 IEEE 40th photovoltaic specialist conference (PVSC).
[28] Ohl, R. S. (1946). Light-sensitive electric device. In: Google Patents.
[29] Andreani, L. C., Bozzola, A., Kowalczewski, P., Liscidini, M., and Redorici, L. (2019). Silicon solar cells: toward the efficiency limits. Advances in Physics: X, 4(1), 1548305. doi:10.1080/23746149.2018.1548305.
[30] Glunz, S. W., Preu, R., and Biro, D. (2012). Crystalline silicon solar cells: state-of-the-art and future developments. Comprehensive Renewable Energy, 1, 353-387. doi:10.1016/B978-0-08-087872-0.00117-7.
[31] Mercaldo, L. V., and Veneri, P. D. (2020). Silicon solar cells: materials, technologies, architectures. Solar Cells and Light Management, 35-57. doi:10.1016/B978-0-08-102762-2.00002-1..
[32] Kerr, M. J., Cuevas, A., and Campbell, P. (2003). Limiting efficiency of crystalline silicon solar cells due to Coulomb‐enhanced Auger recombination. Progress in Photovoltaics: Research and Applications, 11(2), 97-104. doi:10.1002/pip.464.
[33] Ranabhat, K., Patrikeev, L., Revina, A. A. e., Andrianov, K., Lapshinsky, V., and Sofronova, E. (2016). An introduction to solar cell technology. Journal of Applied Engineering Science, 14(4), 481-491. doi:10.5937/jaes14-10879.
[34] Chittick, R., Alexander, J., and Sterling, H. (1969). The preparation and properties of amorphous silicon. Journal of the Electrochemical Society, 116(1), 77. doi:10.1149/1.2411779.
[35] Street, R., Cahn, R., Davis, E., and Ward, I. Hydrogenated Amorphous Silicon, Cambridge University Press, Cambridge 1991.
[36] Mohammed, I. K., Zahari, I., Kamaruzzaman, S., and Nowshad, A. (2011). A Review on Progress of Amorphous and Microcrystalline Silicon Thin-Film Solar Cells. Recent Patents on Electrical Engineering
, 4(1), 50-62. doi:
http://dx.doi.org/10.2174/1874476111104010050.
[37] Spear, W. E., and Le Comber, P. G. (1975). Substitutional doping of amorphous silicon. Solid State Communications, 17(9), 1193-1196. doi:10.1016/0038-1098(75)90284-7.
[38] Carlson, D. E., and Wronski, C. R. (1976). Amorphous silicon solar cell. Applied physics letters, 28(11), 671-671. doi:10.1063/1.88617.
[39] Curtins, H., Wyrsch, N., and Shah, A. (1987). High-rate deposition of amorphous hydrogenated silicon: effect of plasma excitation frequency. Electronics Letters, 23(5), 228-230. doi:10.1049/el:19870160.
[40] Shah, A. (2010). Thin-Film Silicon Solar Cells: EFPL Press.
[41] Stuckelberger, M., Biron, R., Wyrsch, N., Haug, F.-J., and Ballif, C. (2017). Review: Progress in solar cells from hydrogenated amorphous silicon. Renewable and Sustainable Energy Reviews, 76, 1497-1523. doi:10.1016/j.rser.2016.11.190.
[42] Staebler, D. L., and Wronski, C. (1977). Reversible conductivity changes in discharge‐produced amorphous Si. Applied physics letters, 31(4), 292-294. doi:10.1063/1.89674.
[43] Platz, R., Wagner, S., Hof, C., Shah, A., Wieder, S., and Rech, B. (1998). Influence of excitation frequency, temperature, and hydrogen dilution on the stability of plasma enhanced chemical vapor deposited a-Si: H. Journal of Applied Physics, 84(7), 3949-3953. doi:10.1063/1.368592.
[44] Guha, S., Yang, J., Banerjee, A., Yan, B., and Lord, K. (2003). High quality amorphous silicon materials and cells grown with hydrogen dilution. Solar Energy Materials and Solar Cells, 78(1), 329-347. doi:10.1016/S0927-0248(02)00441-5.
[45] ISE, F. (2025). Photovoltaics Report. Retrieved from www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf.
[46] Van Den Donker, M., Klein, S., Rech, B., Finger, F., Kessels, W., and Van De Sanden, M. (2007). Microcrystalline silicon solar cells with an open-circuit voltage above 600mV. Applied physics letters, 90(18), 183504. doi:doi.org/10.1063/1.2734375.
[47] Meier, J., Flückiger, R., Keppner, H., and Shah, A. (1994). Complete microcrystalline p‐i‐n solar cell—Crystalline or amorphous cell behavior? Applied physics letters, 65(7), 860-862. doi:10.1063/1.112183.
[48] Vetterl, O., Finger, F., Carius, R., Hapke, P., Houben, L., Kluth, O., Lambertz, A., Mück, A., Rech, B., and Wagner, H. (2000). Intrinsic microcrystalline silicon: A new material for photovoltaics. Solar energy materials and solar cells, 62(1-2), 97-108. doi:10.1016/S0927-0248(99)00140-3.
[49] Droz, C., Vallat-Sauvain, E., Bailat, J., Feitknecht, L., Meier, J., and Shah, A. (2004). Relationship between Raman crystallinity and open-circuit voltage in microcrystalline silicon solar cells. Solar Energy Materials and Solar Cells, 81(1), 61-71. doi:10.1016/j.solmat.2003.07.004.
[50] Matsui, T., Sai, H., Bidiville, A., Hsu, H.-J., and Matsubara, K. (2018). Progress and limitations of thin-film silicon solar cells. Solar Energy, 170, 486-498. doi:10.1016/j.solener.2018.05.077.
[51] Lee, T. D., and Ebong, A. U. (2017). A review of thin film solar cell technologies and challenges. Renewable and Sustainable Energy Reviews, 70, 1286-1297. doi:10.1016/j.rser.2016.12.028.
[52] Margottet, J. (1879). Recherches sur les sulfures, les séléniures et les tellurures métalliques. Annales scientifiques de l'École Normale Supérieure, 8, 247-298. doi:10.24033/asens.178.
[53] Jenny, D. A., and Bube, R. H. (1954). Semiconducting Cadmium Telluride. Physical Review, 96(5), 1190-1191. doi:10.1103/PhysRev.96.1190.
[54] Kowsar, A., Farhad, S. F. U., Rahaman, M., Islam, M., Imam, A., Debnath, S., Sultana, M., Hoque, M., Sharmin, A., and Mahmood, Z. (2019). Progress in Major Thin-film Solar Cells: Growth Technologies, Layer Materials and Efficiencies. International Journal of Renewable Energy Research, 9, 579-597. doi:10.20508/ijrer.v9i2.
[55] Bonnet, D., and Rabenhorst, H. (1972). New results on the development of a thin-film p-CdTe-n-CdS heterojunction solar cell. Paper presented at the Photovoltaic Specialists Conference, 9 th, Silver Spring, Md.
[56] Romeo, A., and Artegiani, E. (2021). CdTe-based thin film solar cells: past, present and future. Energies, 14(6), 1684. doi:10.3390/en14061684.
[57] Friedlmeier, T. M., Jackson, P., Bauer, A., Hariskos, D., Kiowski, O., Wuerz, R., and Powalla, M. (2015). Improved photocurrent in Cu (In, Ga) Se 2 solar cells: from 20.8% to 21.7% efficiency with CdS buffer and 21.0% Cd-free. IEEE Journal of Photovoltaics, 5(5), 1487-1491. doi:10.1109/JPHOTOV.2015.2458039.
[58] Li, X., Li, P., Wu, Z., Luo, D., Yu, H.-Y., and Lu, Z.-H. (2021). Review and perspective of materials for flexible solar cells. Materials Reports: Energy, 1(1), 100001. doi:10.1016/j.matre.2020.09.001.
[59] Mufti, N., Amrillah, T., Taufiq, A., Diantoro, M., and Nur, H. (2020). Review of CIGS-based solar cells manufacturing by structural engineering. Solar Energy, 207, 1146-1157. doi:10.1016/j.solener.2020.07.065.
[60] Reinhard, P., Buecheler, S., and Tiwari, A. (2013). Technological status of Cu (In, Ga)(Se, S) 2-based photovoltaics. Solar Energy Materials and Solar Cells, 119, 287-290. doi:10.1016/j.solmat.2013.08.030.
[61] Ramanujam, J., Bishop, D. M., Todorov, T. K., Gunawan, O., Rath, J., Nekovei, R., Artegiani, E., and Romeo, A. (2020). Flexible CIGS, CdTe and a-Si: H based thin film solar cells: A review. Progress in Materials Science, 110, 100619. doi:10.1016/j.pmatsci.2019.100619.
[62] Ramanujam, J., and Singh, U. P. (2017). Copper indium gallium selenide based solar cells–a review. Energy & Environmental Science, 10(6), 1306-1319. doi:10.1039/C7EE00826K.
[63] Ansari, M. I. H., Qurashi, A., and Nazeeruddin, M. K. (2018). Frontiers, opportunities, and challenges in perovskite solar cells: A critical review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 35, 1-24. doi:10.1016/j.jphotochemrev.2017.11.002.
[64] Nair, S., Patel, S. B., and Gohel, J. V. (2020). Recent trends in efficiency-stability improvement in perovskite solar cells. Materials Today Energy, 17, 100449. doi:10.1016/j.mtener.2020.100449.
[65] Cao, X., Zhi, L., Jia, Y., Li, Y., Zhao, K., Cui, X., Ci, L., Zhuang, D., and Wei, J. (2019). A review of the role of solvents in formation of high-quality solution-processed perovskite films. ACS Applied Materials & Interfaces, 11(8), 7639-7654. doi:10.1021/acsami.8b16315.
[66] Jung, H. S., and Park, N. G. (2015). Perovskite solar cells: from materials to devices. Small, 11(1), 10-25. doi:10.1002/smll.201402767 .
[67] Kojima, A., Teshima, K., Shirai, Y., and Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131(17), 6050-6051. doi:10.1021/ja809598r.
[68] Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W., and Park, N.-G. (2011). 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 3(10), 4088-4093. doi:10.1039/c1nr10867k.
[69] Tonui, P., Oseni, S. O., Sharma, G., Yan, Q., and Mola, G. T. (2018). Perovskites photovoltaic solar cells: An overview of current status. Renewable and Sustainable Energy Reviews, 91, 1025-1044. doi:10.1016/j.rser.2018.04.069.
[70] Tang, C. W. (1986). Two‐layer organic photovoltaic cell. Applied physics letters, 48(2), 183-185. doi:10.1063/1.96937.
[71] Akhtaruzzaman, M., and Selvanathan, V. (2021). Comprehensive guide on organic and inorganic solar cells: fundamental concepts to fabrication methods: Academic Press.
[72] Sathiyan, G., Sivakumar, E. K. T., Ganesamoorthy, R., Thangamuthu, R., and Sakthivel, P. (2016). Review of carbazole based conjugated molecules for highly efficient organic solar cell application. Tetrahedron Letters, 57(3), 243-252. doi:10.1016/j.tetlet.2015.12.057.
[73] Xu, X., Li, D., Yuan, J., Zhou, Y., and Zou, Y. (2021). Recent advances in stability of organic solar cells. EnergyChem, 3(1), 100046. doi:10.1016/j.enchem.2020.100046.
[74] Zhao, G., He, Y., and Li, Y. (2010). 6.5% efficiency of polymer solar cells based on poly (3‐hexylthiophene) and indene‐C60 bisadduct by device optimization. Advanced Materials, 22(39), 4355-4358. doi:10.1002/adma.201001339.
[75] Chen, J., Chen, Y., Feng, L.-W., Gu, C., Li, G., Su, N., Wang, G., Swick, S. M., Huang, W., Guo, X., Facchetti, A., and Marks, T. J. (2020). Hole (donor) and electron (acceptor) transporting organic semiconductors for bulk-heterojunction solar cells. EnergyChem, 2(5), 100042. doi:10.1016/j.enchem.2020.100042.
[76] He, Y., Chen, H.-Y., Hou, J., and Li, Y. (2010). Indene−C60 Bisadduct: A New Acceptor for High-Performance Polymer Solar Cells. Journal of the American Chemical Society, 132(4), 1377-1382. doi:10.1021/ja908602j.
[77] Sun, Y., Welch, G. C., Leong, W. L., Takacs, C. J., Bazan, G. C., and Heeger, A. J. (2012). Solution-processed small-molecule solar cells with 6.7% efficiency. Nature Materials, 11(1), 44-48. doi:10.1038/nmat3160.
[78] Nielsen, C. B., Holliday, S., Chen, H.-Y., Cryer, S. J., and McCulloch, I. (2015). Non-fullerene electron acceptors for use in organic solar cells. Accounts of chemical research, 48(11), 2803-2812. doi:10.1021/acs.accounts.5b00199 .
[79] Li, S., Liu, W., Li, C. Z., Shi, M., and Chen, H. (2017). Efficient organic solar cells with non‐fullerene acceptors. Small, 13(37), 1701120. doi:10.1002/smll.201701120.
[80] Li, S., Liu, W., Shi, M., Mai, J., Lau, T.-K., Wan, J., Lu, X., Li, C.-Z., and Chen, H. (2016). A spirobifluorene and diketopyrrolopyrrole moieties based non-fullerene acceptor for efficient and thermally stable polymer solar cells with high open-circuit voltage. Energy & Environmental Science, 9(2), 604-610. doi:10.1039/C5EE03481G.
[81] Cui, Y., Xu, Y., Yao, H., Bi, P., Hong, L., Zhang, J., Zu, Y., Zhang, T., Qin, J., and Ren, J. (2021). Single‐junction organic photovoltaic cell with 19% efficiency. Advanced Materials, 33(41), 2102420. doi:10.1002/adma.202102420.
[83] O'Regan, B., and Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353(6346), 737-740. doi:10.1038/353737a0.
[84] Kishore Kumar, D., Kříž, J., Bennett, N., Chen, B., Upadhayaya, H., Reddy, K. R., and Sadhu, V. (2020). Functionalized metal oxide nanoparticles for efficient dye-sensitized solar cells (DSSCs): A review. Materials Science for Energy Technologies
, 3, 472-481. doi:
https://doi.org/10.1016/j.mset.2020.03.003.
[85] Grätzel, M. (2003). Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 4(2), 145-153. doi:10.1016/S1389-5567(03)00026-1.
[86] Karthick, S. N., Hemalatha, K. V., Suresh Kannan, B., Manik Clinton, F., Akshaya, S., and Kim, H.-J. (2019). Dye-Sensitized Solar Cells: History, Components, Configuration, and Working Principle. In Interfacial Engineering in Functional Materials for Dye‐Sensitized Solar Cells (pp. 1-16)..
[87] Mathew, S., Yella, A., Gao, P., Humphry-Baker, R., Curchod, B. F. E., Ashari-Astani, N., Tavernelli, I., Rothlisberger, U., Nazeeruddin, M. K., and Grätzel, M. (2014). Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature Chemistry, 6(3), 242-247. doi:10.1038/nchem.1861.
[88] Lee, I., Hwang, S., and Kim, H. (2011). Reaction between oxide sealant and liquid electrolyte in dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 95(1), 315-317. doi:10.1016/j.solmat.2010.04.052.
[89] Oskam, G., Bergeron, B. V., Meyer, G. J., and Searson, P. C. (2001). Pseudohalogens for dye-sensitized TiO2 photoelectrochemical cells. The Journal of Physical Chemistry B, 105(29), 6867-6873. doi:10.1021/jp004411d.
[90] Bella, F., Sacco, A., Salvador, G. P., Bianco, S., Tresso, E., Pirri, C. F., and Bongiovanni, R. (2013). First pseudohalogen polymer electrolyte for dye-sensitized solar cells promising for in situ photopolymerization. The Journal of Physical Chemistry C, 117(40), 20421-20430. doi:10.1021/jp405363x.
[91] Srivishnu, K. S., Prasanthkumar, S., and Giribabu, L. (2021). Cu(ii/i) redox couples: potential alternatives to traditional electrolytes for dye-sensitized solar cells. Materials Advances, 2(4), 1229-1247. doi:10.1039/D0MA01023E.
[92] Kakiage, K., Aoyama, Y., Yano, T., Oya, K., Fujisawa, J.-i., and Hanaya, M. (2015). Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chemical Communications, 51(88), 15894-15897. doi:10.1039/C5CC06759F.
[93] Shockley, W., and Queisser, H. (2018). Detailed balance limit of efficiency of p–n junction solar cells. In Renewable Energy (pp. Vol2_35-Vol32_54): Routledge.
[94] Choi, H., and Jeong, S. (2018). A review on eco-friendly quantum dot solar cells: Materials and manufacturing processes. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(2), 349-358. doi:/10.1007/s40684-018-0037-2.
[95] Selopal, G. S., Zhao, H., Wang, Z. M., and Rosei, F. (2020). Quantum Dots Solar Cells: Core/Shell Quantum Dots Solar Cells (Adv. Funct. Mater. 13/2020). Advanced Functional Materials, 30(13), 2070086. doi:10.1002/adfm.202070086.
[96] Pan, Z., Rao, H., Mora-Seró, I., Bisquert, J., and Zhong, X. (2018). Quantum dot-sensitized solar cells. Chemical Society Reviews, 47(20), 7659-7702. doi:10.1039/C8CS00431E.
[97] Ihara, M., Ikenouchi, S., Taniguchi, K., Tanaka, Y., and Hasegawa, T. (2011). Photoabsorption-enhanced dye-sensitized solar cells using localized surface plasmon of gold nanoparticles with 16-mercapto hexadecanoic acid. Paper presented at the 2011 37th IEEE Photovoltaic Specialists Conference.
[98] Nahm, C., Choi, H., Kim, J., Jung, D.-R., Kim, C., Moon, J., Lee, B., and Park, B. (2011). The effects of 100 nm-diameter Au nanoparticles on dye-sensitized solar cells. Applied physics letters, 99(25), 253107. doi:10.1063/1.3671087.
[99] Yun, J., Hwang, S. H., and Jang, J. (2015). Fabrication of Au@ Ag core/shell nanoparticles decorated TiO2 hollow structure for efficient light-harvesting in dye-sensitized solar cells. ACS applied materials & interfaces, 7(3), 2055-2063. doi:10.1021/am508065n.
[100] Wang, Y., Zhai, J., and Song, Y. (2015). Plasmonic cooperation effect of metal nanomaterials at Au–TiO 2–Ag interface to enhance photovoltaic performance for dye-sensitized solar cells. RSC Advances, 5(1), 210-214. doi:10.1039/C4RA08753D.
[101] Al-Azawi, M. A., Bidin, N., Bououdina, M., and Mohammad, S. M. (2016). Preparation of gold and gold–silver alloy nanoparticles for enhancement of plasmonic dye-sensitized solar cells performance. Solar Energy, 126, 93-104. doi:10.1016/j.solener.2015.12.043.
[102] Lim, S. P., Lim, Y. S., Pandikumar, A., Lim, H. N., Ng, Y. H., Ramaraj, R., Bien, D. C. S., Abou-Zied, O. K., and Huang, N. M. (2017). Gold–silver@ TiO 2 nanocomposite-modified plasmonic photoanodes for higher efficiency dye-sensitized solar cells. Physical Chemistry Chemical Physics, 19(2), 1395-1407. doi:10.1039/C6CP05950C.
[103] Notarianni, M., Vernon, K., Chou, A., Aljada, M., Liu, J., and Motta, N. (2014). Plasmonic effect of gold nanoparticles in organic solar cells. Solar Energy, 106, 23-37. doi:10.1016/j.solener.2013.09.02.
[104] Bhardwaj, S., Pal, A., Chatterjee, K., Rana, T. H., Bhattacharya, G., Sinha Roy, S., Chowdhury, P., Sharma, G. D., and Biswas, S. (2018). Fabrication of efficient dye-sensitized solar cells with photoanode containing TiO2–Au and TiO2–Ag plasmonic nanocomposites. Journal of Materials Science: Materials in Electronics, 29(21), 18209-18220. doi:10.1007/s10854-018-9934-y.
[105] Kaur, N., Bhullar, V., Singh, D. P., and Mahajan, A. (2020). Bimetallic implanted plasmonic photoanodes for TiO2 sensitized third generation solar cells. Scientific Reports, 10(1), 7657. doi:10.1038/s41598-020-64653-6.
[106] Ran, H., Fan, J., Zhang, X., Mao, J., and Shao, G. (2018). Enhanced performances of dye-sensitized solar cells based on Au-TiO2 and Ag-TiO2 plasmonic hybrid nanocomposites. Applied Surface Science, 430, 415-423. doi:10.1016/j.apsusc.2017.07.107.
[107] Liu, L., Wang, G., Li, Y., Li, Y., and Zhang, J. Z. (2011). CdSe quantum dot-sensitized Au/TiO2 hybrid mesoporous films and their enhanced photoelectrochemical performance. Nano Research, 4(3), 249-258. doi:10.1007/s12274-010-0076-7.
[108] Zhu, G., Su, F., Lv, T., Pan, L., and Sun, Z. (2010). Au nanoparticles as interfacial layer for CdS quantum dot-sensitized solar cells. Nanoscale research letters, 5(11), 1749. doi:10.1007/s11671-010-9705-z.
[109] Akilimali, R., Selopal, G. S., Benetti, D., Mohammadnezhad, M., Zhao, H., Wang, Z. M., Stansfield, B., and Rosei, F. (2020). Graphene nanoribbon-TiO2-quantum dots hybrid photoanode to boost the performance of photoelectrochemical for hydrogen generation. Catalysis Today, 340, 161-169. doi:10.1016/j.cattod.2018.10.052.
[110] Kusuma, J., Balakrishna, R. G., Patil, S., Jyothi, M., Chandan, H., and Shwetharani, R. (2018). Exploration of graphene oxide nanoribbons as excellent electron conducting network for third generation solar cells. Solar Energy Materials and Solar Cells, 183, 211-219. doi:10.1016/j.solmat.2018.01.039.
[111] Raisa, A. T., Sakib, S. N., Hossain, M. J., Rocky, K. A., and Kowsar, A. (2025). Advances in multijunction solar cells: an overview. Solar Energy Advances, 100105. doi:10.1016/j.seja.2025.100105.
[112] Saddam, J., and Jaduaa, M. (2025). Design and Fabrication of a Multi-Junction Hybrid Heterostructure Based on ZnO/CuO/PS/Si for Advanced Optoelectronic Applications. Journal of Solar Energy Research, 10(1), 2161-2175. doi:10.22059/JSER.2025.398689.1599.
[113] Green, M. A. (2003). Third Generation Photovoltaics: Advanced Solar Energy Conversion: Springer.
[114] Bedair, S., Lamorte, M., and Hauser, J. (1979). A two‐junction cascade solar‐cell structure. Applied physics letters, 34(1), 38-39. doi:10.1063/1.90576.
[115] Ding, H., and Sheng, X. (2019). Thin-Film III–V Single Junction and Multijunction Solar Cells and Their Integration onto Heterogeneous Substrates. In Inorganic Flexible Optoelectronics (pp. 177-207).
[116] Luceño-Sánchez, J. A., Díez-Pascual, A. M., and Peña Capilla, R. (2019). Materials for Photovoltaics: State of Art and Recent Developments. International Journal of Molecular Sciences, 20(4), 976. .
[117] Dimroth, F., Grave, M., Beutel, P., Fiedeler, U., Karcher, C., Tibbits, T. N. D., Oliva, E., Siefer, G., Schachtner, M., Wekkeli, A., Bett, A. W., Krause, R., Piccin, M., Blanc, N., Drazek, C., Guiot, E., Ghyselen, B., Salvetat, T., Tauzin, A., Signamarcheix, T., Dobrich, A., Hannappel, T., and Schwarzburg, K. (2014). Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency. Progress in Photovoltaics: Research and Applications, 22(3), 277-282. doi:10.1002/pip.2475.
[118] Tanabe, K., Fontcuberta i Morral, A., Atwater, H. A., Aiken, D. J., and Wanlass, M. W. (2006). Direct-bonded GaAs∕ InGaAs tandem solar cell. Applied physics letters, 89(10). doi:10.1063/1.2347280.
[119] Dimroth, F., Tibbits, T. N., Niemeyer, M., Predan, F., Beutel, P., Karcher, C., Oliva, E., Siefer, G., Lackner, D., and Fuß-Kailuweit, P. (2015). Four-junction wafer-bonded concentrator solar cells. IEEE Journal of Photovoltaics, 6(1), 343-349. doi:10.1109/JPHOTOV.2015.2501729.
[120] Li, J., Aierken, A., Liu, Y., Zhuang, Y., Yang, X., Mo, J., Fan, R., Chen, Q., Zhang, S., and Huang, Y. (2021). A brief review of high efficiency III-V solar cells for space application. Frontiers in Physics, 8, 631925. doi:10.3389/fphy.2020.631925.
[121] Milliron, D. J., Gur, I., and Alivisatos, A. P. (2005). Hybrid organic–nanocrystal solar cells. MRS Bulletin, 30(1), 41-44. doi:10.1557/mrs2005.8 .
[122] Kaur, N., Singh, M., Pathak, D., Wagner, T., and Nunzi, J. (2014). Organic materials for photovoltaic applications: Review and mechanism. Synthetic Metals, 190, 20-26. doi:10.1016/j.synthmet.2014.01.022.
[123] Liu, R. (2014). Hybrid organic/inorganic nanocomposites for photovoltaic cells. Materials, 7(4), 2747-2771. doi:10.3390/ma7042747.
[124] Ren, S., Chang, L.-Y., Lim, S.-K., Zhao, J., Smith, M., Zhao, N., Bulović, V., Bawendi, M., and Gradečak, S. (2011). Inorganic–organic hybrid solar cell: bridging quantum dots to conjugated polymer nanowires. Nano Letters, 11(9), 3998-4002. doi:10.1021/nl202435t.
[125] Blom, P. W., Mihailetchi, V. D., Koster, L. J. A., and Markov, D. E. (2007). Device physics of polymer: fullerene bulk heterojunction solar cells. Advanced Materials, 19(12), 1551-1566. doi:10.1002/adma.200601093.
[126] Yu, G., Gao, J., Hummelen, J. C., Wudl, F., and Heeger, A. J. (1995). Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 270(5243), 1789-1791. doi:10.1126/science.270.5243.1789.
[127] Fan, X., Zhang, M., Wang, X., Yang, F., and Meng, X. (2013). Recent progress in organic–inorganic hybrid solar cells. Journal of Materials Chemistry A, 1(31), 8694-8709. doi:10.1039/C3TA11200D.
[128] Liu, Q., Ono, M., Tang, Z., Ishikawa, R., Ueno, K., and Shirai, H. (2012). Highly efficient crystalline silicon/Zonyl fluorosurfactant-treated organic heterojunction solar cells. Applied physics letters, 100(18). doi:10.1063/1.4709615.
[129] Sun, Z., Liu, M., Zhou, Y., Wang, Q., Yang, Y., Zhou, Y., and Liu, F. (2022). 20% efficiency mg/PCBM/p-type silicon hybrid solar cells. Solar Energy Materials and Solar Cells, 235, 111453. doi:10.1016/j.solmat.2021.111453.
[131] Tahri, F., Tahri, G., Tahri, A., Silvestre, S., Rampinelli, G., and Nofuentes, G. Economic and Comparative Performance Analysis of Thin-Film Grid-Connected Pv Systems in Southern Europe. Available at SSRN 5208649. doi:10.1016/j.enbuild.2025.116564.
[132] Liu, Y., Zhang, Z., Wu, T., Xiang, W., Qin, Z., Shen, X., Peng, Y., Shen, W., Li, Y., and Han, L. (2025). Cost Effectivities Analysis of Perovskite Solar Cells: Will it Outperform Crystalline Silicon Ones? Nano-Micro Letters, 17(1), 219. doi:10.1007/s40820-025-01744-x.