A Review on Progresses and Developments in Solar cell Technologies

Document Type : Review Article

Authors

1 Department of Physics, Guru Nanak Dev University College, Patti-143416, India

2 Department of Physics, Guru Nanak Dev University College, Narot Jaimal Singh-145026, India

3 Faculty Member in Physics, Advance Functional Materials Lab, University of West Indies, Trinidad and Tobago, West Indies

4 Guru Ramdas school of Planning, Guru Nanak Dev University, Amritsar-143005, India

5 Department of Chemistry, Guru Nanak Dev University College, Patti-143416, India

6 Department of Chemistry, Guru Nanak Dev University College, Narot Jaimal Singh-145026, India

Abstract

To reduce the consumption of fossil fuels, mitigate climate change and meet the ever-increasing energy demands, cost effective and everlasting renewable energy resources have been considered as promising alternatives. Among the renewable resources, solar energy is the most potential and clean energy resource. In this review paper, advancements and developments in different generations of solar cell technologies have been reviewed. Starting from silicon solar cells, solar cell technologies have passed through different stages of improvement regarding cost and efficiency. But in market, first generation solar cells are still dominating with global market share of over 90%. Thin film solar cell technology which comprises the second generation are economical as compared to traditional Si Solar cells but have relatively low efficiency. Third generation solar cells consist of DSSC, organic, perovskites and multijunction solar cells. The perovskites and tandem perovskites have achieved record breaking efficiencies of 34.6% and 36.1% in recent research. But the commercialization of these technologies is still a challenge due to stability related issues. The fourth-generation solar cells which combines the merits of organic and inorganic materials to give bulk heterojunction technology are emerging as future solar cell technologies.

Keywords

[1] Hussain, A., Arif, S. M., and Aslam, M. (2017). Emerging renewable and sustainable energy technologies: State of the art. Renewable and Sustainable Energy Reviews, 71, 12-28. doi:https://doi.org/10.1016/j.rser.2016.12.033.
[2] Latake, P. T., Pawar, P., and Ranveer, A. C. (2015). The greenhouse effect and its impacts on environment. International Journal of Innovative Research and Creative Technology, 1(3), 333-337. .
[3] Vohra, K., Vodonos, A., Schwartz, J., Marais, E. A., Sulprizio, M. P., and Mickley, L. J. (2021). Global mortality from outdoor fine particle pollution generated by fossil fuel combustion: Results from GEOS-Chem. Environmental research, 195, 110754. doi:10.1016/j.envres.2021.110754.
[4] Bertrand, S. (2021). Fact Sheet| Climate, Environmental, and Health Impacts of Fossil Fuels (2021): Environmental and Energy Study Institute.
[5] Review, W. P. (2025). Carbon Footprint by Country 2025 Retrieved from https://worldpopulationreview.com/country-rankings/carbon-footprint-by-country.
[6] Shaikh, E. N., Patil, A. V., Tupe, U. J., and Dighavkar, C. G. (2021). A Review on: Renewable Energy Sources and Generation of Photovoltaic Solar Technology. International Journal of Scientific Development and Research, 6(4), 613-622. doi:ijsdr.org/papers/IJSDR2104102.pdf.
[7] Devabhaktuni, V., Alam, M., Depuru, S. S. S. R., Green II, R. C., Nims, D., and Near, C. (2013). Solar energy: Trends and enabling technologies. Renewable and Sustainable Energy Reviews, 19, 555-564. doi:10.1016/j.rser.2012.11.024.
[8] Demirbas, A. (2000). Recent advances in biomass conversion technologies. Energy Education Science and Technology, 6, 19-41. .
[9] Muhammad, J. Y. u., Waziri, A. B., Shitu, A. M., Ahmad, U. M., Muhammad, M. H., Alhaji, Y., Olaniyi, A. T., and Bala, A. A. (2019). Recent progressive status of materials for solar photovoltaic cell: A comprehensive review. Science Journal of Energy Engineering, 7(4), 77-89. doi:10.11648/j.sjee.20190704.14  .
[10] Arvydas Lebedys, D. A., Nicolas Coënt, Nazik Elhassan, Gerardo Escamilla, Iana Arkhipova and Adrian Whiteman. (2022). Renewable Energy Statistics 2022. Retrieved from https://www.irena.org/publications/2022/Jul/Renewable-Energy-Statistics-2022.
[11] Salman, A., Homsirikamol, E., and Shih, P.-J. (2014). Solar Panels Support Systems in Tropical Countries: An Inexpensive Approach. ALAM CIPTA, International Journal of Sustainable Tropical Design Research and Practice, 6(2), 53-58. .
[12] Parida, B., Iniyan, S., and Goic, R. (2011). A review of solar photovoltaic technologies. Renewable and sustainable energy reviews, 15(3), 1625-1636. doi:10.1016/j.rser.2010.11.032.
[13] Environmental, F. (2014). Solar Radiation and Photosynethically Active Radiation. Retrieved from https://www.fondriest.com/environmental-measurements/parameters/ weather/solar-radiation/.
[14] Reference Air Mass 1.5 Spectra. (2025). Retrieved from https://www.nrel.gov/grid/solar-resource/spectra-am1.5.
[15] Sutherland, B. R. (2020). Solar materials find their band gap. Joule, 4(5), 984-985. doi:10.1016/j.joule.2020.05.001.
[16] Liu, Y., Li, Y., Wu, Y., Yang, G., Mazzarella, L., Procel-Moya, P., Tamboli, A. C., Weber, K., Boccard, M., and Isabella, O. (2020). High-efficiency silicon heterojunction solar cells: materials, devices and applications. Materials Science and Engineering: R: Reports, 142, 100579. doi:10.1016/j.mser.2020.100579.
[17] Green, Martin A., Dunlop, Ewan D., Yoshita, M., Kopidakis, N., Bothe, K., Siefer, G., Hao, X., and Jiang, Jessica Y. (2025). Solar Cell Efficiency Tables (Version 66). Progress in Photovoltaics: Research and Applications, 33(7), 795-810. doi:10.1002/pip.3919.
[18] LONGi News, https://www.longi.com/en/news. (2025). Retrieved from https://www.longi.com/en/news.
[19] Matsui, T., Bidiville, A., Maejima, K., Sai, H., Koida, T., Suezaki, T., Matsumoto, M., Saito, K., Yoshida, I., and Kondo, M. (2015). High-efficiency amorphous silicon solar cells: Impact of deposition rate on metastability. Applied physics letters, 106(5). doi:10.1063/1.4907001.
[20] Sai, H., Matsui, T., Kumagai, H., and Matsubara, K. (2018). Thin-film microcrystalline silicon solar cells: 11.9% efficiency and beyond. Applied Physics Express, 11(2), 022301. doi:10.1109/PVSC.2011.6185831.
[21] Kayes, B. M., Nie, H., Twist, R., Spruytte, S. G., Reinhardt, F., Kizilyalli, I. C., and Higashi, G. S. (2011). 27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination. Paper presented at the 2011 37th IEEE photovoltaic specialists conference.
[22] Wanlass, M. (2017). Systems and methods for advanced ultra-high-performance InP solar cells. Retrieved from.
[23] Nakamura, M., Yamaguchi, K., Kimoto, Y., Yasaki, Y., Kato, T., and Sugimoto, H. (2019). Cd-free Cu (In, Ga)(Se, S) 2 thin-film solar cell with record efficiency of 23.35%. IEEE journal of photovoltaics, 9(6), 1863-1867. doi:10.1109/JPHOTOV.2019.2937218.
[24] Jeong, M., Choi, I. W., Go, E. M., Cho, Y., Kim, M., Lee, B., Jeong, S., Jo, Y., Choi, H. W., and Lee, J. (2020). Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science, 369(6511), 1615-1620. doi:10.1126/science. abb7167.
[25] Komiya, R., Fukui, A., Murofushi, N., Koide, N., Yamanaka, R., and Katayama, H. (2011). Improvement of the conversion efficiency of a monolithic type dye-sensitized solar cell module. Paper presented at the Technical Digest, 21st International Photovoltaic Science and Engineering Conference.
[26] Faisst, J., Jiang, E., Bogati, S., Pap, L., Zimmermann, B., Kroyer, T., Würfel, U., and List, M. (2023). Organic Solar Cell with an Active Area> 1 cm2 Achieving 15.8% Certified Efficiency using Optimized VIS‐NIR Antireflection Coating. Solar RRL, 7(24), 2300663. doi:10.1002/solr.202300663.
[27] Chiu, P., Law, D., Woo, R., Singer, S., Bhusari, D., Hong, W., Zakaria, A., Boisvert, J., Mesropian, S., and King, R. (2014). 35.8% space and 38.8% terrestrial 5J direct bonded cells. Paper presented at the 2014 IEEE 40th photovoltaic specialist conference (PVSC).
[28] Ohl, R. S. (1946). Light-sensitive electric device. In: Google Patents.
[29] Andreani, L. C., Bozzola, A., Kowalczewski, P., Liscidini, M., and Redorici, L. (2019). Silicon solar cells: toward the efficiency limits. Advances in Physics: X, 4(1), 1548305. doi:10.1080/23746149.2018.1548305.
[30] Glunz, S. W., Preu, R., and Biro, D. (2012). Crystalline silicon solar cells: state-of-the-art and future developments. Comprehensive Renewable Energy, 1, 353-387. doi:10.1016/B978-0-08-087872-0.00117-7.
[31] Mercaldo, L. V., and Veneri, P. D. (2020). Silicon solar cells: materials, technologies, architectures. Solar Cells and Light Management, 35-57. doi:10.1016/B978-0-08-102762-2.00002-1..
[32] Kerr, M. J., Cuevas, A., and Campbell, P. (2003). Limiting efficiency of crystalline silicon solar cells due to Coulomb‐enhanced Auger recombination. Progress in Photovoltaics: Research and Applications, 11(2), 97-104. doi:10.1002/pip.464.
[33] Ranabhat, K., Patrikeev, L., Revina, A. A. e., Andrianov, K., Lapshinsky, V., and Sofronova, E. (2016). An introduction to solar cell technology. Journal of Applied Engineering Science, 14(4), 481-491. doi:10.5937/jaes14-10879.
[34] Chittick, R., Alexander, J., and Sterling, H. (1969). The preparation and properties of amorphous silicon. Journal of the Electrochemical Society, 116(1), 77. doi:10.1149/1.2411779.
[35] Street, R., Cahn, R., Davis, E., and Ward, I. Hydrogenated Amorphous Silicon, Cambridge University Press, Cambridge 1991.
[36] Mohammed, I. K., Zahari, I., Kamaruzzaman, S., and Nowshad, A. (2011). A Review on Progress of Amorphous and Microcrystalline Silicon Thin-Film Solar Cells. Recent Patents on Electrical Engineering, 4(1), 50-62. doi:http://dx.doi.org/10.2174/1874476111104010050.
[37] Spear, W. E., and Le Comber, P. G. (1975). Substitutional doping of amorphous silicon. Solid State Communications, 17(9), 1193-1196. doi:10.1016/0038-1098(75)90284-7.
[38] Carlson, D. E., and Wronski, C. R. (1976). Amorphous silicon solar cell. Applied physics letters, 28(11), 671-671. doi:10.1063/1.88617.
[39] Curtins, H., Wyrsch, N., and Shah, A. (1987). High-rate deposition of amorphous hydrogenated silicon: effect of plasma excitation frequency. Electronics Letters, 23(5), 228-230. doi:10.1049/el:19870160.
[40] Shah, A. (2010). Thin-Film Silicon Solar Cells: EFPL Press.
[41] Stuckelberger, M., Biron, R., Wyrsch, N., Haug, F.-J., and Ballif, C. (2017). Review: Progress in solar cells from hydrogenated amorphous silicon. Renewable and Sustainable Energy Reviews, 76, 1497-1523. doi:10.1016/j.rser.2016.11.190.
[42] Staebler, D. L., and Wronski, C. (1977). Reversible conductivity changes in discharge‐produced amorphous Si. Applied physics letters, 31(4), 292-294. doi:10.1063/1.89674.
[43] Platz, R., Wagner, S., Hof, C., Shah, A., Wieder, S., and Rech, B. (1998). Influence of excitation frequency, temperature, and hydrogen dilution on the stability of plasma enhanced chemical vapor deposited a-Si: H. Journal of Applied Physics, 84(7), 3949-3953. doi:10.1063/1.368592.
[44] Guha, S., Yang, J., Banerjee, A., Yan, B., and Lord, K. (2003). High quality amorphous silicon materials and cells grown with hydrogen dilution. Solar Energy Materials and Solar Cells, 78(1), 329-347. doi:10.1016/S0927-0248(02)00441-5.
[45] ISE, F. (2025). Photovoltaics Report. Retrieved from www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf.
[46] Van Den Donker, M., Klein, S., Rech, B., Finger, F., Kessels, W., and Van De Sanden, M. (2007). Microcrystalline silicon solar cells with an open-circuit voltage above 600mV. Applied physics letters, 90(18), 183504. doi:doi.org/10.1063/1.2734375.
[47] Meier, J., Flückiger, R., Keppner, H., and Shah, A. (1994). Complete microcrystalline p‐i‐n solar cell—Crystalline or amorphous cell behavior? Applied physics letters, 65(7), 860-862. doi:10.1063/1.112183.
[48] Vetterl, O., Finger, F., Carius, R., Hapke, P., Houben, L., Kluth, O., Lambertz, A., Mück, A., Rech, B., and Wagner, H. (2000). Intrinsic microcrystalline silicon: A new material for photovoltaics. Solar energy materials and solar cells, 62(1-2), 97-108. doi:10.1016/S0927-0248(99)00140-3.
[49] Droz, C., Vallat-Sauvain, E., Bailat, J., Feitknecht, L., Meier, J., and Shah, A. (2004). Relationship between Raman crystallinity and open-circuit voltage in microcrystalline silicon solar cells. Solar Energy Materials and Solar Cells, 81(1), 61-71. doi:10.1016/j.solmat.2003.07.004.
[50] Matsui, T., Sai, H., Bidiville, A., Hsu, H.-J., and Matsubara, K. (2018). Progress and limitations of thin-film silicon solar cells. Solar Energy, 170, 486-498. doi:10.1016/j.solener.2018.05.077.
[51] Lee, T. D., and Ebong, A. U. (2017). A review of thin film solar cell technologies and challenges. Renewable and Sustainable Energy Reviews, 70, 1286-1297. doi:10.1016/j.rser.2016.12.028.
[52] Margottet, J. (1879). Recherches sur les sulfures, les séléniures et les tellurures métalliques. Annales scientifiques de l'École Normale Supérieure, 8, 247-298. doi:10.24033/asens.178.
[53] Jenny, D. A., and Bube, R. H. (1954). Semiconducting Cadmium Telluride. Physical Review, 96(5), 1190-1191. doi:10.1103/PhysRev.96.1190.
[54] Kowsar, A., Farhad, S. F. U., Rahaman, M., Islam, M., Imam, A., Debnath, S., Sultana, M., Hoque, M., Sharmin, A., and Mahmood, Z. (2019). Progress in Major Thin-film Solar Cells: Growth Technologies, Layer Materials and Efficiencies. International Journal of Renewable Energy Research, 9, 579-597. doi:10.20508/ijrer.v9i2.
[55] Bonnet, D., and Rabenhorst, H. (1972). New results on the development of a thin-film p-CdTe-n-CdS heterojunction solar cell. Paper presented at the Photovoltaic Specialists Conference, 9 th, Silver Spring, Md.
[56] Romeo, A., and Artegiani, E. (2021). CdTe-based thin film solar cells: past, present and future. Energies, 14(6), 1684. doi:10.3390/en14061684.
[57] Friedlmeier, T. M., Jackson, P., Bauer, A., Hariskos, D., Kiowski, O., Wuerz, R., and Powalla, M. (2015). Improved photocurrent in Cu (In, Ga) Se 2 solar cells: from 20.8% to 21.7% efficiency with CdS buffer and 21.0% Cd-free. IEEE Journal of Photovoltaics, 5(5), 1487-1491. doi:10.1109/JPHOTOV.2015.2458039.
[58] Li, X., Li, P., Wu, Z., Luo, D., Yu, H.-Y., and Lu, Z.-H. (2021). Review and perspective of materials for flexible solar cells. Materials Reports: Energy, 1(1), 100001. doi:10.1016/j.matre.2020.09.001.
[59] Mufti, N., Amrillah, T., Taufiq, A., Diantoro, M., and Nur, H. (2020). Review of CIGS-based solar cells manufacturing by structural engineering. Solar Energy, 207, 1146-1157. doi:10.1016/j.solener.2020.07.065.
[60] Reinhard, P., Buecheler, S., and Tiwari, A. (2013). Technological status of Cu (In, Ga)(Se, S) 2-based photovoltaics. Solar Energy Materials and Solar Cells, 119, 287-290. doi:10.1016/j.solmat.2013.08.030.
[61] Ramanujam, J., Bishop, D. M., Todorov, T. K., Gunawan, O., Rath, J., Nekovei, R., Artegiani, E., and Romeo, A. (2020). Flexible CIGS, CdTe and a-Si: H based thin film solar cells: A review. Progress in Materials Science, 110, 100619. doi:10.1016/j.pmatsci.2019.100619.
[62] Ramanujam, J., and Singh, U. P. (2017). Copper indium gallium selenide based solar cells–a review. Energy & Environmental Science, 10(6), 1306-1319. doi:10.1039/C7EE00826K.
[63] Ansari, M. I. H., Qurashi, A., and Nazeeruddin, M. K. (2018). Frontiers, opportunities, and challenges in perovskite solar cells: A critical review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 35, 1-24. doi:10.1016/j.jphotochemrev.2017.11.002.
[64] Nair, S., Patel, S. B., and Gohel, J. V. (2020). Recent trends in efficiency-stability improvement in perovskite solar cells. Materials Today Energy, 17, 100449. doi:10.1016/j.mtener.2020.100449.
[65] Cao, X., Zhi, L., Jia, Y., Li, Y., Zhao, K., Cui, X., Ci, L., Zhuang, D., and Wei, J. (2019). A review of the role of solvents in formation of high-quality solution-processed perovskite films. ACS Applied Materials & Interfaces, 11(8), 7639-7654. doi:10.1021/acsami.8b16315.
[66] Jung, H. S., and Park, N. G. (2015). Perovskite solar cells: from materials to devices. Small, 11(1), 10-25. doi:10.1002/smll.201402767 .
[67] Kojima, A., Teshima, K., Shirai, Y., and Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131(17), 6050-6051. doi:10.1021/ja809598r.
[68] Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W., and Park, N.-G. (2011). 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 3(10), 4088-4093. doi:10.1039/c1nr10867k.
[69] Tonui, P., Oseni, S. O., Sharma, G., Yan, Q., and Mola, G. T. (2018). Perovskites photovoltaic solar cells: An overview of current status. Renewable and Sustainable Energy Reviews, 91, 1025-1044. doi:10.1016/j.rser.2018.04.069.
[70] Tang, C. W. (1986). Two‐layer organic photovoltaic cell. Applied physics letters, 48(2), 183-185. doi:10.1063/1.96937.
[71] Akhtaruzzaman, M., and Selvanathan, V. (2021). Comprehensive guide on organic and inorganic solar cells: fundamental concepts to fabrication methods: Academic Press.
[72] Sathiyan, G., Sivakumar, E. K. T., Ganesamoorthy, R., Thangamuthu, R., and Sakthivel, P. (2016). Review of carbazole based conjugated molecules for highly efficient organic solar cell application. Tetrahedron Letters, 57(3), 243-252. doi:10.1016/j.tetlet.2015.12.057.
[73] Xu, X., Li, D., Yuan, J., Zhou, Y., and Zou, Y. (2021). Recent advances in stability of organic solar cells. EnergyChem, 3(1), 100046. doi:10.1016/j.enchem.2020.100046.
[74] Zhao, G., He, Y., and Li, Y. (2010). 6.5% efficiency of polymer solar cells based on poly (3‐hexylthiophene) and indene‐C60 bisadduct by device optimization. Advanced Materials, 22(39), 4355-4358. doi:10.1002/adma.201001339.
[75] Chen, J., Chen, Y., Feng, L.-W., Gu, C., Li, G., Su, N., Wang, G., Swick, S. M., Huang, W., Guo, X., Facchetti, A., and Marks, T. J. (2020). Hole (donor) and electron (acceptor) transporting organic semiconductors for bulk-heterojunction solar cells. EnergyChem, 2(5), 100042. doi:10.1016/j.enchem.2020.100042.
[76] He, Y., Chen, H.-Y., Hou, J., and Li, Y. (2010). Indene−C60 Bisadduct: A New Acceptor for High-Performance Polymer Solar Cells. Journal of the American Chemical Society, 132(4), 1377-1382. doi:10.1021/ja908602j.
[77] Sun, Y., Welch, G. C., Leong, W. L., Takacs, C. J., Bazan, G. C., and Heeger, A. J. (2012). Solution-processed small-molecule solar cells with 6.7% efficiency. Nature Materials, 11(1), 44-48. doi:10.1038/nmat3160.
[78] Nielsen, C. B., Holliday, S., Chen, H.-Y., Cryer, S. J., and McCulloch, I. (2015). Non-fullerene electron acceptors for use in organic solar cells. Accounts of chemical research, 48(11), 2803-2812. doi:10.1021/acs.accounts.5b00199 .
[79] Li, S., Liu, W., Li, C. Z., Shi, M., and Chen, H. (2017). Efficient organic solar cells with non‐fullerene acceptors. Small, 13(37), 1701120. doi:10.1002/smll.201701120.
[80] Li, S., Liu, W., Shi, M., Mai, J., Lau, T.-K., Wan, J., Lu, X., Li, C.-Z., and Chen, H. (2016). A spirobifluorene and diketopyrrolopyrrole moieties based non-fullerene acceptor for efficient and thermally stable polymer solar cells with high open-circuit voltage. Energy & Environmental Science, 9(2), 604-610. doi:10.1039/C5EE03481G.
[81] Cui, Y., Xu, Y., Yao, H., Bi, P., Hong, L., Zhang, J., Zu, Y., Zhang, T., Qin, J., and Ren, J. (2021). Single‐junction organic photovoltaic cell with 19% efficiency. Advanced Materials, 33(41), 2102420. doi:10.1002/adma.202102420.
[82] Green Energy Materials, Materials, Non-Fullerene Acceptors, Organic Conductors (2025). Retrieved from https://www.ossila.com/products/btp-ec9.
[83] O'Regan, B., and Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353(6346), 737-740. doi:10.1038/353737a0.
[84] Kishore Kumar, D., Kříž, J., Bennett, N., Chen, B., Upadhayaya, H., Reddy, K. R., and Sadhu, V. (2020). Functionalized metal oxide nanoparticles for efficient dye-sensitized solar cells (DSSCs): A review. Materials Science for Energy Technologies, 3, 472-481. doi:https://doi.org/10.1016/j.mset.2020.03.003.
[85] Grätzel, M. (2003). Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 4(2), 145-153. doi:10.1016/S1389-5567(03)00026-1.
[86] Karthick, S. N., Hemalatha, K. V., Suresh Kannan, B., Manik Clinton, F., Akshaya, S., and Kim, H.-J. (2019). Dye-Sensitized Solar Cells: History, Components, Configuration, and Working Principle. In Interfacial Engineering in Functional Materials for Dye‐Sensitized Solar Cells (pp. 1-16)..
[87] Mathew, S., Yella, A., Gao, P., Humphry-Baker, R., Curchod, B. F. E., Ashari-Astani, N., Tavernelli, I., Rothlisberger, U., Nazeeruddin, M. K., and Grätzel, M. (2014). Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature Chemistry, 6(3), 242-247. doi:10.1038/nchem.1861.
[88] Lee, I., Hwang, S., and Kim, H. (2011). Reaction between oxide sealant and liquid electrolyte in dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 95(1), 315-317. doi:10.1016/j.solmat.2010.04.052.
[89] Oskam, G., Bergeron, B. V., Meyer, G. J., and Searson, P. C. (2001). Pseudohalogens for dye-sensitized TiO2 photoelectrochemical cells. The Journal of Physical Chemistry B, 105(29), 6867-6873. doi:10.1021/jp004411d.
[90] Bella, F., Sacco, A., Salvador, G. P., Bianco, S., Tresso, E., Pirri, C. F., and Bongiovanni, R. (2013). First pseudohalogen polymer electrolyte for dye-sensitized solar cells promising for in situ photopolymerization. The Journal of Physical Chemistry C, 117(40), 20421-20430. doi:10.1021/jp405363x.
[91] Srivishnu, K. S., Prasanthkumar, S., and Giribabu, L. (2021). Cu(ii/i) redox couples: potential alternatives to traditional electrolytes for dye-sensitized solar cells. Materials Advances, 2(4), 1229-1247. doi:10.1039/D0MA01023E.
[92] Kakiage, K., Aoyama, Y., Yano, T., Oya, K., Fujisawa, J.-i., and Hanaya, M. (2015). Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chemical Communications, 51(88), 15894-15897. doi:10.1039/C5CC06759F.
[93] Shockley, W., and Queisser, H. (2018). Detailed balance limit of efficiency of p–n junction solar cells. In Renewable Energy (pp. Vol2_35-Vol32_54): Routledge.
[94] Choi, H., and Jeong, S. (2018). A review on eco-friendly quantum dot solar cells: Materials and manufacturing processes. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(2), 349-358. doi:/10.1007/s40684-018-0037-2.
[95] Selopal, G. S., Zhao, H., Wang, Z. M., and Rosei, F. (2020). Quantum Dots Solar Cells: Core/Shell Quantum Dots Solar Cells (Adv. Funct. Mater. 13/2020). Advanced Functional Materials, 30(13), 2070086. doi:10.1002/adfm.202070086.
[96] Pan, Z., Rao, H., Mora-Seró, I., Bisquert, J., and Zhong, X. (2018). Quantum dot-sensitized solar cells. Chemical Society Reviews, 47(20), 7659-7702. doi:10.1039/C8CS00431E.
[97] Ihara, M., Ikenouchi, S., Taniguchi, K., Tanaka, Y., and Hasegawa, T. (2011). Photoabsorption-enhanced dye-sensitized solar cells using localized surface plasmon of gold nanoparticles with 16-mercapto hexadecanoic acid. Paper presented at the 2011 37th IEEE Photovoltaic Specialists Conference.
[98] Nahm, C., Choi, H., Kim, J., Jung, D.-R., Kim, C., Moon, J., Lee, B., and Park, B. (2011). The effects of 100 nm-diameter Au nanoparticles on dye-sensitized solar cells. Applied physics letters, 99(25), 253107. doi:10.1063/1.3671087.
[99] Yun, J., Hwang, S. H., and Jang, J. (2015). Fabrication of Au@ Ag core/shell nanoparticles decorated TiO2 hollow structure for efficient light-harvesting in dye-sensitized solar cells. ACS applied materials & interfaces, 7(3), 2055-2063. doi:10.1021/am508065n.
[100] Wang, Y., Zhai, J., and Song, Y. (2015). Plasmonic cooperation effect of metal nanomaterials at Au–TiO 2–Ag interface to enhance photovoltaic performance for dye-sensitized solar cells. RSC Advances, 5(1), 210-214. doi:10.1039/C4RA08753D.
[101] Al-Azawi, M. A., Bidin, N., Bououdina, M., and Mohammad, S. M. (2016). Preparation of gold and gold–silver alloy nanoparticles for enhancement of plasmonic dye-sensitized solar cells performance. Solar Energy, 126, 93-104. doi:10.1016/j.solener.2015.12.043.
[102] Lim, S. P., Lim, Y. S., Pandikumar, A., Lim, H. N., Ng, Y. H., Ramaraj, R., Bien, D. C. S., Abou-Zied, O. K., and Huang, N. M. (2017). Gold–silver@ TiO 2 nanocomposite-modified plasmonic photoanodes for higher efficiency dye-sensitized solar cells. Physical Chemistry Chemical Physics, 19(2), 1395-1407. doi:10.1039/C6CP05950C.
[103] Notarianni, M., Vernon, K., Chou, A., Aljada, M., Liu, J., and Motta, N. (2014). Plasmonic effect of gold nanoparticles in organic solar cells. Solar Energy, 106, 23-37. doi:10.1016/j.solener.2013.09.02.
[104] Bhardwaj, S., Pal, A., Chatterjee, K., Rana, T. H., Bhattacharya, G., Sinha Roy, S., Chowdhury, P., Sharma, G. D., and Biswas, S. (2018). Fabrication of efficient dye-sensitized solar cells with photoanode containing TiO2–Au and TiO2–Ag plasmonic nanocomposites. Journal of Materials Science: Materials in Electronics, 29(21), 18209-18220. doi:10.1007/s10854-018-9934-y.
[105] Kaur, N., Bhullar, V., Singh, D. P., and Mahajan, A. (2020). Bimetallic implanted plasmonic photoanodes for TiO2 sensitized third generation solar cells. Scientific Reports, 10(1), 7657. doi:10.1038/s41598-020-64653-6.
[106] Ran, H., Fan, J., Zhang, X., Mao, J., and Shao, G. (2018). Enhanced performances of dye-sensitized solar cells based on Au-TiO2 and Ag-TiO2 plasmonic hybrid nanocomposites. Applied Surface Science, 430, 415-423. doi:10.1016/j.apsusc.2017.07.107.
[107] Liu, L., Wang, G., Li, Y., Li, Y., and Zhang, J. Z. (2011). CdSe quantum dot-sensitized Au/TiO2 hybrid mesoporous films and their enhanced photoelectrochemical performance. Nano Research, 4(3), 249-258. doi:10.1007/s12274-010-0076-7.
[108] Zhu, G., Su, F., Lv, T., Pan, L., and Sun, Z. (2010). Au nanoparticles as interfacial layer for CdS quantum dot-sensitized solar cells. Nanoscale research letters, 5(11), 1749. doi:10.1007/s11671-010-9705-z.
[109] Akilimali, R., Selopal, G. S., Benetti, D., Mohammadnezhad, M., Zhao, H., Wang, Z. M., Stansfield, B., and Rosei, F. (2020). Graphene nanoribbon-TiO2-quantum dots hybrid photoanode to boost the performance of photoelectrochemical for hydrogen generation. Catalysis Today, 340, 161-169. doi:10.1016/j.cattod.2018.10.052.
[110] Kusuma, J., Balakrishna, R. G., Patil, S., Jyothi, M., Chandan, H., and Shwetharani, R. (2018). Exploration of graphene oxide nanoribbons as excellent electron conducting network for third generation solar cells. Solar Energy Materials and Solar Cells, 183, 211-219. doi:10.1016/j.solmat.2018.01.039.
[111] Raisa, A. T., Sakib, S. N., Hossain, M. J., Rocky, K. A., and Kowsar, A. (2025). Advances in multijunction solar cells: an overview. Solar Energy Advances, 100105. doi:10.1016/j.seja.2025.100105.
[112] Saddam, J., and Jaduaa, M. (2025). Design and Fabrication of a Multi-Junction Hybrid Heterostructure Based on ZnO/CuO/PS/Si for Advanced Optoelectronic Applications. Journal of Solar Energy Research, 10(1), 2161-2175. doi:10.22059/JSER.2025.398689.1599.
[113] Green, M. A. (2003). Third Generation Photovoltaics: Advanced Solar Energy Conversion: Springer.
[114] Bedair, S., Lamorte, M., and Hauser, J. (1979). A two‐junction cascade solar‐cell structure. Applied physics letters, 34(1), 38-39. doi:10.1063/1.90576.
[115] Ding, H., and Sheng, X. (2019). Thin-Film III–V Single Junction and Multijunction Solar Cells and Their Integration onto Heterogeneous Substrates. In Inorganic Flexible Optoelectronics (pp. 177-207).
[116] Luceño-Sánchez, J. A., Díez-Pascual, A. M., and Peña Capilla, R. (2019). Materials for Photovoltaics: State of Art and Recent Developments. International Journal of Molecular Sciences, 20(4), 976. .
[117] Dimroth, F., Grave, M., Beutel, P., Fiedeler, U., Karcher, C., Tibbits, T. N. D., Oliva, E., Siefer, G., Schachtner, M., Wekkeli, A., Bett, A. W., Krause, R., Piccin, M., Blanc, N., Drazek, C., Guiot, E., Ghyselen, B., Salvetat, T., Tauzin, A., Signamarcheix, T., Dobrich, A., Hannappel, T., and Schwarzburg, K. (2014). Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency. Progress in Photovoltaics: Research and Applications, 22(3), 277-282. doi:10.1002/pip.2475.
[118] Tanabe, K., Fontcuberta i Morral, A., Atwater, H. A., Aiken, D. J., and Wanlass, M. W. (2006). Direct-bonded GaAs∕ InGaAs tandem solar cell. Applied physics letters, 89(10). doi:10.1063/1.2347280.
[119] Dimroth, F., Tibbits, T. N., Niemeyer, M., Predan, F., Beutel, P., Karcher, C., Oliva, E., Siefer, G., Lackner, D., and Fuß-Kailuweit, P. (2015). Four-junction wafer-bonded concentrator solar cells. IEEE Journal of Photovoltaics, 6(1), 343-349. doi:10.1109/JPHOTOV.2015.2501729.
[120] Li, J., Aierken, A., Liu, Y., Zhuang, Y., Yang, X., Mo, J., Fan, R., Chen, Q., Zhang, S., and Huang, Y. (2021). A brief review of high efficiency III-V solar cells for space application. Frontiers in Physics, 8, 631925. doi:10.3389/fphy.2020.631925.
[121] Milliron, D. J., Gur, I., and Alivisatos, A. P. (2005). Hybrid organic–nanocrystal solar cells. MRS Bulletin, 30(1), 41-44. doi:10.1557/mrs2005.8 .
[122] Kaur, N., Singh, M., Pathak, D., Wagner, T., and Nunzi, J. (2014). Organic materials for photovoltaic applications: Review and mechanism. Synthetic Metals, 190, 20-26. doi:10.1016/j.synthmet.2014.01.022.
[123] Liu, R. (2014). Hybrid organic/inorganic nanocomposites for photovoltaic cells. Materials, 7(4), 2747-2771. doi:10.3390/ma7042747.
[124] Ren, S., Chang, L.-Y., Lim, S.-K., Zhao, J., Smith, M., Zhao, N., Bulović, V., Bawendi, M., and Gradečak, S. (2011). Inorganic–organic hybrid solar cell: bridging quantum dots to conjugated polymer nanowires. Nano Letters, 11(9), 3998-4002. doi:10.1021/nl202435t.
[125] Blom, P. W., Mihailetchi, V. D., Koster, L. J. A., and Markov, D. E. (2007). Device physics of polymer: fullerene bulk heterojunction solar cells. Advanced Materials, 19(12), 1551-1566. doi:10.1002/adma.200601093.
[126] Yu, G., Gao, J., Hummelen, J. C., Wudl, F., and Heeger, A. J. (1995). Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 270(5243), 1789-1791. doi:10.1126/science.270.5243.1789.
[127] Fan, X., Zhang, M., Wang, X., Yang, F., and Meng, X. (2013). Recent progress in organic–inorganic hybrid solar cells. Journal of Materials Chemistry A, 1(31), 8694-8709. doi:10.1039/C3TA11200D.
[128] Liu, Q., Ono, M., Tang, Z., Ishikawa, R., Ueno, K., and Shirai, H. (2012). Highly efficient crystalline silicon/Zonyl fluorosurfactant-treated organic heterojunction solar cells. Applied physics letters, 100(18). doi:10.1063/1.4709615.
[129] Sun, Z., Liu, M., Zhou, Y., Wang, Q., Yang, Y., Zhou, Y., and Liu, F. (2022). 20% efficiency mg/PCBM/p-type silicon hybrid solar cells. Solar Energy Materials and Solar Cells, 235, 111453. doi:10.1016/j.solmat.2021.111453.
[130] Analysis, S. M. C. (2025). Solar Manufacturing Cost Analysis. Retrieved from https://www.nrel.gov/solar/market-research-analysis/solar-manufacturing-cost.
[131] Tahri, F., Tahri, G., Tahri, A., Silvestre, S., Rampinelli, G., and Nofuentes, G. Economic and Comparative Performance Analysis of Thin-Film Grid-Connected Pv Systems in Southern Europe. Available at SSRN 5208649. doi:10.1016/j.enbuild.2025.116564.
[132] Liu, Y., Zhang, Z., Wu, T., Xiang, W., Qin, Z., Shen, X., Peng, Y., Shen, W., Li, Y., and Han, L. (2025). Cost Effectivities Analysis of Perovskite Solar Cells: Will it Outperform Crystalline Silicon Ones? Nano-Micro Letters, 17(1), 219. doi:10.1007/s40820-025-01744-x.