[1] Kadhim, S. A., & Hameed, V. M. (2025). An advanced maturity of parabolic solar collector passive enhancement techniques. Journal of Solar Energy Research, 10(1), 2176–2194. https://doi.org/10.22059/jser.2025.395560.1568.
[2] Saleh, H. M., & Hassan, A. I. (2024). The challenges of sustainable energy transition: A focus on renewable energy. Applied Chemical Engineering, 7(2), 2084. https://doi.org/10.59429/ace.v7i2.2084.
[3] Gielen, D., Boshell, F., Saygin, D., Bazilian, M. D., Wagner, N., & Gorini, R. (2019). The role of renewable energy in the global energy transformation. Energy Strategy Reviews, 24, 38–50. https://doi.org/10.1016/j.esr.2019.01.006.
[4] Ansari, S., Ayob, A., Lipu, M. S. H., Saad, M. H. M., & Hussain, A. (2021). A review of monitoring technologies for solar PV systems using data processing modules and transmission protocols: Progress, challenges and prospects. Sustainability, 13(15), 8120. https://doi.org/10.3390/su13158120.
[5] Chiteka, K., & Enweremadu, C. (2025). A review on modeling and prediction of soiling on solar photovoltaics and thermal collectors. Journal of Solar Energy Research. https://doi.org/10.22059/jser.2025.392093.1544.
[6] Nooralishahi, P., Ibarra-Castanedo, C., Deane, S., López, F., Pant, S., Genest, M., Avdelidis, N. P., & Maldague, X. P. V. (2021). Drone-based non-destructive inspection of industrial sites: A review and case studies. Drones, 5(4), 106. https://doi.org/10.3390/drones5040106.
[7] Onim, M. S. H., Sakif, Z. M. M., Ahnaf, A., Kabir, A., Azad, A. K., Oo, A. M. T., Afreen, R., Hridy, S. T., Hossain, M., Jabid, T., & Ali, M. S. (2022). Solnet: A convolutional neural network for detecting dust on solar panels. Energies, 16(1), 155. https://doi.org/10.3390/en16010155.
[8] Yousif, A. J., Zaidan, F. K., & Ibrahim, N. J. (2025). A portable AI-driven edge solution for automated plant disease detection. Diyala Journal of Engineering Sciences, 124–135.
https://doi.org/10.24237/djes.2025.18308[9] Ayana, G., Dese, K., & Choe, S. (2021). Transfer learning in breast cancer diagnoses via ultrasound imaging. Cancers, 13(4), 738. https://doi.org/10.3390/cancers13040738.
[10] Yousif, A. J., & Al-Jammas, M. H. (2024). A lightweight visual understanding system for enhanced assistance to the visually impaired using an embedded platform. Diyala Journal of Engineering Sciences, 146–162. https://doi.org/10.24237/djes.2024.17310.
[11] Abro, G. E. M., Ali, A., Memon, S. A., Memon, T. D., & Khan, F. (2024). Strategies and challenges for unmanned aerial vehicle-based continuous inspection and predictive maintenance of solar modules. IEEE Access, 12, 176615–176629.
https://doi.org/10.1109/ACCESS.2024.3505754[12] Masita, K., Hasan, A., Shongwe, T., & Abu Hilal, H. (2025). Deep learning in defects detection of PV modules: A review. Solar Energy Advances, 100090. https://doi.org/10.1016/j.seja.2025.100090.
[13] Polymeropoulos, I., Bezyrgiannidis, S., Vrochidou, E., & Papakostas, G. A. (2024). Enhancing solar plant efficiency: A review of vision-based monitoring and fault detection techniques. Technologies, 12(10), 175. https://doi.org/10.3390/technologies12100175.
[14] Ling, H., Liu, M., & Fang, Y. (2024). Deep edge-based fault detection for solar panels. Sensors, 24(16), 5348. https://doi.org/10.3390/s24165348.
[15] Boubaker, S., Kamel, S., Ghazouani, N., & Mellit, A. (2023). Assessment of machine and deep learning approaches for fault diagnosis in photovoltaic systems using infrared thermography. Remote Sensing, 15(6), 1686. https://doi.org/10.3390/rs15061686.
[16] Kellil, N., Aissat, A., & Mellit, A. (2023). Fault diagnosis of photovoltaic modules using deep neural networks and infrared images under Algerian climatic conditions. Energy, 263, 125902. https://doi.org/10.1016/j.energy.2022.125902.
[17] Alam, S., Kaushik, S., Shaique, S. M., & Rafiuddin, N. (2024). PV fault detection using CNN for enhancing reliability of solar power plants. In Proceedings of the IEEE ICPEICES (pp. 913–917). Delhi, India. https://doi.org/10.1109/ICPEICES62430.2024.10719330.
[18] Jaybhaye, S., Thakur, O., Yardi, R., Raut, V., & Raut, A. (2023). Solar panel damage detection and localization of thermal images. Journal of Failure Analysis and Prevention, 23(5), 1980–1990. https://doi.org/10.1007/s11668-023-01747-z.
[19] Awedat, K., Comert, G., Ayad, M., & Mrebit, A. (2025). Advanced fault detection in photovoltaic panels using enhanced U-Net architectures. Machine Learning with Applications, 20, 100636. https://doi.org/10.1016/j.mlwa.2025.100636.
[20] Meng, Z., Xu, S., Wang, L., Gong, Y., Zhang, X., & Zhao, Y. (2022). Defect object detection algorithm for electroluminescence image defects of photovoltaic modules based on deep learning. Energy Science & Engineering, 10(3), 800–813. https://doi.org/10.1002/ese3.1056.
[21] Mazen, F. M. A., Seoud, R. A. A., & Shaker, Y. O. (2023). Deep learning for automatic defect detection in PV modules using electroluminescence images. IEEE Access, 11, 57783–57795. https://doi.org/10.1109/ACCESS.2023.3284043.
[22] Wang, J., Bi, L., Sun, P., Jiao, X., Ma, X., Lei, X., & Luo, Y. (2022). Deep-learning-based automatic detection of photovoltaic cell defects in electroluminescence images. Sensors, 23(1), 297. https://doi.org/10.3390/s23010297.
[23] Tella, H., Hussein, A., Rehman, S., Liu, B., Balghonaim, A., & Mohandes, M. (2025). Solar photovoltaic panel cells defects classification using deep learning ensemble methods. Case Studies in Thermal Engineering, 66, 105749. https://doi.org/10.1016/j.csite.2025.105749.
[24] Kilci, O., & Koklu, M. (2025, July). Machine learning-based detection of solar panel surface defects using deep features from InceptionV3. In 4th International Conference on Trends in Advanced Research. Konya, Turkey.
[25] Kazemi, K. (2025). Federated transfer learning for image-based solar panel fault detection. In Proceedings of the ICREDG. https://doi.org/10.1109/ICREDG66184.2025.10966124.
[26] Ledmaoui, Y., El Maghraoui, A., El Aroussi, M., & Saadane, R. (2024). Enhanced fault detection in photovoltaic panels using CNN-based classification with PyQt5 implementation. Sensors, 24(22), 7407. https://doi.org/10.3390/s24227407.
[27] Araji, M. T., Waqas, A., & Ali, R. (2024). Utilizing deep learning towards real-time snow cover detection and energy loss estimation for solar modules. Applied Energy, 375, 124201. https://doi.org/10.1016/j.apenergy.2024.124201.
[28] Alatwi, A. M., Albalawi, H., Wadood, A., Anwar, H., & El-Hageen, H. M. (2024). Deep learning-based dust detection on solar panels: A low-cost sustainable solution for increased solar power generation. Sustainability, 16(19), 8664. https://doi.org/10.3390/su16198664.
[29] Quiles-Cucarella, E., Sánchez-Roca, P., & Agustí-Mercader, I. (2025). Performance optimization of machine-learning algorithms for fault detection and diagnosis in PV systems. Electronics, 14(9), 1709. https://doi.org/10.3390/electronics14091709.
[30] Pujara, D., Ramirez, D., Tepedelenlioglu, C., Srinivasan, D., & Spanias, A. (2024). Real-time PV fault detection using embedded machine learning. In Proceedings of the IEEE ICPS. https://doi.org/10.1109/ICPS59941.2024.10640018.
[31] Kayci, B., Demir, B. E., & Demir, F. (2024). Deep learning-based fault detection and diagnosis in photovoltaic system using thermal images acquired by UAV. Politeknik Dergisi, 27(1), 91–99. https://doi.org/10.2339/politeknik.1094586.
[32] Afroz. (2023). Solar panel images clean and faulty images [Dataset]. Kaggle. https://www.kaggle.com/datasets/pythonafroz/solar-panel-images.
[33] Akinca, R., Firat, H., & Asker, M. E. (2024). Automated fault classification in solar panels using transfer learning with EfficientNet and ResNet models. European Journal of Technique, 14(2), 164–173.
[34] Nunes, M. V., & Ottoni, A. L. (2024). Deep learning for solar panels defect classification using data augmentation strategies. Learning Nonlinear Models – Journal of the Brazilian Society of Computational Intelligence, 22(2), 30–47.
[35] Ghahremani, A., Adams, S. D., Norton, M., Khoo, S. Y., & Kouzani, A. Z. (2025). Detecting defects in solar panels using the YOLO v10 and v11 algorithms. Electronics, 14(2), 344. https://doi.org/10.3390/electronics14020344.
[36] Gasparyan, H., Agaian, S., & Wu, S. (2025). Efficient lightweight networks for solar panel fault classification using EL and RGB imagery. IEEE Transactions on Instrumentation and Measurement. https://doi.org/10.1109/TIM.2025.3548249.