Enhancing the Photovoltaic Performance of lead-free CH3NH3SnBr3 Solar Cells via Compressive Strain Engineering: A Numerical Investigation

Document Type : Research Article

Authors

1 Laboratory of Engineering, Systems and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah University, Fez, Morocco.

2 Laboratory of Physical Chemistry of Materials, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, P.O. Box 7955, Casablanca, Morocco.

3 LIMAS, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco.

Abstract

Perovskite solar cells have emerged as a promising alternative to conventional silicon photovoltaics. Despite this progress, challenges related to long-term stability persist, particularly those arising from the presence of lead. To address these issues, researchers are actively developing lead-free materials that can deliver comparable performance. In this study, we use SCAPS-1D numerical simulations to investigate the photovoltaic performance of hybrid organic–inorganic perovskite solar cells based on CH₃NH₃SnBr₃. Our analysis focuses on the influence of compressive strain on device performance. We investigated strain levels (0%, –2%, –4%, and –6%) and found that –6% strain yielded the best performance. Furthermore, we systematically examined the effects of absorber thickness, bulk defect density, interface defect density, and operating temperature. The optimized device under –6% strain delivered an open-circuit voltage of 1.16 V, a short-circuit current density of 31.60 mA/cm², a fill factor of 89.02%, and a theoretical power conversion efficiency of 32.82%. Moreover, the applied compressive strain enhances the structural stability, offering a novel route toward efficient and durable lead-free perovskite solar cells. These findings demonstrate that strain engineering is a promising strategy to enhance the performance of lead-free perovskite solar cells while remaining consistent with the fundamental efficiency limits of single-junction devices.

Keywords

[1]           Mohtasham, J. (2015). Review Article-Renewable Energies. The International Conference on Technologies and Materials for Renewable Energy, Environment and Sustainability –TMREES15, 74(1289-1297. https://doi.org/10.1016/j.egypro.2015.07.774
[2]           Sharma, S., K.K. Jain, and A. Sharma. (2015). Solar Cells: In Research and Applications—A Review. Materials Sciences and Applications, 06(12), 1145. https://doi.org/10.4236/msa.2015.612113
[3]           Seifpanah Sowmehsaraee, M., M. Ranjbar, and M. Abedi. (2022). Investigating the effect of nano-structured magnetic particles lanthanum strontium manganite on perovskite solar cells. Journal of Solar Energy Research, 7(1), 945-956. https://doi.org/10.22059/jser.2021.325062.1205
 [4]          Jiwanapurkar, P.R. and H.A. Bhargav. (2025). Spectroscopic Analysis of Water-Based TiO2 and ZnO Nanofluid for Fluid-Based Beam Split Photovoltaic-thermal System. Journal of Solar Energy Research, 10(Emerging Trends in Photothermal Conversion for Solar Energy Harvesting), 45-55. https://doi.org/10.22059/jser.2025.379717.1445
[5]           Jyani, L., et al. (2025). Sustainable Cooling Technique for Maximizing Performance of Photovoltaic Panel in The Hot Climate of Rajasthan. Journal of Solar Energy Research, 10(Emerging Trends in Photothermal Conversion for Solar Energy Harvesting), 56-71. https://doi.org/10.22059/jser.2025.389945.1524
[6]           Kojima, A., et al. (2009). Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 131(17), 6050-6051. https://doi.org/10.1021/ja809598r
[7]           Yi, Z., et al. (2019). Will organic–inorganic hybrid halide lead perovskites be eliminated from optoelectronic applications? Nanoscale Advances, 1(4), 1276-1289. https://doi.org/10.1039/C8NA00416A
[8]           Sanga, L., et al. (2025). A review on perovskite materials for photovoltaic applications. Next Materials, 7(100494. https://doi.org/10.1016/j.nxmate.2025.100494
[9]           Ke, W., C.C. Stoumpos, and M.G. Kanatzidis. (2019). “Unleaded” Perovskites: Status Quo and Future Prospects of Tin‐Based Perovskite Solar Cells. Advanced Materials, 31(47), 1803230. https://doi.org/10.1002/adma.201803230
[10]         Hao, F., et al. (2014). Lead-Free Solid-State Organic-Inorganic Halide Perovskite Solar Cells. Nature Photonics, 8(489-494. https://doi.org/10.1038/nphoton.2014.82
[11]         Hardy, J., H. Fiedler, and J. Kennedy. (2025). A review on the current status and chemistry of tin halide perovskite films for photovoltaics. Progress in Materials Science, 101446. https://doi.org/10.1016/j.pmatsci.2025.101446
[12]         Zhou, X., et al. (2018). Recent theoretical progress in the development of perovskite photovoltaic materials. Journal of energy chemistry, 27(3), 637-649. https://doi.org/10.1016/j.jechem.2017.10.010
[13]         Krishnamoorthy, T., et al. (2015). Lead-free germanium iodide perovskite materials for photovoltaic applications. Journal of Materials Chemistry A, 3(47), 23829-23832. https://doi.org/10.1039/C5TA05741H
[14]         Bisht, N., et al. (2025). Comparative performance simulation study of Germanium-based perovskite solar cells using SCAPS-1D. Materials Chemistry and Physics, 345(131241. https://doi.org/10.1016/j.matchemphys.2025.131241
[15]         Raoui, Y., et al. (2021). Harnessing the potential of lead-free Sn–Ge based perovskite solar cells by unlocking the recombination channels. Sustainable Energy & Fuels, 5(18), 4661-4667. https://doi.org/10.1039/D1SE00687H
[16]         Bernal, C. and K. Yang. (2014). First-Principles Hybrid Functional Study of the Organic–Inorganic Perovskites CH 3 NH 3 SnBr 3 and CH 3 NH 3 SnI 3. The Journal of Physical Chemistry C, 118(42), 24383-24388. https://doi.org/10.1021/jp509358f
[17]         Yang, W.F., et al. (2020). Tin Halide Perovskites: Progress and Challenges. Advanced Energy Materials, 10(13), 1902584. https://doi.org/10.1002/aenm.201902584
[18]         Chiarella, F., et al. (2008). Combined experimental and theoretical investigation of optical, structural, and electronic properties of C H 3 N H 3 Sn X 3 thin films ( X = Cl , Br ). Physical Review B, 77(4), 045129. https://doi.org/10.1103/PhysRevB.77.045129
[19]         Amat, A., et al. (2014). Cation-Induced Band-Gap Tuning in Organohalide Perovskites: Interplay of Spin–Orbit Coupling and Octahedra Tilting. Nano Letters, 14(6), 3608-3616. https://doi.org/10.1021/nl5012992
[20]         Li, Y., et al. (2021). Bandgap tuning strategy by cations and halide ions of lead halide perovskites learned from machine learning. RSC advances, 11(26), 15688-15694.https://doi.org/10.1039/D1RA03117A
[21]         Borriello, I., G. Cantele, and D. Ninno. (2008). Ab initio investigation of hybrid organic-inorganic perovskites based on tin halides. Physical Review B, 77(23), 235214. https://doi.org/10.1103/PhysRevB.77.235214
[22]         Goldschmidt, V.M. (1926). The laws of crystal chemistry. Naturwissenschaften, 14(21), 477-485. https://doi.org/10.1007/BF01507527
[23]         Goldschmidt, V.M. (1926). Die Gesetze der Krystallochemie. Die Naturwissenschaften, 14(21), 477-485. https://doi.org/10.1007/BF01507527
[24]         Ibrahim, et al. (2024). Emerging trends in low band gap perovskite solar cells: materials, device architectures, and performance optimization. Molecular Physics, e2316273. https://doi.org/10.1080/00268976.2024.2316273
[25]         Cheng, S., et al. (2025). Enhanced electrical performance of perovskite solar cells via strain engineering. Energy & Environmental Science, 18(5), 2452-2461. https://doi.org/10.1039/D4EE03760J
[26]         Coduri, M., et al. (2019). Band Gap Engineering in MASnBr 3 and CsSnBr 3 Perovskites: Mechanistic Insights through the Application of Pressure. The Journal of Physical Chemistry Letters, 10(23), 7398-7405. https://doi.org/10.1021/acs.jpclett.9b03046
[27]         Basavarajappa, M.G., M.K. Nazeeruddin, and S. Chakraborty. (2021). Evolution of hybrid organic–inorganic perovskite materials under external pressure. Applied Physics Reviews, 8(4), https://doi.org/10.1063/5.0053128
[28]         Jiao, Y., et al. (2021). Strain Engineering of Metal Halide Perovskites on Coupling Anisotropic Behaviors. Advanced Functional Materials, 31(4), 2006243. https://doi.org/10.1002/adfm.202006243
[29]         Som, N.N., et al. (2018). Strain and layer modulated electronic and optical properties of low dimensional perovskite methylammonium lead iodide: Implications to solar cells. Solar Energy, 173(1315-1322. https://doi.org/10.1016/j.solener.2018.06.052
[30]         Yu, H., et al. (2021). Is the strain responsible to instability of inorganic perovskites and their photovoltaic devices? Materials Today Energy, 19(100601. https://doi.org/10.1016/j.mtener.2020.100601
[31]         Yang, B., et al. (2022). Strain effects on halide perovskite solar cells. Chemical Society Reviews, 51(17), 7509-7530. https://doi.org/10.1039/D2CS00278G
[32]         Wu, J., et al. (2021). Strain in perovskite solar cells: origins, impacts and regulation. National science review, 8(8), nwab047. https://doi.org/10.1093/nsr/nwab047
[33]         Roy, P., et al. (2020). A review on perovskite solar cells: Evolution of architecture, fabrication techniques, commercialization issues and status. Solar Energy, 198(665-688. https://doi.org/10.1016/j.solener.2020.01.080
[34]         Li, Y., et al. (2023). High Fill Factor and Reduced Hysteresis Perovskite Solar Cells Using Small-Molecule-Engineered Nickel Oxide as the Hole Transport Layer. ACS Applied Energy Materials, 6(3), 1555-1564. https://doi.org/10.1021/acsaem.2c03434
[35]         Nkele, A.C., et al. (2020). The use of nickel oxide as a hole transport material in perovskite solar cell configuration: Achieving a high performance and stable device. International Journal of Energy Research, 44(13), 9839-9863. https://doi.org/10.1002/er.5563
[36]         Kuo, D.-W. and C.-T. Chen. (2025). A Dual Layer of NiO x Hole-Transporting Material Boosting the Efficiency of Inverted Perovskite Solar Cells up to 20.7%. ACS Applied Energy Materials, 8(8), 5309-5316. https://doi.org/10.1021/acsaem.5c00312
[37]         Chen, Y., et al. (2019). SnO2-based electron transporting layer materials for perovskite solar cells: A review of recent progress. Journal of Energy Chemistry, 35(144-167. https://doi.org/10.1016/j.jechem.2018.11.011
[38]         Mao, G.-P., et al. (2018). Research progress in electron transport layer in perovskite solar cells. Rare Metals, 37(2), 95-106. https://doi.org/10.1007/s12598-017-0951-4
[39]         Jiang, Q., et al. (2017). Planar-Structure Perovskite Solar Cells with Efficiency beyond 21%. Advanced Materials, 29(46), 1703852. https://doi.org/10.1002/adma.201703852
[40]         Jiang, Q., et al. (2019). Surface passivation of perovskite film for efficient solar cells. Nature Photonics, 13(7), 460-466. https://doi.org/10.1038/s41566-019-0398-2
[41]         Said, K., et al. (2025). Coupled effects of strain and halogen substitution on the structural, optoelectronic, and photovoltaic characteristics of Pb-Free Cs2AgInBr6: Density functional theory approach using HSE, BSE, and numerical methods. Solar Energy, 299(113782. https://doi.org/10.1016/j.solener.2025.113782
[42]         Anwar, F., et al. (2017). Effect of Different HTM Layers and Electrical Parameters on ZnO Nanorod-Based Lead-Free Perovskite Solar Cell for High-Efficiency Performance. International Journal of Photoenergy, 2017(1-9. https://doi.org/10.1155/2017/9846310
[43]         Khadka, D.B., et al. (2018). Degradation of encapsulated perovskite solar cells driven by deep trap states and interfacial deterioration. Journal of Materials Chemistry C, 6(1), 162-170. https://doi.org/10.1039/C7TC03733C
[44]         Zyoud, S.H., et al. (2021). Numerical modeling of high conversion efficiency FTO/ZnO/CdS/CZTS/MO thin film-based solar cells: Using SCAPS-1D software. Crystals, 11(12), 1468. https://doi.org/10.3390/cryst11121468
[45]         Zhang, Y., et al. (2023). SCAPS simulation and DFT study of lead-free perovskite solar cells based on CsGeI3. Materials Chemistry and Physics, 306(128084. https://doi.org/10.1016/j.matchemphys.2023.128084
[46]         Slami, A., M. Bouchaour, and L. Merad. (2019). Numerical study of based perovskite solar cells by SCAPS-1D. Int. J. Energy Environ, 3(17-21.
[47]         Ravidas, B.K., M.K. Roy, and D.P. Samajdar. (2023). Investigation of photovoltaic performance of lead-free CsSnI3-based perovskite solar cell with different hole transport layers: First Principle Calculations and SCAPS-1D Analysis. Solar Energy, 249(163-173. https://doi.org/10.1016/j.solener.2022.11.025
[48]         Haidari, G. (2019). Comparative 1D optoelectrical simulation of the perovskite solar cell. AIP Advances, 9(8), https://doi.org/10.1063/1.5110495
[49]         Lin, P., et al. (2014). Numerical simulation of Cu2ZnSnS4 based solar cells with In2S3 buffer layers by SCAPS-1D. Journal of Applied Science and Engineering, 17(4), 383-390. https://doi.org/10.6180/jase.2014.17.4.05
[50]         Haneef, M., et al. (2024). Optimizing Lead-free MASnBr 3 Perovskite Solar Cells for High-Efficiency and Long-Term Stability Using Graphene and Advanced Interface Layers. ACS Omega, 9(6), 7053-7060. https://doi.org/10.1021/acsomega.3c08981
[51]         Mushtaq, S., et al. (2023). Performance optimization of lead-free MASnBr3 based perovskite solar cells by SCAPS-1D device simulation. Solar Energy, 249(401-413. https://doi.org/10.1016/j.solener.2022.11.050
[52]         Said, K. and S. Elkhattabi. (2024). Structural, electronic, and optical study of lead-free perovskite CH3NH3SnBr3 under compressive strain using DFT and DFT+ U. Materials Science in Semiconductor Processing, 174(108242. https://doi.org/10.1016/j.mssp.2024.108242
[53]         Saidani, O., et al. (2024). Revealing the secrets of high performance lead-free CsSnCl3 based perovskite solar cell: A dive into DFT and SCAPS-1D numerical insights. Solar Energy Materials and Solar Cells, 277(113122. https://doi.org/10.1016/j.solmat.2024.113122
[54]         Ritu, et al. (2024). Selection of hole transport layers through lattice mismatching using SCAPS-1D. Optical and Quantum Electronics, 56(12), 1942. https://doi.org/10.1007/s11082-024-07447-8
[55]         Chauhan, A. and A. Oudhia. (2024). First‐Principle Density Functional Theory‐Derived Nonleaded KSn 1− x Ge x I 3 ‐Based Perovskite Solar Cells: A Theoretical Study. Energy Technology, 12(2), 2300772. https://doi.org/10.1002/ente.202300772
[56]         Morales-Acevedo, A. (2023). Fundamentals of solar cell physics revisited: Common pitfalls when reporting calculated and measured photocurrent density, open-circuit voltage, and efficiency of solar cells. Solar Energy, 262(111774. https://doi.org/10.1016/j.solener.2023.05.051
[57]         Sánchez-Pérez, M., et al. (2021). Substrate-induced strain effect on structural and magnetic properties of La0. 5Sr0. 5CoO3 films. Nanomaterials, 11(3), 781. https://doi.org/10.3390/nano11030781
[58]         Margariti, E., et al. (2025). Strain-induced modifications of thin film silicon membranes through physical bending. Materials, 18(10), 2335. https://doi.org/10.3390/ma18102335
[59]         Johnston, M.B. and L.M. Herz. (2016). Hybrid Perovskites for Photovoltaics: Charge-Carrier Recombination, Diffusion, and Radiative Efficiencies. Accounts of Chemical Research, 49(1), 146-154. https://doi.org/10.1021/acs.accounts.5b00411
[60]         Ahmed, S., et al. (2021). Numerical development of eco-friendly Cs2TiBr6 based perovskite solar cell with all-inorganic charge transport materials via SCAPS-1D. Optik, 225(165765. https://doi.org/10.1016/j.ijleo.2020.165765