[1] Mohtasham, J. (2015). Review Article-Renewable Energies. The International Conference on Technologies and Materials for Renewable Energy, Environment and Sustainability –TMREES15, 74(1289-1297.
https://doi.org/10.1016/j.egypro.2015.07.774
[3] Seifpanah Sowmehsaraee, M., M. Ranjbar, and M. Abedi. (2022). Investigating the effect of nano-structured magnetic particles lanthanum strontium manganite on perovskite solar cells. Journal of Solar Energy Research, 7(1), 945-956. https://doi.org/10.22059/jser.2021.325062.1205
[4] Jiwanapurkar, P.R. and H.A. Bhargav. (2025). Spectroscopic Analysis of Water-Based TiO2 and ZnO Nanofluid for Fluid-Based Beam Split Photovoltaic-thermal System. Journal of Solar Energy Research, 10(Emerging Trends in Photothermal Conversion for Solar Energy Harvesting), 45-55. https://doi.org/10.22059/jser.2025.379717.1445
[5] Jyani, L., et al. (2025). Sustainable Cooling Technique for Maximizing Performance of Photovoltaic Panel in The Hot Climate of Rajasthan. Journal of Solar Energy Research, 10(Emerging Trends in Photothermal Conversion for Solar Energy Harvesting), 56-71. https://doi.org/10.22059/jser.2025.389945.1524
[6] Kojima, A., et al. (2009). Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 131(17), 6050-6051.
https://doi.org/10.1021/ja809598r
[7] Yi, Z., et al. (2019). Will organic–inorganic hybrid halide lead perovskites be eliminated from optoelectronic applications? Nanoscale Advances, 1(4), 1276-1289.
https://doi.org/10.1039/C8NA00416A
[8] Sanga, L., et al. (2025). A review on perovskite materials for photovoltaic applications. Next Materials, 7(100494. https://doi.org/10.1016/j.nxmate.2025.100494
[9] Ke, W., C.C. Stoumpos, and M.G. Kanatzidis. (2019). “Unleaded” Perovskites: Status Quo and Future Prospects of Tin‐Based Perovskite Solar Cells. Advanced Materials, 31(47), 1803230.
https://doi.org/10.1002/adma.201803230
[11] Hardy, J., H. Fiedler, and J. Kennedy. (2025). A review on the current status and chemistry of tin halide perovskite films for photovoltaics. Progress in Materials Science, 101446. https://doi.org/10.1016/j.pmatsci.2025.101446
[12] Zhou, X., et al. (2018). Recent theoretical progress in the development of perovskite photovoltaic materials. Journal of energy chemistry, 27(3), 637-649. https://doi.org/10.1016/j.jechem.2017.10.010
[13] Krishnamoorthy, T., et al. (2015). Lead-free germanium iodide perovskite materials for photovoltaic applications. Journal of Materials Chemistry A, 3(47), 23829-23832. https://doi.org/10.1039/C5TA05741H
[14] Bisht, N., et al. (2025). Comparative performance simulation study of Germanium-based perovskite solar cells using SCAPS-1D. Materials Chemistry and Physics, 345(131241. https://doi.org/10.1016/j.matchemphys.2025.131241
[15] Raoui, Y., et al. (2021). Harnessing the potential of lead-free Sn–Ge based perovskite solar cells by unlocking the recombination channels. Sustainable Energy & Fuels, 5(18), 4661-4667. https://doi.org/10.1039/D1SE00687H
[16] Bernal, C. and K. Yang. (2014). First-Principles Hybrid Functional Study of the Organic–Inorganic Perovskites CH
3 NH
3 SnBr
3 and CH
3 NH
3 SnI
3. The Journal of Physical Chemistry C, 118(42), 24383-24388.
https://doi.org/10.1021/jp509358f
[18] Chiarella, F., et al. (2008). Combined experimental and theoretical investigation of optical, structural, and electronic properties of C H 3 N H 3 Sn X 3 thin films ( X = Cl , Br ). Physical Review B, 77(4), 045129.
https://doi.org/10.1103/PhysRevB.77.045129
[19] Amat, A., et al. (2014). Cation-Induced Band-Gap Tuning in Organohalide Perovskites: Interplay of Spin–Orbit Coupling and Octahedra Tilting. Nano Letters, 14(6), 3608-3616.
https://doi.org/10.1021/nl5012992
[20] Li, Y., et al. (2021). Bandgap tuning strategy by cations and halide ions of lead halide perovskites learned from machine learning. RSC advances, 11(26), 15688-15694.https://doi.org/10.1039/D1RA03117A
[21] Borriello, I., G. Cantele, and D. Ninno. (2008).
Ab initio investigation of hybrid organic-inorganic perovskites based on tin halides. Physical Review B, 77(23), 235214.
https://doi.org/10.1103/PhysRevB.77.235214
[22] Goldschmidt, V.M. (1926). The laws of crystal chemistry. Naturwissenschaften, 14(21), 477-485. https://doi.org/10.1007/BF01507527
[25] Cheng, S., et al. (2025). Enhanced electrical performance of perovskite solar cells via strain engineering. Energy & Environmental Science, 18(5), 2452-2461. https://doi.org/10.1039/D4EE03760J
[26] Coduri, M., et al. (2019). Band Gap Engineering in MASnBr
3 and CsSnBr
3 Perovskites: Mechanistic Insights through the Application of Pressure. The Journal of Physical Chemistry Letters, 10(23), 7398-7405.
https://doi.org/10.1021/acs.jpclett.9b03046
[27] Basavarajappa, M.G., M.K. Nazeeruddin, and S. Chakraborty. (2021). Evolution of hybrid organic–inorganic perovskite materials under external pressure. Applied Physics Reviews, 8(4), https://doi.org/10.1063/5.0053128
[28] Jiao, Y., et al. (2021). Strain Engineering of Metal Halide Perovskites on Coupling Anisotropic Behaviors. Advanced Functional Materials, 31(4), 2006243.
https://doi.org/10.1002/adfm.202006243
[29] Som, N.N., et al. (2018). Strain and layer modulated electronic and optical properties of low dimensional perovskite methylammonium lead iodide: Implications to solar cells. Solar Energy, 173(1315-1322. https://doi.org/10.1016/j.solener.2018.06.052
[30] Yu, H., et al. (2021). Is the strain responsible to instability of inorganic perovskites and their photovoltaic devices? Materials Today Energy, 19(100601. https://doi.org/10.1016/j.mtener.2020.100601
[31] Yang, B., et al. (2022). Strain effects on halide perovskite solar cells. Chemical Society Reviews, 51(17), 7509-7530. https://doi.org/10.1039/D2CS00278G
[32] Wu, J., et al. (2021). Strain in perovskite solar cells: origins, impacts and regulation. National science review, 8(8), nwab047. https://doi.org/10.1093/nsr/nwab047
[33] Roy, P., et al. (2020). A review on perovskite solar cells: Evolution of architecture, fabrication techniques, commercialization issues and status. Solar Energy, 198(665-688. https://doi.org/10.1016/j.solener.2020.01.080
[34] Li, Y., et al. (2023). High Fill Factor and Reduced Hysteresis Perovskite Solar Cells Using Small-Molecule-Engineered Nickel Oxide as the Hole Transport Layer. ACS Applied Energy Materials, 6(3), 1555-1564.
https://doi.org/10.1021/acsaem.2c03434
[35] Nkele, A.C., et al. (2020). The use of nickel oxide as a hole transport material in perovskite solar cell configuration: Achieving a high performance and stable device. International Journal of Energy Research, 44(13), 9839-9863.
https://doi.org/10.1002/er.5563
[36] Kuo, D.-W. and C.-T. Chen. (2025). A Dual Layer of NiO
x Hole-Transporting Material Boosting the Efficiency of Inverted Perovskite Solar Cells up to 20.7%. ACS Applied Energy Materials, 8(8), 5309-5316.
https://doi.org/10.1021/acsaem.5c00312
[37] Chen, Y., et al. (2019). SnO2-based electron transporting layer materials for perovskite solar cells: A review of recent progress. Journal of Energy Chemistry, 35(144-167.
https://doi.org/10.1016/j.jechem.2018.11.011
[41] Said, K., et al. (2025). Coupled effects of strain and halogen substitution on the structural, optoelectronic, and photovoltaic characteristics of Pb-Free Cs2AgInBr6: Density functional theory approach using HSE, BSE, and numerical methods. Solar Energy, 299(113782. https://doi.org/10.1016/j.solener.2025.113782
[42] Anwar, F., et al. (2017). Effect of Different HTM Layers and Electrical Parameters on ZnO Nanorod-Based Lead-Free Perovskite Solar Cell for High-Efficiency Performance. International Journal of Photoenergy, 2017(1-9.
https://doi.org/10.1155/2017/9846310
[43] Khadka, D.B., et al. (2018). Degradation of encapsulated perovskite solar cells driven by deep trap states and interfacial deterioration. Journal of Materials Chemistry C, 6(1), 162-170. https://doi.org/10.1039/C7TC03733C
[44] Zyoud, S.H., et al. (2021). Numerical modeling of high conversion efficiency FTO/ZnO/CdS/CZTS/MO thin film-based solar cells: Using SCAPS-1D software. Crystals, 11(12), 1468. https://doi.org/10.3390/cryst11121468
[45] Zhang, Y., et al. (2023). SCAPS simulation and DFT study of lead-free perovskite solar cells based on CsGeI3. Materials Chemistry and Physics, 306(128084. https://doi.org/10.1016/j.matchemphys.2023.128084
[46] Slami, A., M. Bouchaour, and L. Merad. (2019). Numerical study of based perovskite solar cells by SCAPS-1D. Int. J. Energy Environ, 3(17-21.
[47] Ravidas, B.K., M.K. Roy, and D.P. Samajdar. (2023). Investigation of photovoltaic performance of lead-free CsSnI3-based perovskite solar cell with different hole transport layers: First Principle Calculations and SCAPS-1D Analysis. Solar Energy, 249(163-173.
https://doi.org/10.1016/j.solener.2022.11.025
[48] Haidari, G. (2019). Comparative 1D optoelectrical simulation of the perovskite solar cell. AIP Advances, 9(8), https://doi.org/10.1063/1.5110495
[49] Lin, P., et al. (2014). Numerical simulation of Cu2ZnSnS4 based solar cells with In2S3 buffer layers by SCAPS-1D. Journal of Applied Science and Engineering, 17(4), 383-390. https://doi.org/10.6180/jase.2014.17.4.05
[50] Haneef, M., et al. (2024). Optimizing Lead-free MASnBr
3 Perovskite Solar Cells for High-Efficiency and Long-Term Stability Using Graphene and Advanced Interface Layers. ACS Omega, 9(6), 7053-7060.
https://doi.org/10.1021/acsomega.3c08981
[51] Mushtaq, S., et al. (2023). Performance optimization of lead-free MASnBr3 based perovskite solar cells by SCAPS-1D device simulation. Solar Energy, 249(401-413. https://doi.org/10.1016/j.solener.2022.11.050
[52] Said, K. and S. Elkhattabi. (2024). Structural, electronic, and optical study of lead-free perovskite CH3NH3SnBr3 under compressive strain using DFT and DFT+ U. Materials Science in Semiconductor Processing, 174(108242. https://doi.org/10.1016/j.mssp.2024.108242
[53] Saidani, O., et al. (2024). Revealing the secrets of high performance lead-free CsSnCl3 based perovskite solar cell: A dive into DFT and SCAPS-1D numerical insights. Solar Energy Materials and Solar Cells, 277(113122. https://doi.org/10.1016/j.solmat.2024.113122
[55] Chauhan, A. and A. Oudhia. (2024). First‐Principle Density Functional Theory‐Derived Nonleaded KSn
1− x Ge
x I
3 ‐Based Perovskite Solar Cells: A Theoretical Study. Energy Technology, 12(2), 2300772.
https://doi.org/10.1002/ente.202300772
[56] Morales-Acevedo, A. (2023). Fundamentals of solar cell physics revisited: Common pitfalls when reporting calculated and measured photocurrent density, open-circuit voltage, and efficiency of solar cells. Solar Energy, 262(111774. https://doi.org/10.1016/j.solener.2023.05.051
[57] Sánchez-Pérez, M., et al. (2021). Substrate-induced strain effect on structural and magnetic properties of La0. 5Sr0. 5CoO3 films. Nanomaterials, 11(3), 781. https://doi.org/10.3390/nano11030781
[58] Margariti, E., et al. (2025). Strain-induced modifications of thin film silicon membranes through physical bending. Materials, 18(10), 2335. https://doi.org/10.3390/ma18102335
[59] Johnston, M.B. and L.M. Herz. (2016). Hybrid Perovskites for Photovoltaics: Charge-Carrier Recombination, Diffusion, and Radiative Efficiencies. Accounts of Chemical Research, 49(1), 146-154.
https://doi.org/10.1021/acs.accounts.5b00411
[60] Ahmed, S., et al. (2021). Numerical development of eco-friendly Cs2TiBr6 based perovskite solar cell with all-inorganic charge transport materials via SCAPS-1D. Optik, 225(165765. https://doi.org/10.1016/j.ijleo.2020.165765