Performance Enhancement of Solar Air Heater with Different Roughness Absorber Plates

Document Type : Research Article

Authors

1 Institute of Technology-Baghdad, Middle Technical University, Baghdad 10074, Iraq

2 Technical Engineering College -Baghdad, Middle Technical University, Baghdad 10074, Iraq

3 Technical Instructor Training Institute, Middle Technical University, Baghdad 10074, Iraq

10.22059/jser.2025.400971.1622

Abstract

This research assesses the heat transfer and performance attributes of the double-pass air heater (DPSAH) integrated with turbulators through a 3D CFD simulation methodology. DPSAH setup comprises of a rectangular channel divided by an absorber plate with double baffles; the lower side of the plate provides five fins in the flow direction, while the upper side of the plate provides eight different geometries. The numerical model has been validated against analytical and experimental findings gathered from the open literature with a satisfactory degree of deviance. Results demonstrate that wave plates improve heat transfer relative to smooth surfaces. This signifies that THPP increases with increasing Reynolds number. Although increased friction and decreased pressure require enhanced pumping power to maintain mass flow, the efficiency advantages at higher Reynolds numbers justify the extra energy expenditure. The turbulator significantly enhances the operational efficiency of the DPSAH in the absorber section. The wave plate exhibits a markedly elevated exit temperature and sufficient performance compared to the other cross-sectional geometries. Numerical estimations suggest that a waved surface can enhance the efficiency of a solar air heater by 14%. The results indicate an elevated airflow rate resulting from a reduced outlet temperature and an enhanced pressure drop.

Keywords

  1. Rashid, F. L., Al-Obaidi, M. A., Hussein, A. K., Akkurt, N., Ali, B., and Younis, O. (2022). Floating solar stills and floating solar-driven membranes: Recent advances and overview of designs, performance and modern combinations. Solar Energy, 247, 355–372. https://doi.org/10.1016/j.solener.2022.01.042
  2. Khullar, V., Mahendra, P., and Mittal, M. (2018). Applicability of heat mirrors in reducing thermal losses in concentrating solar collectors. Journal of Thermal Science and Engineering Applications, 10(6), 061004. https://doi.org/10.1115/1.4040576
  3. Boudhiaf, R., Touhami, Y., Harby, K., Kabeel, A. E., Attia, M. E. H., Khelifa, A., Latrache, N., and Driss, Z. (2025). Enhancing the thermal performance of solar air heaters using heat storage medium: An experimental study with energy, exergy, and economic approach. Journal of Thermal Science and Engineering Applications, 17(6). https://doi.org/10.1115/1.4065533
  4. Kumar, D., Layek, A., Kumar, A., and Kumar, R. (2024). Experimental study for the enhancement of thermal efficiency and development of Nusselt number correlation for the roughened collector of solar air heater. Journal of Thermal Science and Engineering Applications, 16(2). https://doi.org/10.1115/1.4057918
  5. Kareem, F. A., Skheal, O. R., and Lafta, N. S. (2022). Experimental study and exergy analysis about the flat plate solar collector. International Journal of Integrated Engineering, 14(6), 156–171. https://doi.org/10.30880/ijie.2022.14.06.014
  6. Bensaci, C. E., Moummi, A., Sanchez de la Flor, F. J., Rodriguez Jara, E. A., Rincon-Casado, A., and Ruiz-Pardo, A. (2020). Numerical and experimental study of the heat transfer and hydraulic performance of solar air heaters with different baffle positions. Renewable Energy, 155, 1231–1244. https://doi.org/10.1016/j.renene.2020.04.017
  7. Khalifa, A. H. N., and Kareem, F. A. (2022). Development of exergy maps as a tool for assessing solar energy potential in Iraq. International Journal of Exergy, 37(2), 145–158. https://doi.org/10.1504/IJEX.2022.122170
  8. Kareem, F. A., Khalifa, A. H. N., and Hamad, A. J. (2024). Numerical analysis of two-bed adsorption thermophysical battery. Applied Thermal Engineering, 236, 121847. https://doi.org/10.1016/j.applthermaleng.2023.121847
  9. Ghanem, S. R., and Bhosale, A. C. (2024). Honeycomb-shaped artificial roughness in solar air heaters: CFD-experimental insights into thermo-hydraulic performance. Renewable Energy, 230, 120829. https://doi.org/10.1016/j.renene.2024.120829
  10. Kareem, F. A., Alsayah, A. M., Alshukri, M. J., Ali, S., Faraj, J., and Khaled, M. (2025). Advancing sustainable refrigeration: Ejector expansion refrigeration cycles for energy efficiency and environmental protection. Results in Engineering, 26, 104926. https://doi.org/10.1016/j.rineng.2025.104926
  11. Kareem, F. A., Hamad, A. J., and Khalifa, A. H. N. (2024). Experimental investigation of two-bed adsorption thermophysical battery with mass recovery technology. Energy Conversion and Management, 309, 118460. https://doi.org/10.1016/j.enconman.2024.118460
  12. Abdul Kareem, H., Khalifa, A., and Hamad, A. (2024). Investigation of Photovoltaic Membrane Desalination Utilizing Storage Heat in Solar Cells. International Journal of Thermodynamics, 27(3), 6-14. https://doi.org/10.5541/ijot.1390518
  13. Debnath, S., Das, B., Randive, P. R., and Pandey, K. M. (2018). Performance analysis of solar air collector in the climatic condition of North Eastern India. Energy, 165, 281–298. https://doi.org/10.1016/j.energy.2018.09.038
  14. Singh, S., Chaurasiya, S. K., Negi, B. S., Chander, S., Nemś, M., and Negi, S. (2020). Utilizing circular jet impingement to enhance thermal performance of solar air heater. Renewable Energy, 154, 1327–1345. https://doi.org/10.1016/j.renene.2020.03.095
  15. Hassan, H., and AboElfadl, S. (2021). Heat transfer and performance analysis of SAH having new transverse finned absorber of lateral gaps and central holes. Solar Energy, 227, 236–258. https://doi.org/10.1016/j.solener.2021.08.061
  16. Iqbal, M. H., et al. (2023). Numerical analysis of a novel solar air heater design with V-ribs and jet cooling. Sustainable Energy Technologies and Assessments, 57, 103252. https://doi.org/10.1016/j.seta.2023.103252
  17. Hamad, R. F., Alshukri, M. J., Eidan, A. A., and Alsabery, A. I. (2023). Numerical investigation of heat transfer augmentation of solar air heater with attached and detached trapezoidal ribs. Energy Reports, 10, 123–134. https://doi.org/10.1016/j.egyr.2023.06.031
  18. Singh, D., and Kumar, V. (2024). Response surface-based optimization of thermal characteristics for frustum roughened solar air heater: An experimental and numerical study. International Journal of Heat and Fluid Flow, 108, 109479. https://doi.org/10.1016/j.ijheatfluidflow.2024.109479
  19. Chang, Y., Xue, Y., and Geng, G. (2024). Effect of the baffle's type on thermal performance of solar air heaters. Case Studies in Thermal Engineering, 59, 104580. https://doi.org/10.1016/j.csite.2024.104580
  20. Yusaidi, N. J., Fauzan, M. F., Abdullah, A. F., Ibrahim, A., and Ishak, A. A. (2024). Theoretical and experimental investigations on the effect of double pass solar air heater with staggered-diamond shaped fins arrangement. Case Studies in Thermal Engineering, 60, 104619. https://doi.org/10.1016/j.csite.2024.104619
  21. Salarpour, N., and Azadani, L. N. (2024). Optimization and evaluation of thermo-hydraulic performance of solar air heaters equipped with different roughness geometries. Case Studies in Thermal Engineering, 61, 105037. https://doi.org/10.1016/j.csite.2024.105037
  22. Rawat, P., Ashwni, and Sherwani, A. F. (2024). Optimization of single and double pass solar air heater-phase change material (SAH-PCM) system based on thickness to length ratio. International Journal of Heat and Mass Transfer, 224, 125356. https://doi.org/10.1016/j.ijheatmasstransfer.2024.125356
  23. Dong, S., Di, Y., Gao, Y., Long, H., Fan, Z., Guan, J., Han, L., and Wang, Y. (2025). Multiple operational strategies investigations of the PV/T collectors based on 3 days ahead hourly radiation prediction. Applied Energy, 377, 124383. https://doi.org/10.1016/j.apenergy.2024.124383
  24. Rashid, F. L., Rahbari, A., Ibrahem, R. K., Talebizadehsardari, P., Basem, A., Kaood, A., Mohammed, H. I., Abbas, M. H., and Al-Obaidi, M. A. (2023). Review of solidification and melting performance of phase change materials in the presence of magnetic field, rotation, tilt angle, and vibration. Journal of Energy Storage, 67, 107501. https://doi.org/10.1016/j.est.2023.107501
  25. Hussein, A. K., Togun, H., Rashid, F. L., Basem, A., Abed, A. M., Al-Obaidi, M. A., Abdulrazzaq, T., Dhabab, J. M., Attia, M. E. H., Ali, B., and Rout, S. K. (2025). Mixed convection in trapezoidal enclosures containing mono and hybrid nanofluids: A comprehensive review. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 47(4), 176. https://doi.org/10.1007/s40430-024-05013-9
  26. Rashid, F. L., Al-Gaheeshi, A. M. R., Al-Obaidi, M. A., Mohammed, H. I., Togun, H., and Agyekum, E. B. (2024). Analysing fluid flow and heat transfer comparatively in flow passage systems: Evaluating thermal impacts and geometric configurations. International Journal of Thermofluids, 24, 100894. https://doi.org/10.1016/j.ijft.2024.100894
  27. Rashid, F. L., Hussein, A. K., Al-Obaidi, M. A., Alshammari, B. M., Ali, B., Hajlaoui, R., Boudabous, M. M., and Kolsi, L. (2024). A review of radiant heating and cooling systems incorporating phase change materials. Journal of Thermal Analysis and Calorimetry, 149(15), 7891–7917. https://doi.org/10.1007/s10973-024-13065-0
  28. Rashid, F. L., Al-Obaidi, M. A., Mahdi, A. J., and Ameen, A. (2024). Advancements in Fresnel lens technology across diverse solar energy applications: A comprehensive review. Energies, 17(3), 569. https://doi.org/10.3390/en17030569
  29. Hashemian, N., and Noorpoor, A. (2023). Thermo-eco-environmental Investigation of a Newly Developed Solar/wind Powered Multi-Generation Plant with Hydrogen and Ammonia Production Options. Journal of Solar Energy Research, 8(4), 1728-1737. https://doi:10.22059/jser.2024.374028.1388
  30. Smith, J. M. (1950). Introduction to chemical engineering thermodynamics. Journal of Chemical Education, 27(10), 584. https://doi.org/10.1021/ed027p584.3 ACS Publications
  31. Bergman, T. L., Lavine, A. S., Incropera, F. P., and DeWitt, D. P. (2011). Fundamentals of heat and mass transfer (7th ed.). John Wiley and Sons.
  32. Naji, A. A., Daud, H. A., Yasin, N. J., and Jasim, A. A. (2023). Experimental Study of Two Rows Hybrid Film Cooling Holes Over Flat Plate Surface Using IR Technology. Journal of Techniques, 5(3), 108-115. https://doi.org/10.51173/jt.v5i3.1231
  33. Aktas, M. F., Sözen, A., Tuncer, A. D., Arslan, E., Koşan, M., and Çürük, O. (2019). Energy-exergy analysis of a novel multi-pass solar air collector with perforated fins. International Journal of Renewable Energy Development, 8(2), 151–160. https://doi.org/10.14710/ijred.8.2.151-160
  34. Chinnappan, T., C.M, R., Dhairiyasamy, R., and Rajendran, S. (2024). Comparative Analysis of Polycarbonate and Glass Cover Configurations for Enhanced Thermal Efficiency in Flat Plate Solar Collectors for Water Heating. Journal of Solar Energy Research, 9(1), 1794-1810. https://doi: 10.22059/jser.2024.374268.1394
  35. Hamad, A. J., Hussien, F. M., and Faraj, J. J. (2021). Multiple phase change materials for performance enhancement of a solar dryer with double pass collector. Energy Engineering: Journal of the Association of Energy Engineering, 118(5), 1483–1497. https://doi.org/10.32604/ee.2021.016867
  36. Kareem, F. A., Khalifa, A. H. N., and Hamad, A. J. (2024). Intermittent and continuous adsorption refrigeration systems techniques: A review. AIP Conference Proceedings. https://doi.org/10.1063/5.0212206
  37. Abd, H. M., Alomar, O. R., and Salih, M. M. M. (2022). Improving the performance of solar air heater using a new model of V-corrugated absorber plate having perforations jets. International Journal of Energy Research, 46(6), 8130–8144. https://doi.org/10.1002/er.7715