Land Use and Ecosystem Impacts of Solar Power Plants: A Case-Based Assessment from Türkiye

Document Type : Review Article

Author

Çukurova University, Faculty of Engineering, Department of Environmental Engineering, Adana, Türkiye

Abstract

This study provides a multidimensional assessment of the land use and ecosystem impacts of Solar Power Plants (SPPs) in Türkiye, where solar investments have rapidly expanded due to high irradiation potential. While solar energy is a key pillar of the low-carbon transition, large-scale ground-mounted installations increasingly intersect with agricultural lands, rural livelihoods, and biodiversity hotspots. Drawing on regional case studies and national-scale trends, the research identifies spatial patterns of SPP development and highlights the socio-ecological risks associated with poor site selection. Key findings emphasize the need to balance energy generation with land conservation, ecosystem services, and social acceptance. The paper advances an integrative planning framework based on agrovoltaic systems, nature-based solutions, and GIS-supported decision-making. Rather than proposing a singular model, the study synthesizes best practices to guide strategic land use that minimizes conflict and enhances resilience. This work contributes to energy policy by reframing SPP investments as not only technological projects but also socio-environmental interventions, underlining the urgency of participatory, spatially just, and ecologically compatible energy transitions in Türkiye and beyond.

Keywords

  1. International Energy Agency. (2021). Net zero by 2050: A roadmap for the global energy sector. IEA. https://www.iea.org/reports/net-zero-by-2050.
  2. International Renewable Energy Agency. (2023). World energy transitions outlook 2023: 1.5°C pathway. IRENA. https://www.irena.org/publications/2023/Jun/World-Energy-Transitions-Outlook-2023
  3. Elektrik İşleri Etüt İdaresi (EİE). (2009). Türkiye Güneş Enerjisi Potansiyeli Atlası (GEPA). Enerji ve Tabii Kaynaklar Bakanlığı. https://gepa.enerji.gov.tr
  4. Alfa Solar Enerji. (2023). Turkey's solar energy potential. Alfa Solar. https://www.alfasolar.com.tr
  5. Hernandez, R. R., Easter, S. B., Murphy-Mariscal, M. L., Maestre, F. T., Tavassoli, M., Allen, E. B., … Allen, M. F. (2014). Environmental impacts of utility-scale solar energy. Renewable and Sustainable Energy Reviews, 29, 766–779. https://doi.org/10.1016/j.rser.2013.08.041
  6. Turney, D., & Fthenakis, V. (2011). Environmental impacts from the installation and operation of large-scale solar power plants. Renewable and Sustainable Energy Reviews, 15(6), 3261–3270. https://doi.org/10.1016/j.rser.2011.04.023
  7. Barron-Gafford, G. A., Pavao-Zuckerman, M. A., Minor, R. L., Sutter, L. F., Barnett-Moreno, I., Blackett, D. T., … Thompson, M. (2019). Agrivoltaics provide mutual benefits across the food–energy–water nexus in drylands. Nature Sustainability, 2(9), 848–855. https://doi.org/10.1038/s41893-019-0364-5
  8. Ong, S., Denholm, P., Heath, G., Margolis, R., & Campbell, C. (2013). Land-use requirements for solar power plants in the United States (NREL/TP-6A20-56290). National Renewable Energy Laboratory. https://www.nrel.gov/docs/fy13osti/56290.pdf
  9. Bolinger, M., & Bolinger, M. (2021). Land requirements for utility-scale PV: An empirical update on power and energy density (Report No. LBNL-2001302). Lawrence Berkeley National Laboratory. https://emp.lbl.gov/publications/land-requirements-utility-scale-pv.
  10. GÜNDER – Uluslararası Güneş Enerjisi Topluluğu Türkiye Bölümü. (2022). Güneş enerjisi sektör raporu 2022. GÜNDER. https://www.gunder.org.tr
  11. International Energy Agency. (2021b). IEA PVPS annual report 2021. IEA PVPS. https://iea-pvps.org/wp-content/uploads/2022/03/IEA-PVPS_Annual_Report_2021_v1.pdf
  12. Ağır, S., Derin-Güre, P., & Şentürk, B. (2023). Türkiye’de tarım ve enerjinin kesişimi, TarımFV: Güncel yazın ışığında bir ön değerlendirme. Hacettepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 41(Tarım Özel Sayısı), 1–22. https://doi.org/10.17065/huniibf.2023.tarimfv
  13. Tarım ve Orman Bakanlığı. (2023). Tarımsal üretim planlaması grubu çalışma belgesi. Tarım ve Orman Bakanlığı.
  14. Wong, C. H. (2024, August 2). Chinese solar farms are crowding out much-needed crops. The Wall Street Journal. https://www.wsj.com/world/china/china-solar-power-farms-food-security-fb104751
  15. Liu, Y. (2020). Agrivoltaic system analysis in China (Undergraduate thesis, University of California, Berkeley). https://nature.berkeley.edu/classes/es196/projects/2020final/LiuY_2020.pdf
  16. Atıl Emre, & Coşgun, A. (2021). The potential of agrivoltaic systems in Turkey. Energy Reports, 7, 36–45. https://doi.org/10.1016/j.egyr.2021.06.017
  17. Day, M. (2018). Land use planning for large-scale solar (Report No. NREL/TP-6A20-72470). National Renewable Energy Laboratory. https://www.nrel.gov/docs/fy19osti/72470.pdf
  18. Georgia Department of Natural Resources. (2024). Recommended practices for the responsible siting and design of solar development in Georgia (Version 2.0). Georgia DNR. https://georgiawildlife.com/sites/default/files/wrd/pdf/WCS/GA%20Recommended%20Practices%20for%20Solar-%20May%202024%20-%20V2.0.pdf
  19. Scovell, M., McCrea, R., Walton, A., & Poruschi, L. (2024). Local acceptance of solar farms: The impact of energy narratives. Renewable and Sustainable Energy Reviews, 189(Part B), 114029. https://doi.org/10.1016/j.rser.2024.114029
  20. Owusu-Obeng, P. Y., Miller, S. R., Mills, S. B., & Craig, M. T. (2025). Optimizing utility-scale solar siting for local economic benefits and regional decarbonization. arXiv Preprint, arXiv:2504.12508. https://arxiv.org/abs/2504.12508
  21. Van de Ven, D.-J., Arto, I., & Tolón-Becerra, A. (2021). Environmental and social impact assessment of land-use change related to renewable energy deployment. Renewable and Sustainable Energy Reviews, 138, 110551. https://doi.org/10.1016/j.rser.2020.110551
  22. Moore-O'Leary, K. A., Hernandez, R. R., Johnston, D. S., Abella, S. R., Tanner, K. E., Swanson, A. C., … Lovich, J. E. (2017). Sustainability of utility‐scale solar energy–critical ecological concepts. Frontiers in Ecology and the Environment, 15(7), 385–394. https://doi.org/10.1002/fee.1517
  23. Lafitte, A., Sordello, R., Ouédraogo, D.-Y., Thierry, C., Marx, G., Froidevaux, J., … Reyjol, Y. (2023). Existing evidence on the effects of photovoltaic panels on biodiversity: A systematic map with critical appraisal of study validity. Environmental Evidence, 12(1), 1–21. https://doi.org/10.1186/s13750-023-00318-x
  24. Lovich, J. E., & Ennen, J. R. (2011). Wildlife conservation and solar energy development in the desert southwest, United States. BioScience, 61(12), 982–992. https://doi.org/10.1525/bio.2011.61.12.8
  25. Barron-Gafford, G. A., Minor, R. L., Allen, N. A., Cronin, A. D., Brooks, A. E., & Pavao-Zuckerman, M. A. (2016). The photovoltaic heat island effect: Larger solar power plants increase local temperatures. Scientific Reports, 6, 35070. https://doi.org/10.1038/srep35070
  26. Pasqualetti, M. J. (2011). Social barriers to renewable energy landscapes. Geographical Review, 101(2), 201–223. https://doi.org/10.1111/j.1931-0846.2011.00087.x
  27. Nacar, F. (2021). Güneş enerjisi santrallerinin arazi kullanımına etkisi ve sonuçları: Osmaniye örneği. European Journal of Science and Technology, 23, 100–106. https://doi.org/10.31590/ejosat.899350
  28. Koç, V. (2025). Türkiye ve Dünya’da kentsel gelişime yönelik yönetişimde katılım ilkesinin irdelenmesi. Elektronik Sosyal Bilimler Dergisi, 24(2), 679–702. https://doi.org/10.17755/esosder.2025.12345
  29. Sánchez, L. E., Silva-Sánchez, S. S., & Neri, A. C. (2020). Community perceptions, beliefs and acceptability of renewable energies projects: A systematic review. Cogent Environmental Science, 6(1), 1715534. https://doi.org/10.1080/23311908.2020.1715534
  30. Yenneti, K., Day, R., & Golubchikov, O. (2016). Spatial justice and the land politics of renewables: Dispossessing vulnerable communities through solar energy mega-projects. Geoforum, 76, 90–99. https://doi.org/10.1016/j.geoforum.2016.09.004
  31. Weselek, A., Ehmann, A., Zikeli, S., Lewandowski, I., Schindele, S., & Högy, P. (2019). Agrophotovoltaic systems: Applications, challenges, and opportunities. A review. Agronomy for Sustainable Development, 39(35), Article 35. https://doi.org/10.1007/s13593-019-0581-3
  32. Pınar, A., Buldur, A. D., & Tuncer, T. (2020). Türkiye’deki güneş enerji santralleri dağılışının coğrafi perspektiften analizi. Uluslararası Sosyal Araştırmalar Dergisi, 13(69), 427–440. https://doi.org/10.17719/jisr.2020.4120
  33. Cebeci, M. (2022). Türkiye’de güneş enerji santrallerinin (GES) arazi kullanımı üzerindeki etkilerinin değerlendirilmesi [Yüksek lisans tezi, Niğde Ömer Halisdemir Üniversitesi].
  34. Tanrıkulu, Y. S., & Partigöç, N. S. (2024). Güneş enerjisi santrallerinin (GES) coğrafi bilgi sistemleri (CBS) tabanlı analitik hiyerarşi süreci (AHS) yöntemi ile yer seçimi: Denizli ili örneği. Pamukkale Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 60, 401–418.
  35. Keleş, C., Aydın, M., & Coşkun, Y. (2021). Arazi tipi güneş enerji santrali yatırımının değerlendirilmesi: Bir uygulama. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 21(4), 808–817. https://doi.org/10.35414/akufemubid.920303
  36. Zorlu Enerji. (2022). Zorlu Enerji ilk hibrit enerji santralini devreye aldı. Zorlu Enerji. https://www.zorluenerji.com.tr/tr/medya-merkezi/haber-detay/zorlu-enerji-ilk-hibrit-enerji-santralini-devreye-aldi
  37. Yolcan, O. O., & Köse, R. (2020). Türkiye’nin güneş enerjisi durumu ve güneş enerjisi santrali kurulumunda önemli parametreler. Kırklareli University Journal of Engineering and Science, 6(2), 196–215. https://doi.org/10.34186/klujes.793471
  38. Mutlu, G., & Sarı, D. (2017). Güneş enerjisi santrali (GES) yapım yerlerinin CBS dayalı analitik hiyerarşi süreci (AHS) yöntemi ile belirlenmesi. Geomatik, 2(1), 1–10. https://doi.org/10.29128/geomatik.324
  39. T.C. Enerji ve Tabii Kaynaklar Bakanlığı. (2024). Güneş enerjisi potansiyeli atlası (GEPA). https://gepa.enerji.gov.tr
  40. T.C. Enerji ve Tabii Kaynaklar Bakanlığı. (2025). Elektrik. https://enerji.gov.tr/bilgi-merkezi-enerji-elektrik
  41. European Environment Agency. (2022). Nature-based solutions in energy transition: Towards climate-resilient renewable energy (EEA Report No. 19/2022). European Environment Agency. https://www.eea.europa.eu/publications/nature-based-solutions-in-energy
  42. Yılmaz, M. (2024). Elektroeğirme yöntemiyle fotovoltaik panellerde verim artırıcı kaplamalar [Yüksek lisans tezi, Marmara Üniversitesi].
  43. Tarım ve Orman Bakanlığı. (2021). Su kaynaklarının geliştirilmesi grubu çalışma belgesi. Tarım ve Orman Bakanlığı. https://cdniys.tarimorman.gov.tr/api/File/GetFile/467/Sayfa/1497/1861/DosyaGaleri/su_kaynaklarinin_gelistirilmesi_grubu_calisma_belgesi.pdf
  44. Benek, S., Şahinalp, M. S., & Elmastaş, N. (2008). Şanlıurfa ilinde sulama tesislerinin arazi kullanımı bakımından yarattığı sorunlar. Harran Üniversitesi Fen-Edebiyat Fakültesi Coğrafya Bölümü. https://tucaum.ankara.edu.tr/wp-content/uploads/sites/280/2015/08/semp5_7.pdf
  45. Aydın, T. (2019). Elmalı ilçesinin coğrafyası. İksad Yayınevi. https://iksadyayinevi.com/wp-content/uploads/2020/03/ELMALI-%C4%B0L%C3%87ES%C4%B0N%C4%B0N-CO%C4%9ERAFYASI.pdf
  46. Chen, L., Lin, Z., Zhou, Q., Zhang, S., Li, M., & Wang, Z., Impacts of photovoltaics and integrated green roofs on urban climate: Experimental insights for urban land surface modelling. Renewable and Sustainable Energy Reviews, 2025.
  47. International Energy Agency. (2023). Renewables 2023: Market analysis and forecast to 2028. IEA. https://www.iea.org/reports/renewables-2023
  48. Koca, Y. K., & Turgut, Y. Ş. (2024). Tarım arazilerinin amaç dışı kullanımı örneği: Çukurova Uluslararası Havalimanı. Çukurova Tarım ve Gıda Bilimleri Dergisi, 39(2), 417–424.
  49. T.C. Cumhurbaşkanlığı Strateji ve Bütçe Başkanlığı. (2019). Çevre ve doğaî kaynakların sürdürülebilir yönetimi çalışma grubu raporu. Strateji ve Bütçe Başkanlığı. https://www.sbb.gov.tr/wp-content/uploads/2020/04/Cevre_ve_DogalKaynaklarinSurdurulebilirYonetimiCalismaGrubuRaporu.pdf
  50. International Renewable Energy Agency. (2021). Planning for the renewable future: Long-term modelling and tools to expand variable renewables (Report). IRENA. https://biblioteca.olade.org/opac-tmpl/Documentos/cg00543.pdf
  51. International Union for Conservation of Nature (IUCN). (2021). Mitigating biodiversity impacts associated with solar and wind energy development: Guidelines for project developers. IUCN. https://portals.iucn.org/library/node/49283
  52. Arca, D., & Keskin Çıtıroğlu, H. (2022). Güneş enerjisi santral (GES) yapım yerlerinin CBS dayalı çok kriterli karar analizi ile belirlenmesi: Karabük örneği. Geomatik, 7(1), 17–25. https://doi.org/10.29128/geomatik.803200
  53. Üzülmez, M., & Hatipoğlu, İ. K. (2023). Manisa ilinde güneş enerjisi santralleri (GES) kurulabilir alanların Coğrafi Bilgi Sistemleri (CBS) ile belirlenmesi. Gelecek Vizyonlar Dergisi, 7(2), 71–85.
  54. Taştan, B., & Bozkan, E. Z. (2025). Rüzgâr enerji santrallerinin kuruluş yeri seçiminde CBS, çok kriterli karar verme analizi ve bulanık mantık yönteminin kullanılması: Kastamonu ili örneği. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 1, 172–190. https://doi.org/10.53433/yyufbed.1563665
  55. Uslu, A., Kızıloğlu, K., İşleyen, S. K., & Kahya, E. (2017). Okul yeri seçiminde coğrafi bilgi sistemine dayalı AHP-TOPSIS yaklaşımı: Ankara ili örneği. Uluslararası İnsan Bilimleri Dergisi, 14(1), 123–138. https://doi.org/10.14687/jhs.v14i1.3699
  56. Nassar, A.K., Al-Dulaimi, O., Fakhruldeen, H. F., Sapaev, I. B., Jabbar, F. I., Dawood, I. I., & Algburi, S., Multi-criteria GIS-based approach for optimal site selection of solar and wind energy. Unconventional Resources, 2025.
  57. Al Garni, H. Z., & Awasthi, A. (2017). Solar PV power plant site selection using a GIS-AHP based approach with application in Saudi Arabia. Applied Energy, 206, 1225–1240. https://doi.org/10.1016/j.apenergy.2017.10.024
  58. Dinçer, A. E., Demir, A., & Yılmaz, K. (2025). Enhanced objectivity of AHP for more reliable solar farm siting (AHP-OH). Energy Science & Engineering, 13(2), Article 70027. https://doi.org/10.1002/ese3.70027
  59. Dupraz, C., Marrou, H., Talbot, G., Dufour, L., Nogier, A., & Ferard, Y. (2011). Combining solar panels and food crops for optimising land use: Towards new agrivoltaic schemes. Renewable Energy, 36(10), 2725–2732. https://doi.org/10.1016/j.renene.2011.03.005
  60. Valle, B., Simonneau, T., Sourd, F., Pechier, P., Hamard, P., Frisson, T., & Marrou, H. (2017). Increasing the total productivity of a land by combining mobile photovoltaic panels and food crops. Applied Energy, 206, 1495–1507. https://doi.org/10.1016/j.apenergy.2017.09.113.
  61. Tarım ve Orman Bakanlığı. (2022). Tarımda “agrivoltaik” sistem. Tarım Orman Ekranı.
  62. Finserås, E. (2025). Nature-based Solutions in the Energy Transition: A Legal Perspective. Review of European, Comparative & International Environmental Law, 34(2), 205-222. https://doi.org/10.1111/reel.12622
  63. Çölleşme ve Erozyonla Mücadele Genel Müdürlüğü. (2024). Doğa tabanlı çözümlerle karbon yutak alanları tesisi. T.C. Çevre, Şehircilik ve İklim Değişikliği Bakanlığı. https://webdosya.csb.gov.tr/db/cem/icerikler/karbon-yutak-alan-tes-s-nde-doga-tabanli-cozumler-agustos-2024-mustafa-cetin-20240924151116.pdf
  64. Avrupa Birliği Başkanlığı. (2025). Fasıl 27: Çevre ve iklim değişikliği. T.C. Avrupa Birliği Başkanlığı. https://www.ab.gov.tr/p.php?e=92
  65. Copping, J. P., Waite, C. E., Balmford, A., Bradbury, R. B., Field, R. H., Morris, I., & Finch, T. (2025). Solar farm management influences breeding bird responses in an arable-dominated landscape. Bird Study, 72(3), 381–394. https://doi.org/10.1080/00063657.2025.2450392
  66. Seddon, N., Chausson, A., Berry, P., Girardin, C. A. J., Smith, A., & Turner, B. (2021). Getting the message right on nature-based solutions to climate change. Global Change Biology, 27(8), 1518–1546. https://doi.org/10.1111/gcb.15513
  67. Walston, L. J., Hartmann, H. M., Macknick, J., Sampson, D., Voisin, N., & Hellwinckel, C. (2018). Examining the potential for agricultural benefits from pollinator-friendly solar development in the United States. Environmental Science & Technology, 52(13), 7566–7576. https://doi.org/10.1021/acs.est.8b00020
  68. UNEP & IUCN. (2020). Guidelines for Integrating Ecosystem-based Adaptation into National Adaptation Plans: Supplement to the UNFCCC NAP Technical Guidelines. United Nations Environment Programme. https://unfccc.int/sites/default/files/resource/EbA_NAP.pdf.
  69. Bošnjaković, M., Žunar, B., & Milovanović, M. (2023). Environmental impact of PV power systems. Sustainability, 15(15), 11888.
  70. Piedrahita, A., Cárdenas, L. M., & Zapata, S. (2025). Solar panel waste management: Challenges, opportunities, and the path to a circular economy. Energies, 18(7), 1844. https://doi.org/10.3390/en18071844
  71. Xu, Y., Li, J., Tan, Q., Peters, A. L., & Yang, C. (2018). Global status of recycling waste solar panels: A review. Waste Management, 75, 450–458. https://doi.org/10.1016/j.wasman.2018.01.036.
  72. Dias, P., Javimczik, S., Benevit, M., Veit, H., & Bernardes, A. M. (2016). Recycling WEEE: Extraction and concentration of silver from waste crystalline silicon photovoltaic modules. Waste Management, 57, 220–225. https://doi.org/10.1016/j.wasman.2016.03.016