Peak Flux Density Comparison on the Receiver Image between Conventional and Rotating Heliostats

Document Type : Research Article

Authors

1 Department of Mechanical Engineering, Faculty of Sciences and Technology, Ahmed Zabana University of Relizane, Algeria

2 Nuclear Research Center of Birine, B.P. 180, AIN OUSSERA 17200, Djelfa, Algeria

Abstract

The current study uses the HFCAL approach to construct a computing algorithm that provides the flux density distributed on the receiver image of a northern hemisphere heliostat. As part of the flux computation process, optical performance was improved by replacing the conventional heliostat with a rotating model that optimizes the cosine effect. The results obtained were validated against experimental data from the solar platform plant in Almeria, Spain. The concentrated solar flux incident on the receiver surface from the two technologies, conventional and rotating heliostats, is compared at five specific times on the spring equinox day. The comparison is carried out for both a single heliostat and a group of heliostats similar to those in the PS10 tower field. The results show that rotating heliostats significantly outperform conventional systems, particularly during the morning and afternoon when the sun is at lower altitudes and precise tracking is critical. At 08:00, the peak flux density increases by 36.25% compared to a conventional heliostat row, while at 10:00 and 14:00 the improvement is 12.38% for both times. At solar noon, both systems achieve similar peak flux values. This demonstrates higher peak flux and more uniform illumination in a simplified solar field.

Keywords

  1. He, Y.-L., et al., Review of the solar flux distribution in concentrated solar power: Non-uniform features, challenges, and solutions. Applied Thermal Engineering, 2019. 149: p. 448-474. https://doi.org/10.1016/j.applthermaleng.2018.12.006
  2. Gallego, A. and E.F. Camacho, On the optimization of flux distribution with flat receivers: A distributed approach. Solar Energy, 2018. 160: p. 117-129. https://doi.org/10.1016/j.solener.2017.12.008
  3. Oliveira, M., et al., Solar radiation measurement tools and their impact on in situ testing—A Portuguese case study. 2024. https://doi.org/10.3390/buildings14072117
  4. Reddy, V.S., et al., State-of-the-art of solar thermal power plants—A review. Renewable and Sustainable Energy Reviews, 2013. 27: p. 258-273. https://doi.org/10.1016/j.rser.2013.06.037
  5. Collado, F.J. and J. Guallar, Campo: Generation of regular heliostat fields. Renewable energy, 2012. 46: p. 49-59. https://doi.org/10.1016/j.renene.2012.03.011
  6. Hu, P. and W. Huang, Performance analysis and optimization of an integrated azimuth tracking solar tower. Energy, 2018. 157: p. 247-257. https://doi.org/10.1016/j.energy.2018.04.044
  7. Maiga, M., et al., Sources of solar tracking errors and correction strategies for heliostats. Renewable and Sustainable Energy Reviews, 2024. 203: p. 114770. https://doi.org/10.1016/j.rser.2024.114770
  8. Belgasim, B., et al., The potential of concentrating solar power (CSP) for electricity generation in Libya. Renewable and sustainable energy reviews, 2018. 90: p. 1-15. https://doi.org/10.1016/j.rser.2018.03.045
  9. Merchán, R., et al., High temperature central tower plants for concentrated solar power: 2021 overview. Renewable and Sustainable Energy Reviews, 2022. 155: p. 111828. https://doi.org/10.1016/j.rser.2021.111828
  10. Bouamra, M. and M. Merzouk, Cosine efficiency distribution with reduced tower shadowing effect in rotating heliostat field. Arabian Journal for Science and Engineering, 2019. 44: p. 1415-1424. https://doi.org/10.1007/s13369-018-3558-7
  11. Behar, O., A. Khellaf, and K. Mohammedi, A review of studies on central receiver solar thermal power plants. Renewable and sustainable energy reviews, 2013. 23: p. 12-39. https://doi.org/10.1016/j.rser.2013.02.017
  12. Wang, K., et al., A novel integrated simulation approach couples MCRT and Gebhart methods to simulate solar radiation transfer in a solar power tower system with a cavity receiver. Renewable Energy, 2016. 89: p. 93-107. https://doi.org/10.1016/j.renene.2015.11.069
  13. Rizvi, A.A., et al., A review and classification of layouts and optimization techniques used in design of heliostat fields in solar central receiver systems. Solar energy, 2021. 218: p. 296-311. https://doi.org/10.1016/j.solener.2021.02.011
  14. Lee, K. and I. Lee, Optimization of a heliostat field site in central receiver systems based on analysis of site slope effect. Solar Energy, 2019. 193: p. 175-183. https://doi.org/10.1016/j.solener.2019.09.027
  15. Arrif, T., et al., Optimisation of heliostat field layout for solar power tower systems using iterative artificial bee colony algorithm: a review and case study. International Journal of Ambient Energy, 2021. 42(1): p. 65-80. https://doi.org/10.1080/01430750.2018.1525581
  16. Ruiz, V., et al., The variable geometry central receiver system concept. First results and comparison with conventional central receiver systems. Energy Procedia, 2014. 57: p. 2255-2264. https://doi.org/10.1016/j.egypro.2014.10.233
  17. Cádiz, P., et al., Shadowing and blocking effect optimization for a variable geometry heliostat field. Energy procedia, 2015. 69: p. 60-69. https://doi.org/10.1016/j.egypro.2015.03.008
  18. Bouamra, M. and M. Merzouk. Cosine Efficiency Distribution of Rotating Heliostat Field. in 2017 International Renewable and Sustainable Energy Conference (IRSEC). 2017. IEEE. https://doi.org/10.1109/IRSEC.2017.8477337
  19. Schöttl, P., et al., Efficient modeling of variable solar flux distribution on Solar Tower receivers by interpolation of few discrete representations. Solar Energy, 2018. 160: p. 43-55. https://doi.org/10.1016/j.solener.2017.11.028
  20. Collado, F.J., One-point fitting of the flux density produced by a heliostat. Solar energy, 2010. 84(4): p. 673-684. https://doi.org/10.1016/j.solener.2010.01.019
  21. He, C., Y. Zhao, and J. Feng, An improved flux density distribution model for a flat heliostat (iHFLCAL) compared with HFLCAL. Energy, 2019. 189: p. 116239. https://doi.org/10.1016/j.energy.2019.116239
  22. Salomé, A., et al., Control of the flux distribution on a solar tower receiver using an optimized aiming point strategy: Application to THEMIS solar tower. Solar energy, 2013. 94: p. 352-366. https://doi.org/10.1016/j.solener.2013.02.025
  23. Besarati, S.M. and D.Y. Goswami, A computationally efficient method for the design of the heliostat field for solar power tower plant. Renewable energy, 2014. 69: p. 226-232. https://doi.org/10.1016/j.renene.2014.03.043
  24. Raj, M. and J. Bhattacharya, Precise and fast spillage estimation for a central receiver tower based solar plant. Solar Energy, 2023. 265: p. 112103. https://doi.org/10.1016/j.solener.2023.112103
  25. Lipps, F. and M. Walzel, An analytic evaluation of the flux density due to sunlight reflected from a flat mirror having a polygonal boundary. Solar Energy, 1978. 21(2): p. 113-121. https://doi.org/10.1016/0038-092X(78)90038-5
  26. Collado, F.J., A. Gómez, and J. Turégano, An analytic function for the flux density due to sunlight reflected from a heliostat. Solar Energy, 1986. 37(3): p. 215-234. https://doi.org/10.1016/0038-092X(86)90078-2
  27. He, C., et al., Analytical radiative flux model via convolution integral and image plane mapping. Energy, 2021. 222: p. 119937. https://doi.org/10.1016/j.energy.2021.119937
  28. Atif, M. and F.A. Al-Sulaiman, Optimization of heliostat field layout in solar central receiver systems on annual basis using differential evolution algorithm. Energy conversion and management, 2015. 95: p. 1-9. https://doi.org/10.1016/j.enconman.2015.01.089
  29. Besarati, S.M., D.Y. Goswami, and E.K. Stefanakos, Optimal heliostat aiming strategy for uniform distribution of heat flux on the receiver of a solar power tower plant. Energy Conversion and Management, 2014. 84: p. 234-243. https://doi.org/10.1016/j.enconman.2014.04.030
  30. Collado, F.J. and J. Guallar, A review of optimized design layouts for solar power tower plants with campo code. Renewable and Sustainable Energy Reviews, 2013. 20: p. 142-154. https://doi.org/10.1016/j.rser.2012.11.076
  31. Atif, M. and F.A. Al‐Sulaiman, Development of a mathematical model for optimizing a heliostat field layout using differential evolution method. International Journal of Energy Research, 2015. 39(9): p. 1241-1255. https://doi.org/10.1002/er.3325
  32. Biencinto, M., J. Fernández-Reche, and A.L. Ávila-Marín, HEFESTO: A novel tool for fast calculation and preliminary design of heliostat fields. Renewable Energy, 2025. 245: p. 122736. https://doi.org/10.1016/j.renene.2025.122736
  33. Zhang, M., et al., An efficient code to optimize the heliostat field and comparisons between the biomimetic spiral and staggered layout. Renewable energy, 2016. 87: p. 720-730. https://doi.org/10.1016/j.renene.2015.11.015
  34. Saghafifar, M., K. Mohammadi, and K. Powell, Design and analysis of a dual-receiver direct steam generator solar power tower plant with a flexible heliostat field. Sustainable Energy Technologies and Assessments, 2020. 39: p. 100698. https://doi.org/10.1016/j.seta.2020.100698
  35. Huang, W. and L. Yu, Development of a new flux density function for a focusing heliostat. Energy, 2018. 151: p. 358-375. https://doi.org/10.1016/j.energy.2018.03.035
  36. Sattler, J.C., et al., Review of heliostat calibration and tracking control methods. Solar Energy, 2020. 207: p. 110-132. https://doi.org/10.1016/j.solener.2020.06.030