[1] L. Selvam, M. Aruna, I. Hossain,and R. Vengatesh. (2024). Impact of hybrid nanofluid on thermal behaviour of flat-plate solar collector: performance study. J Therm Anal Calorim, vol. 149, no. 10, pp. 5047–5057, doi: 10.1007/s10973-024-12994-z.
[2] A. K. Hussein. (2015). Applications of nanotechnology in renewable energies - A comprehensive overview and understanding. Elsevier Ltd, doi: 10.1016/j.rser.2014.10.027.
[3] M. Ahmed, M. M. Meteab, Q. O. Salih, H. A. Mohammed, and O. A. Alawi. (2022). Experimental Investigation on the Thermophysical and Rheological Behavior of Aqueous Dual Hybrid Nanofluid in Flat Plate Solar Collectors. Energies (Basel), vol. 15, no. 22, Nov. 2022, doi: 10.3390/en15228541.
[4] N. Y. Khudair and A. K. Hussein. (2023). Enhancement of the performance of evacuated tube collector of solar by utilizing mono and hybrid nanofluids-An extended review. AIP Conference Proceedings, American Institute of Physics Inc., doi: 10.1063/5.0148142.
[5] A. S. F. Mahamude, W. S. W. Harun and K. Kadirgama. (2022). Experimental Study on the Efficiency Improvement of Flat Plate Solar Collectors Using Hybrid Nanofluids Graphene/Waste Cotton. Energies (Basel), vol. 15, no. 7, Apr. 2022, doi: 10.3390/en15072309.
[6] M. A. Alfellag, H. M. Kamar and N. A. C. Sidik. (2023). Rheological and thermophysical properties of hybrid nanofluids and their application in flat-plate solar collectors: a comprehensive review. Jul. 01, 2023, Springer Science and Business Media B.V., doi: 10.1007/s10973-023-12184-3.
[7] X. Lin, Y. Xia and Z. Cheng. (2024). Thermal Performance Analysis of Porous Foam-Assisted Flat-Plate Solar Collectors with Nanofluids. Sustainability (Switzerland), vol. 16, no. 2, Jan. 2024, doi: 10.3390/su16020693.
[8] S. M. Sadegh Hosseini and M. S. Dehaj. An experimental study on energetic performance evaluation of a parabolic trough solar collector operating with Al2O3/water and GO/water nanofluids. Energy, vol. 234, Nov. 2021, doi: 10.1016/j.energy.2021.121317.
[9] R. Venkatesh, V. Mohanavel, M. E. M. Soudagar, I. Hossain, S. A. Alharbi, and S. Al Obaid. (2025). Concentration of alumina nanofluid on stability and thermal behaviour of the hybrid solar thermal system. Appl Therm Eng, vol. 260, Feb. 2025, doi: 10.1016/j.applthermaleng.2024.124950.
[10] M. Sheikholeslami, M. Gorji-Bandpy, and D. D. Ganji. (2015). Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices. Elsevier Ltd, doi: 10.1016/j.rser.2015.04.113.
[11] S. Choudhary, A. Sachdeva, and P. Kumar. (2021). Time-based analysis of stability and thermal efficiency of flat plate solar collector using iron oxide nanofluid. Appl Therm Eng, vol. 183, Jan. 2021, doi: 10.1016/j.applthermaleng.2020.115931.
[12] L. S. Sundar, Y. T. Sintie, Z. Said, M. K. Singh, V. Punnaiah, and A. C. M. Sousa. (2020). Energy, efficiency, economic impact, and heat transfer aspects of solar flat plate collector with Al2O3 nanofluids and wire coil with core rod inserts. Sustainable Energy Technologies and Assessments, vol. 40, Aug. 2020, doi: 10.1016/j.seta.2020.100772.
[13] M. Eltaweel and A. A. Abdel-Rehim. (2019). Energy and exergy analysis of a thermosiphon and forced-circulation flat-plate solar collector using MWCNT/Water nanofluid. Case Studies in Thermal Engineering, vol. 14, Sep. 2019, doi: 10.1016/j.csite.2019.100416.
[14] O. A. Alawi, H. Mohamed Kamar, A. R. Mallah, S. N. Kazi, and N. A. C. Sidik. (2019). Thermal efficiency of a flat-plate solar collector filled with Pentaethylene Glycol-Treated Graphene Nanoplatelets: An experimental analysis. Solar Energy, vol. 191, pp. 360–370, Oct. 2019, doi: 10.1016/j.solener.2019.09.011.
[15] A. M. Genc, M. A. Ezan, and A. Turgut. (2017). Thermal performance of a nanofluid-based flat plate solar collector: A transient numerical study. Appl Therm Eng, vol. 130, pp. 395–407, Feb. 2018, doi: 10.1016/j.applthermaleng.2017.10.166.
[16] M. Mirzaei, S. M. S. Hosseini, and A. M. Moradi Kashkooli. (2018). Assessment of Al2O3 nanoparticles for the optimal operation of the flat plate solar collector. Appl Therm Eng, vol. 134, pp. 68–77, Apr. 2018, doi: 10.1016/j.applthermaleng.2018.01.104.
[17] Y. Tong, H. Lee, W. Kang, and H. Cho. (2019). Energy and exergy comparison of a flat-plate solar collector using water, Al2O3 nanofluid, and CuO nanofluid. Appl Therm Eng, vol. 159, Aug. 2019, doi: 10.1016/j.applthermaleng.2019.113959.
[18] X. Tang, C. Tan, Y. Liu, C. Sun, and S. Xu. (2024). Numerical Analysis on Heat Collecting Performance of Novel Corrugated Flat Plate Solar Collector Using Nanofluids. Sustainability (Switzerland), vol. 16, no. 14, Jul. 2024, doi: 10.3390/su16145924.
[19] M. Eltaweel and A. A. Abdel-Rehim. (2019). Energy and exergy analysis of a thermosiphon and forced-circulation flat-plate solar collector using MWCNT/Water nanofluid. Case Studies in Thermal Engineering, vol. 14, Sep. 2019, doi: 10.1016/j.csite.2019.100416.
[20] I. M. Mahbubul, M. M. A. Khan, N. I. Ibrahim, H. M. Ali, F. A. Al-Sulaiman, and R. Saidur. (2018). Carbon nanotube nanofluid in enhancing the efficiency of evacuated tube solar collector. Renew Energy, vol. 121, pp. 36–44, Jun. 2018, doi: 10.1016/j.renene.2018.01.006.
[21] Z. Said, R. Saidur, N. A. Rahim, and M. A. Alim. (2014). Analyses of exergy efficiency and pumping power for a conventional flat plate solar collector using SWCNTs based nanofluid. Energy Build, vol. 78, pp. 1–9, 2014, doi: 10.1016/j.enbuild.2014.03.061.
[22] O. A. Alawi, H. M. Kamar and A.R. Mallah. (2020). Nanofluids for flat plate solar collectors: Fundamentals and applications. Elsevier Ltd, doi: 10.1016/j.jclepro.2020.125725.
[23] A. Bioeng Biomed, S. Res, and A. Moghtadaei. (2024). Numerical Simulation of Heat Transfer in a Solar Flat Plate Collector using Nano-Fluids. Adv Bioeng Biomed Sci Res, vol. 7, no. 2, 2024.
[24] M. R. Saffarian, M. Moravej, and M. H. Doranehgard. (2020). Heat transfer enhancement in a flat plate solar collector with different flow path shapes using nanofluid. Renew Energy, vol. 146, pp. 2316–2329, Feb. 2020, doi: 10.1016/j.renene.2019.08.081.
[25] A. M. Ajeena, I. Farkas, and P. Víg. (2024). Energy and exergy assessment of a flat plate solar thermal collector by examine silicon carbide nanofluid: An experimental study for sustainable energy. Appl Therm Eng, vol. 236, Jan. 2024, doi: 10.1016/j.applthermaleng.2023.121844.
[26] S. Saedodin, M. Zaboli, and S. S. Mousavi Ajarostaghi. (2021). Hydrothermal analysis of heat transfer and thermal performance characteristics in a parabolic trough solar collector with Turbulence-Inducing elements. Sustainable Energy Technologies and Assessments, vol. 46, Aug. 2021, doi: 10.1016/j.seta.2021.101266.
[27] P. Promvonge and S. Eiamsa-ard. (2007). Heat transfer behaviors in a tube with combined conical-ring and twisted-tape insert. International Communications in Heat and Mass Transfer, vol. 34, no. 7, pp. 849–859, Aug. 2007, doi: 10.1016/j.icheatmasstransfer.2007.03.019.
[28] K. A. Al-Shiblia and A. S. Al-Akaishib. (2021). Improving the performance of evacuated tube of a solar collector with acetone-based heat pipe using the desert sand as thermal storage material. 4th International Iraqi Conference on Engineering Technology and Their Applications, IICETA 2021, Institute of Electrical and Electronics Engineers Inc., 2021, pp. 146–150, doi: 10.1109/IICETA51758.2021.9717511.
[29] E. H. Alaskaree. (2025). Triple cross section absorption plate solar air heater efficiency test. IOP Conf Ser Earth Environ Sci, vol. 1507, no. 1, p. 012001, Jun. 2025, doi: 10.1088/1755-1315/1507/1/012001.
[30] H. S. Abd, S. H. Abid Aun, S. S. Al-Azawiey, A. A. Jaddoa, I. Omle, and J. M. D. Alkhasraji. (2025). Solar Heaters Temperature Improvement in Present of Obstacles: An Experimental Study. International Journal of Heat and Technology, vol. 43, no. 2, pp. 782–788, Apr. 2025, doi: 10.18280/ijht.430237.
[31] H. A. Hasan, H. Togun, Azher. M. Abed, and H. I. Mohammed. (2024). Experimental study on the performance of solar drying system by using V-corrugated Plate Absorber in the city of Baghdad/Iraq, doi: 10.21203/rs.3.rs-4638463/v1.
[32] A. M. Hussein, A. T. Awad, and H. H. M. Ali. (2024). Evaluation of the thermal efficiency of nanofluid flows in flat plate solar collector. Journal of Thermal Engineering, vol. 10, no. 2, pp. 299–307, Mar. 2024, doi: 10.18186/thermal.1448578.
[33] V. K. Gorai, M. Kumar, R. Singh, and M. K. Sahu. (2025). Theoretical investigation for optimal thermal and thermodynamic performance of flat-plate solar collector with nanofluids. Archives of Thermodynamics, vol. 46, no. 1, pp. 155–167, 2025, doi: 10.24425/ather.2025.154189.
[34] E. J. Mahdi, H. F. Hussein, and F. R. Saeed. (2025). Thermal performance comparison of aluminum and iron alloys in heat exchangers for solar water heating systems: Experimental study under Iraqi climate conditions. Next Materials, vol. 8, Jul. 2025, doi: 10.1016/j.nxmate.2025.100935.
[35] M. Abouelsoud, saad yassin, A. Nagah, and H. Mousa. (2025). A review on utilizing nanofluid in solar collectors: modeling, materials, challenges, and applications. SVU-International Journal of Engineering Sciences and Applications, vol. 6, no. 1, pp. 69–79, Jun. 2025, doi: 10.21608/svusrc.2024.324863.1241.
[36] A. M. Hussein, H. H. M. Ali, and Z. H. Mohammed Ali. (2024). Assessing the efficacy of flat-plate solar collectors using nanofluids in the climatic context of Kirkuk city, Iraq. Acta Polytechnica , vol. 64, no. 1, pp. 25–33, Mar. 2024, doi: 10.14311/AP.2024.64.0025.
[37] A. M. Hussein, H. H. M. Ali, and Z. H. Mohammed Ali. (2025). Assessing the efficacy of flat-plate solar collectors using nanofluids in the climatic context of Kirkuk city, Iraq,” Acta Polytechnica , vol. 64, no. 1, pp. 25–33, Mar. 2024, doi: 10.14311/AP.2024.64.0025.
[38] Firas F. Qader, Falah Z. Mohammed, Barhm Mohamad. (2023). Thermodynamic analysis and optimization of flat plate solar collector using TiO2/ water nanofluid. Journal of Harbin Institute of Technology (New Series).
[39] W. J. Khudhayer, H. Ghanbarpourasi, H. T. Jalel, and H. R. Al-Dayyeni. (2018). Enhanced Heat Transfer Performance of a Flat Plate Solar Collector using CuO/water and TiO2 /water nanofluids. [Online]. Available: http://www.ripublication.com
[40] M. M. A. Saeed, H. G. Hameed, and H. A. N. Diabil. (2024). Experimental Investigation on Thermal Performance of Solar Air Heater using Nano-PCM. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, vol. 117, no. 1, pp. 83–97, May 2024, doi: 10.37934/arfmts.117.1.8397.
[41] I. H. Alwan and Z. K. Kadhim. (2025). Experimental Studies of Enhancing Solar Collector Efficiency by using a Storage Tank Containing Water Pipes and PCM. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, vol. 126, no. 2, pp. 149–169, Feb. 2025, doi: 10.37934/arfmts.126.2.149169.
[42] H. S. Abd, S. H. Abid Aun, S. S. Al-Azawiey, A. A. Jaddoa, I. Omle, and J. M. D. Alkhasraji. (2025). Solar Heaters Temperature Improvement in Present of Obstacles: An Experimental Study. International Journal of Heat and Technology, vol. 43, no. 2, pp. 782–788, Apr. 2025, doi: 10.18280/ijht.430237.
[43] S. H. Mohammed, O. K. Ahmed, and H. M. Wadullah. (2023). Enhancement of the efficiency of solar collector by SiO2, TiO2, and ZnO thin films layers. Journal of Engineering Research (Kuwait), vol. 13, no. 2, pp. 1270–1277, Jun. 2025, doi: 10.1016/j.jer.2023.11.002.
[44] M. Bezaatpour and H. Rostamzadeh. (2021). Design and evaluation of flat plate solar collector equipped with nanofluid, rotary tube, and magnetic field inducer in a cold region. Renew Energy, vol. 170, pp. 574–586, Jun. 2021, doi: 10.1016/j.renene.2021.02.001.
[45] A. Mola, S. H. Ibrahim, N. Q. Shari, and H. A. Abdul Wahhab. (2025). Performance Analysis of Solar Porous Media Collector Integrated with Thermal Energy Storage Charged by Cu-Fe2O4 /Water Nanofluids Coil Tubes. Energy Engineering: Journal of the Association of Energy Engineering, vol. 122, no. 6, pp. 2239–2255, 2025, doi: 10.32604/ee.2025.061590.
[46] J. Mustafa, S. Alqaed, and R. Kalbasi. (2021). Challenging of using CuO nanoparticles in a flat plate solar collector- Energy saving in a solar-assisted hot process stream. J Taiwan Inst Chem Eng, vol. 124, pp. 258–265, doi: 10.1016/j.jtice.2021.04.003.
[47] M. M. A. Saeed, H. G. Hameed, and H. A. N. Diabil. (2024). Experimental Investigation on Thermal Performance of Solar Air Heater using Nano-PCM. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, vol. 117, no. 1, pp. 83–97, May 2024, doi: 10.37934/arfmts.117.1.8397.
[48] A. K. Hussein and A. A. Walunj. (2015). Applications of nanotechnology to enhance the performance of the direct absorption solar collectors. [Online]. Available: http://eds.yildiz.edu.tr/
[49] E. Arikan, S. Abbasoğlu, and M. Gazi. (2018). Experimental performance analysis of flat plate solar collectors using different nanofluids. Sustainability (Switzerland), vol. 10, no. 6, May 2018, doi: 10.3390/su10061794.
[50] Y. Tong, X. Chi, W. Kang, and H. Cho. (2020). Comparative investigation of efficiency sensitivity in a flat plate solar collector according to nanofluids. Appl Therm Eng, vol. 174, Jun. 2020, doi: 10.1016/j.applthermaleng.2020.115346.
[51] A. R. Abdulmunem, M. H. Jabal, P. M. Samin, H. A. Rahman, and H. A. Hussien. (2019). Analysis of energy and exergy for the flat plate solar air collector with longitudinal fins embedded in paraffin wax located in Baghdad center. International Journal of Heat and Technology, vol. 37, no. 4, pp. 1180–1186, 2019, doi: 10.18280/ijht.370428.
[52] S. Shamshirgaran, M. K. Assadi, H. H. Al-Kayiem, and K. V. Sharma. (2018). Energetic and exergetic performance of a solar flat-plate collector working with cu nanofluid. Journal of Solar Energy Engineering, Transactions of the ASME, vol. 140, no. 3, Jun. 2018, doi: 10.1115/1.4039018.
[53] A. Allouhi and M. Benzakour Amine. (2021). Heat pipe flat plate solar collectors operating with nanofluids. Solar Energy Materials and Solar Cells, vol. 219, doi: 10.1016/j.solmat.2020.110798.
[54] H. A. Hasan, H. Togun, A. M. Abed, and H. I. Mohammed. (2023). Experimental Study on Improving the Thermal Efficiency Using Fin Array with Different Slant Angles in the Finned Plate Solar Air Heater FPSAH. Int J Thermophys, vol. 44, no. 5, May 2023, doi: 10.1007/s10765-023-03180-8.
[55] W. J. Khudhayer, H. Ghanbarpourasi, H. T. Jalel, and H. R. Al-Dayyeni. (2018). Enhanced Heat Transfer Performance of a Flat Plate Solar Collector using CuO/water and TiO2/water Nanofluids. [Online]. Available: http://www.ripublication.com
[56] Z. A. Ibrahim, Q. K. Jasim, and A. M. Hussein. (2020). The Impact of Alumina Nanoparticles Suspended in Water Flowing in a Flat Solar Collector. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences Journal homepage, vol. 65, pp. 1–12, 2020, [Online]. Available: www.akademiabaru.com/arfmts.html
[57] A. Awad and A. Hussein. (2024). Influence of Nanofluid Types on the Enhancements of Solar Collector Performance. International Innovations Journal of Applied Science, vol. 1, no. 2, Sep. 2024, doi: 10.61856/f7m6ty09.
[58] J. Pereira, A. Moita, and A. Moreira. (2023). An Overview of the Molten Salt Nanofluids as Thermal Energy Storage Media. MDPI. doi: 10.3390/en16041825.
[59] Y. Xuan and Q. Li. (2000). Heat transfer enhancement of nanofluids. [Online]. Available: www.elsevier.com/locate/ijh
[60] R. H. Hameed, R. A. Hussein, Q. H. Al-Salami. (2024). Free convection investigation for a Casson-based Cu−H2O nanofluid in semi parabolic enclosure with corrugated cylinder. Heliyon, vol. 11, no. 1, Jan. 2025, doi: 10.1016/j.heliyon.2024.e40960.
[61] M. Asadi and A. Asadi. (2016). Dynamic viscosity of MWCNT/ZnO-engine oil hybrid nanofluid: An experimental investigation and new correlation in different temperatures and solid concentrations. International Communications in Heat and Mass Transfer, vol. 76, pp. 41–45, Aug. 2016, doi: 10.1016/j.icheatmasstransfer.2016.05.019.
[62] P. Ouyang, Y. P. Xu, L. Y. Qi, S. M. Xing, and H. Fooladi. (2021). Comprehensive evaluation of flat plate and parabolic dish solar collectors’ performance using different operating fluids and MWCNT nanofluid in different climatic conditions. Energy Reports, vol. 7, pp. 2436–2451, Nov. 2021, doi: 10.1016/j.egyr.2021.04.046.
[63] S. S. Chawhan, D. P. Barai, and B. A. Bhanvase. (2021). Investigation on thermophysical properties, convective heat transfer and performance evaluation of ultrasonically synthesized Ag-doped TiO2 hybrid nanoparticles based highly stable nanofluid in a minichannel. Thermal Science and Engineering Progress, vol. 25, Oct. 2021, doi: 10.1016/j.tsep.2021.100928.
[64] Q. Xiong, S. Altnji and T.Tayebi. (2021). A comprehensive review on the application of hybrid nanofluids in solar energy collectors,” Sustainable Energy Technologies and Assessments. vol. 47, Oct. 2021, doi: 10.1016/j.seta.2021.101341.
[65] A. M. Alklaibi, L. S. Sundar, and A. C. M. Sousa, (2021). Experimental analysis of exergy efficiency and entropy generation of diamond/water nanofluids flow in a thermosyphon flat plate solar collector. International Communications in Heat and Mass Transfer, vol. 120, Jan. 2021, doi: 10.1016/j.icheatmasstransfer.2020.105057.
[66] N. Dawood, J. Jalil, and S. Faraj. (2024). Thermal performance enhancement of solar collectors by nanoparticles and magnetic field: a review. Engineering and Technology Journal, vol. 43, no. 1, pp. 75–93, Jan. 2025, doi: 10.30684/etj.2024.152986.1809.
[67] S. K. Mechiri, V. Vasu, and A. Venu Gopal. (2016). Investigation of thermal conductivity and rheological properties of vegetable oil based hybrid nanofluids containing Cu–Zn hybrid nanoparticles. Experimental Heat Transfer, vol. 30, no. 3, pp. 205–217, May 2017, doi: 10.1080/08916152.2016.1233147.
[68] M. J. Alghurabe, D. M. Al-Shamkhee, and A. A. Alsahlani. (2021). Experimental and Numerical Study of Thermal Performance for Flat Plate Solar Water Heater in Najaf. IOP Conference Series: Earth and Environmental Science, IOP Publishing Ltd, Nov. 2021. doi: 10.1088/1755-1315/877/1/012042.
[69] S. A. Jawad, F. L. Rashid, and Z. A. A. Ridha. (2022). Thermal Performance of Spiral Flat Plate Solar Water Collector. International Journal of Heat and Technology, vol. 40, no. 1, pp. 183–192, Feb. 2022, doi: 10.18280/ijht.400122.
[70] M. J. Zaidan and M. H. Alhamdo. (2025). Study on effects of cross-sectional tubes on thermal performance of concrete solar collectors: A numerical study. Ecological Engineering and Environmental Technology, vol. 26, no. 1, pp. 339–352, 2025, doi: 10.12912/27197050/196091.
[71] M. J. A-Dulaimi, A. H. Hilal, H. A. Hasan, and F. A. Hamad. (2023). Energy and Exergy Investigation of a Solar Air Heater for Different Absorber Plate Configurations. International Journal of Automotive and Mechanical Engineering, vol. 20, no. 1, pp. 10258–10273, 2023, doi: 10.15282/ijame.20.1.2023.08.0793.
[72] S. A. Kadhim and O. Abd AL-Munaf Ibrahim. (2021). Improving the Thermal Efficiency of Flat Plate Solar Collector Using Nano-Fluids as a Working Fluids: A Review. Iraqi Journal of Industrial Research, vol. 8, no. 3, Dec. 2021, doi: 10.53523/ijoirvol8i3id86.
[73] A. K. Hussein, D. Li, L. Kolsi, S. Kata, and B. Sahoo. (2017). A Review of Nano Fluid Role to Improve the Performance of the Heat Pipe Solar Collectors. in Energy Procedia, Elsevier Ltd, Mar. 2017, pp. 417–424. doi: 10.1016/j.egypro.2017.03.044.
[74] O. A. Hussein, K. Habib, A. S. Muhsan, R. Saidur, O. A. Alawi, and T. K. Ibrahim. (2020). Thermal performance enhancement of a flat plate solar collector using hybrid nanofluid,” Solar Energy, vol. 204, pp. 208–222, Jul. 2020, doi: 10.1016/j.solener.2020.04.034.
[75] A. Sahi Shareef and Z. Basim Abdel-Mohsen. (2017). The Effect of using different Nano fluids on Heat Transfers through Flat Plate Solar Collector.
[76] O. Ayadi and O. Al-oran. (2022). Utilization of mono and hybrid nanofluids in solar thermal collector. Renewable Energy Production and Distribution: Recent Developments, Elsevier, 2022, pp. 3–44. doi: 10.1016/B978-0-323-91892-3.00008-X.
[77] S. M. Abolarin, M. Everts, and J. P. Meyer. (2019). Heat transfer and pressure drop characteristics of alternating clockwise and counter clockwise twisted tape inserts in the transitional flow regime. Int J Heat Mass Transfer, vol. 133, pp. 203–217, Apr. 2019, doi: 10.1016/j.ijheatmasstransfer.2018.12.107.
[78] M. Edalatpour and J. P. Solano. (2017). Thermal-hydraulic characteristics and exergy performance in tube-on-sheet flat plate solar collectors: Effects of nanofluids and mixed convection. International Journal of Thermal Sciences, vol. 118, pp. 397–409, Aug. 2017, doi: 10.1016/j.ijthermalsci.2017.05.004.
[79] K. Balaji, P. Ganesh Kumar, D. Sakthivadivel, V. S. Vigneswaran, and S. Iniyan. (2019). Experimental investigation on flat plate solar collector using frictionally engaged thermal performance enhancer in the absorber tube. Renew Energy, vol. 142, pp. 62–72, Nov. 2019, doi: 10.1016/j.renene.2019.04.078.
[80] P. K. Adapa and G. J. Schoenau. (2005). Re-circulating heat pump assisted continuous bed drying and energy analysis. Int J Energy Res, vol. 29, no. 11, pp. 961–972, Sep. 2005, doi: 10.1002/er.1103.
[81] F. Zhou, J. Ji, J. Cai, and B. Yu. (2017). Experimental and numerical study of the freezing process of flat-plate solar collector. Appl Therm Eng, vol. 118, pp. 773–784, 2017, doi: 10.1016/j.applthermaleng.2017.02.111.
[82] E. Vengadesan and R. Senthil. (2020). A review on recent development of thermal performance enhancement methods of flat plate solar water heater. Elsevier Ltd, doi: 10.1016/j.solener.2020.06.059.
[83] W. C. Swinbank. (1963). Long-wave radiation from clear skies.
[84] M. S. Hossain, A. K. Pandey, M. A. Tunio, J. Selvaraj, K. E. Hoque, and N. A. Rahim. (2016). Thermal and economic analysis of low-cost modified flat-plate solar water heater with parallel two-side serpentine flow. J Therm Anal Calorim, vol. 123, no. 1, pp. 793–806, Jan. 2016, doi: 10.1007/s10973-015-4883-7.
[85] K. Bashirnezhad, M. Kargaran, S. Zeinali Heris, and Y. Mohammadfam. (2025). Improvement of thermal, energy and exergy performance of flat panel solar collector by insertion of perforated strips and hybrid CuO-MWCNTs nanofluid. Results in Engineering, vol. 27, Sep. 2025, doi: 10.1016/j.rineng.2025.106120.
[86] Babita, S. K. Sharma, and S. M. Gupta. (2016). Preparation and evaluation of stable nanofluids for heat transfer application: A review. Elsevier Inc., doi: 10.1016/j.expthermflusci.2016.06.029.
[87] M. S. Tahat and A. C. Benim. (2017). Experimental analysis on thermophysical properties of Al2O3/CuO hybrid nano fluid with its effects on flat plate solar collector. Defect and Diffusion Forum, vol. 374, pp. 148–156, 2017, doi: 10.4028/www.scientific.net/DDF.374.148.
[88] A. S. Shareef, F. L. Rashid, and A. N. Hussein. (2023). Design and Construction of a New Solar Collector Using Flat Plates to Absorb Water from Atmospheric Air in Remote Areas by Solar Energy and Materials as Moisture Absorbent. AIP Conference Proceedings, American Institute of Physics Inc., doi: 10.1063/5.0184866.
[89] S. Mukherjee, D. Shah, P. Chaudhuri, and P. C. Mishra. (2025). Exergy, economic, and environmental impact of a flat plate solar collector with Al2O3-CuO/Water hybrid nanofluid: Experimental study. Appl Therm Eng, vol. 266, May 2025, doi: 10.1016/j.applthermaleng.2025.125640.
[90] M. U. Sajid and H. M. Ali. (2018). Thermal conductivity of hybrid nanofluids: A critical review. Elsevier Ltd, doi: 10.1016/j.ijheatmasstransfer.2018.05.021.
[91] J. Sarkar, P. Ghosh, and A. Adil. (2015). A review on hybrid nanofluids: Recent research, development and applications. Elsevier Ltd, doi: 10.1016/j.rser.2014.11.023.
[92] M. S. Tahat and A. C. Benim. (2017). Experimental analysis on thermophysical properties of Al2O3/CuO hybrid nano fluid with its effects on flat plate solar collector. Defect and Diffusion Forum, vol. 374, pp. 148–156, 2017, doi: 10.4028/www.scientific.net/DDF.374.148.
[93] S. K. Verma, A. K. Tiwari, S. Tiwari, and D. S. Chauhan. (2018). Performance analysis of hybrid nanofluids in flat plate solar collector as an advanced working fluid. Solar Energy, vol. 167, pp. 231–241, Jun. 2018, doi: 10.1016/j.solener.2018.04.017.
[94] F. Vahidinia, H. Khorasanizadeh, and A. Aghaei. (2021). Comparative energy, exergy and CO2 emission evaluations of a LS-2 parabolic trough solar collector using Al2O3/SiO2-Syltherm 800 hybrid nanofluid. Energy Convers Manag, vol. 245, Oct. 2021, doi: 10.1016/j.enconman.2021.114596.
[95] F. Zarda, A. M. Hussein, S. H. Danook, and B. Mohamad. (2022). Enhancement of thermal efficiency of nanofluid flows in a flat solar collector using cfd,” Diagnostyka, vol. 23, no. 4, 2022, doi: 10.29354/diag/156384.
[96] Barhm Mohamad (2024). Improving heat transfer performance of flat plate water solar collectors using nanofluids. Journal of Harbin Institute of Technology (New Series), doi: 10.11916/j.issn.1005-9113.2024001.
[97] K. Azeez, K. M. Their, and Z. A. Ibrahim. (2022). Evaluation of flat plate solar heater filling in nanofluid under climatic of Iraq conditions. Case Studies in Thermal Engineering, vol. 39, Nov. 2022, doi: 10.1016/j.csite.2022.102447.
[98] S. K. Verma, A. K. Tiwari, S. Tiwari, and D. S. Chauhan. (2018). Performance analysis of hybrid nanofluids in flat plate solar collector as an advanced working fluid. Solar Energy, vol. 167, pp. 231–241, Jun. 2018, doi: 10.1016/j.solener.2018.04.017.
[99] M. Bezaatpour and H. Rostamzadeh. (2021). Simultaneous energy storage enhancement and pressure drop reduction in flat plate solar collectors using rotary pipes with nanofluid,” Energy Build, vol. 239, May 2021, doi: 10.1016/j.enbuild.2021.110855.
[100] M. J. A. Al Haeri, M. W. Aljibory, and F. L. Rashid. (2025). Experimental Study to Investigate the Effect of Metallic Wire Mesh on the Performance of Flat Plate Solar Water Heater Collector. IOP Conf Ser Earth Environ Sci, vol. 1507, no. 1, p. 012008, Jun. 2025, doi: 10.1088/1755-1315/1507/1/012008.
[101] X. Li, G. Zeng, and X. Lei. (2020). The stability, optical properties and solar-thermal conversion performance of SiC-MWCNTs hybrid nanofluids for the direct absorption solar collector (DASC) application. Solar Energy Materials and Solar Cells, vol. 206, Mar. 2020, doi: 10.1016/j.solmat.2019.110323.
[102] R. Singh, N. K. Sah, and V. Sharma. (2021). Development and characterization of unitary and hybrid Al2O3 and ZnO dispersed Jatropha oil-based nanofluid for cleaner production. J Clean Prod, vol. 317, Oct. 2021, doi: 10.1016/j.jclepro.2021.128365.
[103] S. M. Henein and A. A. Abdel-Rehim. (2022). The performance response of a heat pipe evacuated tube solar collector using MgO/MWCNT hybrid nanofluid as a working fluid. Case Studies in Thermal Engineering, vol. 33, May 2022, doi: 10.1016/j.csite.2022.101957.
[104] E. Elshazly, A. A. Abdel-Rehim, and I. El-Mahallawi. (2022). 4E study of experimental thermal performance enhancement of flat plate solar collectors using MWCNT, Al2O3, and hybrid MWCNT/Al2O3 nanofluids. Results in Engineering, vol. 16, Dec. 2022, doi: 10.1016/j.rineng.2022.100723.
[105] X. Li, C. Zou, X. Lei, and W. Li. (2015). Stability and enhanced thermal conductivity of ethylene glycol-based SiC nanofluids. Int J Heat Mass Transf, vol. 89, pp. 613–619, Jun. 2015, doi: 10.1016/j.ijheatmasstransfer.2015.05.096.
[106] H. Nabi, M. Pourfallah, M. Gholinia, and O. Jahanian,. (2022). Increasing heat transfer in flat plate solar collectors using various forms of turbulence-inducing elements and CNTs-CuO hybrid nanofluids. Case Studies in Thermal Engineering, vol. 33, May 2022, doi: 10.1016/j.csite.2022.101909.
[107] M. L. R. Chaitanya Lahari, P. H. V. Sesha Talpa Sai, K. V. Sharma, and K. S. Narayanaswamy. (2022). Thermal conductivity and viscosity of glycerine-water based Cu-SiO2 hybrid nanofluids. Mater Today Proc, vol. 66, pp. 1823–1829, Jan. 2022, doi: 10.1016/j.matpr.2022.05.284.
[108] W. Daungthongsuk and S. Wongwises. (2007). A critical review of convective heat transfer of nanofluids. doi: 10.1016/j.rser.2005.06.005.
[109] E. Farajzadeh, S. Movahed, and R. Hosseini. (2018). Experimental and numerical investigations on the effect of Al2O3-TiO2/H2O nanofluids on thermal efficiency of the flat plate solar collector. Renew Energy, vol. 118, pp. 122–130, Apr. 2018, doi: 10.1016/j.renene.2017.10.102.
[110] H. J. Jouybari, M. E. Nimvari, and S. Saedodin. (2019). Thermal performance evaluation of a nanofluid‐based flat‐plate solar collector: An experimental study and analytical modelling. J Therm Anal Calorim, vol. 137, no. 5, pp. 1757–1774, Sep. 2019, doi: 10.1007/s10973-019-08077-z.
[111] S. Chakraborty and P. K. Panigrahi. (2020). Stability of nanofluid: A review. Elsevier Ltd, doi: 10.1016/j.applthermaleng.2020.115259.
[112] W. Chamsa-ard, S. Brundavanam, C. C. Fung, D. Fawcett, and G. Poinern, (2017). Nanofluid types, their synthesis, properties and incorporation in direct solar thermal collectors: A review. MDPI AG, doi: 10.3390/nano7060131.
[113] Babita, S. K. Sharma, and S. M. Gupta. (2016). Preparation and evaluation of stable nanofluids for heat transfer application: A review. Elsevier Inc., doi: 10.1016/j.expthermflusci.2016.06.029.
[114] M. Shahul Hameed, S. Suresh, and R. K. Singh. (2019). Comparative study of heat transfer and friction characteristics of water-based Alumina–copper and Alumina–CNT hybrid nanofluids in laminar flow through pipes. J Therm Anal Calorim, vol. 136, no. 1, pp. 243–253, Apr. 2019, doi: 10.1007/s10973-018-7898-z.
[115] A. Moradi, M. Zareh, M. Afrand, and M. Khayat. (2020). Effects of temperature and volume concentration on thermal conductivity of TiO2-MWCNTs (70-30)/EG-water hybrid nano-fluid. Powder Technol, vol. 362, pp. 578–585, Feb. 2020, doi: 10.1016/j.powtec.2019.10.008.
[116] F. Abbas, H. M. Ali and M. Shaban. (2021). Towards convective heat transfer optimization in aluminium tube automotive radiators: Potential assessment of novel Fe2O3-TiO2/water hybrid nanofluid. J Taiwan Inst Chem Eng, vol. 124, pp. 424–436, Jul. 2021, doi: 10.1016/j.jtice.2021.02.002.
[117] S. Zhang, L. Lu, T. Wen, and C. Dong. (2021). Turbulent heat transfer and flow analysis of hybrid Al2O3-CuO/water nanofluid: An experiment and CFD simulation study. Appl Therm Eng, vol. 188, Apr. 2021, doi: 10.1016/j.applthermaleng.2021.116589.
[118] M. Ma, Y. Zhai, P. Yao, Y. Li, and H. Wang. (2020). Effect of surfactant on the rheological behavior and thermophysical properties of hybrid nanofluids. Powder Technol, vol. 379, pp. 373–383, Feb. 2021, doi: 10.1016/j.powtec.2020.10.089.
[119] H. W. Xian, N. A. C. Sidik, and R. Saidur. (2020). Impact of different surfactants and ultrasonication time on the stability and thermophysical properties of hybrid nanofluids. International Communications in Heat and Mass Transfer, vol. 110, Jan. 2020, doi: 10.1016/j.icheatmasstransfer.2019.104389.
[120] R. Singh, N. K. Sah, and V. Sharma. (2021). Development and characterization of unitary and hybrid Al2O3 and ZnO dispersed Jatropha oil-based nanofluid for cleaner production. J Clean Prod, vol. 317, Oct. 2021, doi: 10.1016/j.jclepro.2021.128365.
[121] C. Jin, Q. Wu, G. Yang, H. Zhang, and Y. Zhong. (2021). Investigation on hybrid nanofluids based on carbon nanotubes filled with metal nanoparticles: Stability, thermal conductivity, and viscosity. Powder Technol, vol. 389, pp. 1–10, Sep. 2021, doi: 10.1016/j.powtec.2021.05.007.
[122] G. A. Mohammed, A. A. M. Saleh, and A. H. N. Khalifa. (2025). Reduction of electric power consumption by solar assisted space heating system in Mosul City- Iraq. International Journal of Thermofluids, vol. 26, Mar. 2025, doi: 10.1016/j.ijft.2025.101071.
[123] A. Dezfulizadeh, A. Aghaei, A. H. Joshaghani, and M. M. Najafizadeh. (2021). An experimental study on dynamic viscosity and thermal conductivity of water-Cu-SiO2-MWCNT ternary hybrid nanofluid and the development of practical correlations. Powder Technol, vol. 389, pp. 215–234, Sep. 2021, doi: 10.1016/j.powtec.2021.05.029.
[124] S. Askari, R. Lotfi, A. M. Rashidi, H. Koolivand, and M. Koolivand-Salooki. (2016). Rheological and thermophysical properties of ultra-stable kerosene-based Fe3O4/Graphene nanofluids for energy conservation. Energy Convers Manag, vol. 128, pp. 134–144, Nov. 2016, doi: 10.1016/j.enconman.2016.09.037.
[125] A. K. Tiwari, N. S. Pandya, Z. Said, H. F. Öztop, and N. Abu-Hamdeh. (2021). 4S consideration (synthesis, sonication, surfactant, stability) for the thermal conductivity of CeO2 with MWCNT and water-based hybrid nanofluid: An experimental assessment. Colloids Surf A Physicochem Eng Asp, vol. 610, Feb. 2021, doi: 10.1016/j.colsurfa.2020.125918.
[126] A. M. Alklaibi, L. S. Sundar, and K. V. V. Chandra Mouli. (2022). Experimental investigation on the performance of hybrid Fe3O4 coated MWCNT/Water nanofluids a coolant of a Plate heat exchanger. International Journal of Thermal Sciences, vol. 171, Jan. 2022, doi: 10.1016/j.ijthermalsci.2021.107249.
[127] L. Syam Sundar, S. Mesfin, E. Venkata Ramana, Z. Said, and A. C. M. Sousa. (2020). Experimental investigation of thermo-physical properties, heat transfer, pumping power, entropy generation, and exergy efficiency of nanodiamond + Fe3O4/60:40% water-ethylene glycol hybrid nanofluid flow in a tube. Thermal Science and Engineering Progress, vol. 21, Mar. 2021, doi: 10.1016/j.tsep.2020.100799.
[128] B. Saleh and L. S. Sundar. (2021). Entropy generation and exergy efficiency analysis of ethylene glycol-water based nanodiamond + Fe3O4 hybrid nanofluids in a circular tube. Powder Technol, vol. 380, pp. 430–442, Mar. 2021, doi: 10.1016/j.powtec.2020.12.006.
[129] M. yan Ma, Y. ling Zhai, Z. hang Li, P. tao Yao, and H. Wang. (2021). Particle size-dependent rheological behavior and mechanism of Al2O3-Cu/W hybrid nanofluids. J Mol Liq, vol. 335, Aug. 2021, doi: 10.1016/j.molliq.2021.116297.
[130] V. P. Kalbande, P. V. Walke, K. Rambhad, Y. Nandanwar, and M. Mohan. (2021). Performance evaluation of energy storage system coupled with flat plate solar collector using hybrid nanofluid of CuO+ Al2O3/water,” in Journal of Physics: Conference Series, doi: 10.1088/1742-6596/1913/1/012067.