Design and Analysis of Grid-Connected Photovoltaic-Battery Hybrid Energy System for Remote Area Electrification: A Case Study of Kakuma, Kenya

Document Type : Research Article

Authors

1 Department of Mechanical and Power Engineering, Wroclaw University of Science and Technology, Poland & Department of Electrical Engineering, University of Vermont, USA

2 Department of Mechanical and Power Engineering, Wroclaw University of Science and Technology, Poland

3 Department of Electrical and Electronics Engineering, Federal University Oye Ekiti, Nigeria

4 Department of Electrical Engineering Technology, University of Johannesburg, Johannesburg 2006, South Africa

5 Department of Mechatronics Engineering, Ashesi University, Ghana

6 Department of Electrical Power Engineering, Durban University of Technology, Durban, South Africa

7 Department of Finance, Federal University Oye Ekiti, Nigeria

8 Department of Material and Metallurgical Engineering, Federal University Oye Ekiti, Nigeria

9 Department of Bio-Resources Engineering, Federal University Oye Ekiti, Nigeria

10 Department of Electrical and Electronics Engineering, Faculty of Engineering, Federal University, Oye-Ekiti, Nigeria

10.22059/jser.2025.379520.1439

Abstract

This study presents comprehensive research on the potential of photovoltaic systems to improve electricity access in Kakuma, Kenya that houses a United Nations High Commissioner for Refugees camp. The study uses Hybrid Optimization of Multiple Energy Resources (HOMER) to assess viability from economic, environmental and technical standpoints for proposed hybrid resource energy system (HRES). Among the five configurations, configuration 2 that consists of utility grid, photovoltaic system, battery and converter is the most suitable solution due to the limited grid infrastructure with levelized cost of energy (LCOE) of $0.119/kWh, net present cost (NPC) of $8.38 million and annualized savings of $203,027. It can be established from the outcomes of the study that the values of LCEO, NPC, energy purchased from the grid, CO2 emission and operating cost have reduced by 30.59%, 24.50%, 42.48%, 42.48% and 38.49% when compared to the base system (grid only). The sensitivity analysis revealed that the availability of solar resources is the most significant factor that influences the economic feasibility of the power system. The study provides valuable insights into the potential of solar resources to expand energy access in remote regions while demonstrating that HRES is a feasible solution for the electrification of rural communities.

Keywords

  1. Adefarati , T., & Obikoya, G. D. (2020). Assessment of renewable energy technologies in a standalone microgrid system.International Journal of Engineering Research in Africa, 46, 146–167. DOI: 10.4028/www.scientific.net/JERA.46.146.
  2. Korjani, S., Casu, F., Damiano, A., Pilloni, V., & Serpi, A. (2022). An online energy management tool for sizing integrated PV-BESS systems for residential prosumers. . Applied Energy, 313, 118765. DOI: 10.1016/j.apenergy.2022.118765.
  3. Fayek, H. H., & Rusu, E. (2022). Novel combined load frequency control and automatic voltage regulation of a 100% sustainable energy interconnected microgrids. Sustainability, 14 (942). DOI: 10.3390/su14159428.
  4. Fayek, H. H., & Abdalla, O. H. (2022). Operation of the Egyptian power grid with maximum penetration level of renewable energies using corona virus optimization algorithm. Smart Cities, 5 (1), 34–53. DOI: 10.3390/smartcities5010003.
  5. Wamalwa, J.K., (2011). The consequences of emerging cash crops on small-scale rural farmers' livelihoods: a case study of the energy crop, Jatropha Curcas L, in Kenya. Master Thesis, Massey University, Palmerston North, New Zealand.
  6. Samoita, D., Nzila, C., Østergaard, P. A., & Remmen, A. (2020). Barriers and solutions for increasing the integration of solar photovoltaic in kenya’s electricity mix. Energies, 13 (20), 5502. DOI: 10.3390/en13205502.
  7. Kiptoo, M.K., Lotfy, M. E., Adewuyi, O.B.,  Conteh, A., Howlader, A. M., & Senjyu, T. (2020). Integrated approach for optimal techno-economic planning for high renewable energy-based isolated microgrid considering cost of energy storage and demand response strategies. Energy Convers Manag.,  215, 112917. DOI: 10.1016/j.enconman.2020.112917.
  8. Eze, F., Ogola, J., Kivindu, R., Egbo, M., & Obi, C. (2020). Technical and economic feasibility assessment of hybrid renewable energy system at Kenyan institutional building: A case study. Sustainable Energy Technologies and Assessments, 51, 101939. DOI: 0.1016/j.seta.2021.101939.
  9. Carralero, L. L. O., Gomes, H. M. T. C. Costa, F. F. Bahia, F. A. C., Andrade, A. M. S. S., Pinheiro, J. R., & Tahim, A. P. N. (2022). An isolated standalone photovoltaic-battery system for remote areas applications. . J., Energy Storage, 55 (part B), 105568. DOI: 10.1016/j.est.2022.105568.
  10. Chang, K. C., Hagumimana, N., Zheng, J., Asemota,  G. N. O., Niyonteze,  J. D. D., Nsengiyumva, W., Nduwamungu, A., & Bimenyimana, S.  (2021). Standalone and minigrid-connected solar energy systems for rural application in Rwanda: an in situ study. . International Journal of Photoenergy, Article ID 1211953, 1-22. DOI: 10.1155/2021/1211953.
  11. Thirunavukkarasu, M., & Sawle, Y.A. (2021). comparative study of the optimal sizing and management of off-grid solar/wind/diesel and battery energy systems for remote areas. Front Energy Res. 9, 1-21. DOI: 10.3389/fenrg.2021.752043.
  12. Ge, L., Liu, J., Wang, Z., Yan, J., & Rafiq, M. U. (2022). Optimal configuration of an off-grid hybrid renewable energy system with PV/wind/hydrogen/cooling. CSEE Journal of Power and Energy Systems 2022, 1-12. DOI: 10.17775/CSEEJPES.2021.07430.
  13. Huneke, F., Henkel, J., González, J.  A. B., & Erdmann, G. (2012). Optimisation of hybrid off-grid energy systems by linear programming. Energy Sustain Soc., 2 (1), 1-19. DOI: 10.1186/2192-0567-2-7.
  14. Silinto, B.F., Yamu, C. V. L., Yamu, Zuidema, C., & Faaij, A. P.C. (2025). Hybrid renewable energy systems for rural electrification in developing countries: A review on energy system models and spatial explicit modelling tools. Renewable and Sustainable Energy Reviews, 207, 114916. DOI:10.1016/j.rser.2024.114916
  15. Silinto, B.F., Edeme, D., Corigliano, S., Dimovski, A., Merlo, M., Zuidema, C., & Faaij, A. (2025). An integrated geospatial modelling framework of hybrid microgrid sizing for rural electrification planning. MethodsX, 14, 103153. DOI: 10.1016/j.mex.2025.103153
  16. Andrade-Arias, A.S., Kabir, G., Mirmohammadsadeghi, M., Gunasekaran, A., & Elizondo-Noriega, A. (2025). Exploring public perspectives on solar energy adoption in Mexico. Renewable and Sustainable Energy Reviews, 212, 115410. DOI:10.1016/j.rser.2025.115410.
  17. Barun, S.M., Das, K., Paul, U. K., Kibria, M. G., & Hossain, M. S. (2025). Hybrid renewable multi-generation system optimization: Attaining sustainable development goals. Renewable and Sustainable Energy Reviews, 212, 115415. DOI:10.1016/j.rser.2025.115415.
  18. Assouo, T., Lontsi, F., Koholé, Y. W., Boupda, O., & Njitacke, Z. T.  (2025). Techno-economic and environmental analysis of solar, biomass and diesel hybrid systems for rural electrification in equatorial climates with different storage technologies: The case of Mayos Village, Cameroon. Journal of Energy Storage,  113, 115636. DOI: 10.1016/j.est.2025.115636.
  19. Rouzbahani, F., Rad, M. A. V., & Yousefi. H. (2025). Evaluation of hybrid renewable systems based on optimal location and bio-potential of constructed wetlands: A case study. Sustainable Energy Technologies and Assessments, 75, 104223. DOI: 10.1016/j.seta.2025.104223.
  20. Adefarati, T., Potgieter, S., Sharma, G., Bansal, R. C., Onaolapo, A. K., Borisade, S. G., & Oloye, A. O. (2025). Optimization of renewable energy based hybrid energy system using evolutionary computational techniques. Smart Grids and Sustainable Energy, 10 (15), 1-18. DOI:10.1007/s40866-025-00245-5
  21. Baldi, D., Moner-Girona, M., Fumagalli, E,. & Fahl, F. (2022). Planning sustainable electricity solutions for refugee settlements in sub-Saharan Africa Nature Energy, 7 (4), 369–379. DOI: 10.1038/s41560-022-01006-9.
  22. Nyakerario, R., & Mirumachi, N. . Conflict sensitivity and renewable energy: a case study from Kenya’s Kakuma refugee camp. Retrieved June 22, 2024, from chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.sei.org/wp-content/uploads/2022/12/conflict-sensitivity-and-renewable-energy.pdf. 
  23. Bank, U. a. W. Kenya - Socioeconomic Survey of Refugees in Kakuma 2019. Retrieved July 1, 2024, from https://microdata.unhcr.org/index.php/catalog/302/pdf-documentation.
  24. Guo, Z., Zhou, K., Zhang, C., Lu, X.., Chen, W. & Yang, S. (2018). Residential electricity consumption behavior: influencing factors, related theories and intervention strategies. Renewable and Sustainable Energy Reviews, 81, 399–412. DOI: 10.1016/j.rser.2017.07.046.
  25. Krstić, J., Reljić, M., & Filipović, S. (2018). Factors influencing electricity consumption: a review of research methods. Management: Journal of Sustainable Business and Management Solutions in Emerging Economies, 28 (2), 13-21. DOI: 10.7595/management.fon.2018.0021.
  26. John, A. D., & W. A. Beckman. (2013). Solar engineering of thermal processes, John Wiley & Sons, Inc., Hoboken, New Jersey, U.S. DOI: 10.1002/9781118671603.
  27. Zarezadeha, M. (2023). Feasibility construction of a 4 MW PV power plant to provide sustainable electricity to bandar abbas industrial estate. Journal of Solar Energy Research. Journal of Solar Energy Research, 8 (1), 1250-1263. DOI: 10.22059/jser.2022.349199.1256.
  28. Homer manual Pro version 3.17. Retrieved June 5, 2024, from chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://homerenergy.com/pdf/HOMERHelpManual.pdf
  29. Ikwuagwu, C. V., Nwosub, C. M., Anyaka, B. O., & Unachukwu, G. O. (2024). Optimizing solar drying systems: a comprehensive study on an innovative design, simulation, and performance assessment. . Journal of Solar Energy Research, 9 (2), 1902-1913. DOI: 10.22059/JSER.2024.374033.1389.
  30. Das, S. (2024). Studying the factors affecting performance of an agri-voltaic plant under 185kWp conventional ground mounted solar photovoltaic power plant in Gurugram, Haryana. Journal of Solar Energy Research, 9 (3), 1981-1993. DOI: 10.22059/jser.2024.374319.1395.
  31. Reddy, D. S., & Janamala, V. (2023). Optimal allocation of renewable sources with battery and capacitors in radial feeders for reliable power supply using pathfinder algorithm. . Journal of Solar Energy Research, 8 ( 4), 1651-1662. DOI: 20.1001.1.25883097.2023.8.4.1.3.
  32. Madon, T., Gadgil, A. J., Anderson, E. R., Lee, L. C. K., & Rezaee, A. (2023). Introduction to development engineering: a framework with applications from the field; Springer Nature. DOI: 10.1007/978-3-030-86065-3.
  33. Patanik, S., Guru, N., Kasturi, K., & Nayak, M. R. (2023). solar photovoltaic and wind turbine generation based microgrid management architecture considering battery energy storage degradation and time of use tariff. Journal of Solar Energy Research, 8 (2), 1459-1470. DOI: 10.22059/jser.2023.356135.1276.
  34. Bui, W., Ding, Z., Cai, X., Xu, R., Li, S., & Feng, S. (2019). Application of energy storage technology used in photovoltaic power generation system. In IOP Conference Series: Materials Science and Engineering, Hubei, China, 677, 032053. DOI: 10.1088/1757-899X/677/3/032053.
  35. Adefarati, T., Obikoya, G.D., Sharma, G.,  Onaolapo, A. K., &  Akindeji, K. T.(2024). Design and feasibility analysis of grid-connected hybrid renewable energy system: perspective of commercial buildings. . Energy Systems, 15 (1), 403-462. DOI: 10.1007/s12667-023-00578-z.
  36. Kroics, K., Husev, O., Tytelmaier, K., Zakis, J., & Veligorskyi, O. (2018). An overview of bidirectional AC-DC grid connected converter topologies for low voltage battery integration. International Journal of Power Electronics and Drive Systems, 9 (3), 1223–1239. DOI: 10.11591/ijpeds.v9.i3.pp1223-1239.
  37. Teymoriyan, M., Naderi, A., & Salimi, M.(2024) . Environmental aspect of using a high step-up no isolated DC-DC converter for solar photovoltaic applications: life cycle assessment point of view. Journal of Solar Energy Research, 9 (3), 1942-1953. DOI: 10.22059/jser.2024.375177.1405.
  38. Souissi, A. (2021). Optimum utilization of grid-connected renewable energy sources using multi-year module in Tunisia. Alexandria Engineering Journal, 60 (2), 2381-2393.DOI: 10.1016/j.aej.2020.12.029.
  39. Akbari, H., Browne, M. C., Ortega, A., Huang, M. J., Hewitt, N. J., Norton, B., &  McCormack, S. J. (2019). Efficient energy storage technologies for photovoltaic systems. Solar Energy, 192, 144–168. DOI: 10.1016/j.solener.2018.03.052.
  40. Bullich-Massagué, E., Cifuentes-García, F., Glenny-Crende, I., Cheah-Mañé, M., Aragüés-Peñalba, M., Díaz-González, F., & Gomis-Bellmunt, O. (2020). A review of energy storage technologies for large scale photovoltaic power plants. Applied Energy, 274, 115213. DOI: 10.1016/j.apenergy.2020.115213.
  41. Josiaa, H. R. (2023). Off-grid solar pv system design in isolated island for sustainable energy access: a case study in Sukun Island, Indonesia. Journal of Solar Energy Research, 8 (3), 1609-1621. DOI: 20.1001.1.25883097.2023.8.3.4.4.
  42. Bukar, A. L., Tan, C.W., Yiew, L.K., Ayop, R., Tan, W.S. (2020). A rule-based energy management scheme for long-term optimal capacity planning of grid-independent microgrid optimized by multi-objective grasshopper optimization algorithm. Energy Convers. Manag., 221, 113161. DOI: 10.1016/j.enconman.2020.113161.
  43. Okere, A., & Iqbal, M. T. (2021). Techno-economic Comparison of Emerging Solar PV modules for Utility Scale PV installation, in IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference, IEMCON 2021. 2021, October: Vancouver, BC, Canada.
  44. Dellosa, J.T., Panes, M. J. C., & Espina, R. U. (2021). Techno-economic analysis of a 5 MWp solar photovoltaic system in the Philippines, in 21st IEEE International Conference on Environment and Electrical Engineering and 2021 5th IEEE Industrial and Commercial Power System Europe, EEEIC / I and CPS Europe 2021 - Proceedings. 2021, September: Bari, Italy.
  45. Mbachu, V. M., Muogboa, G.A., Ezeanakaa, S. O., Ejimchukwua, E. O., & Ekwunife, T. D. (2022). An economic based analysis of fossil fuel powered generator and solar photovoltaic system as complementary electricity source for a university student’s room. Journal of Solar Energy Research, 7 (4), 1159-1173. DOI: 10.22059/JSER.2021.332724.1225.
  46. Tran, V., & Nguyen, T. (2022). Determining the rooftop solar potential of tra vinh university. Journal of Solar Energy Research, 7 (2), 1067-1072. DOI: 10.22059/JSER.2022.345516.1247.
  47. Branker, K. P., M. J. M., & Pearce, J. M. (2011). A review of solar photovoltaic levelized cost of electricity. Journal Ambient Intelligence Humanized Computing, 11, 5785–5805. DOI: 10.1016/j.rser.2011.07.104.
  48. Adefarati, T., Bansal, R.C., & Bettayeb, M. (2021). Technical, economic and environmental assessment of the distribution power system with the application of renewable energy technologies. Renewable Energy, 199, 278-297. DOI: 10.1016/j.renene.2024.120556.
  49. Dincer, I., & Bicer, Y. (2020). Enhanced dimensions of integrated energy systems for environment and sustainability. In Integrated energy systems for multigenerational, Dincer, I. a. B., Y. Ed.; Amsterdam, Netherlands, 403-440.
  50. Mirzakhani, A., & Pishkar, I. (2023) . Finding the best configuration of an off-grid pv-wind-fuel cell system with battery and generator backup: a remote house in Iran. Journal of Solar Energy Research , 8 (2), 1380-1392. DOI: 10.22059/jser.2023.349781.1259.
  51. Parida, B., Iniyan, S., & Goic, R. (2011). A review of solar photovoltaic technologies. Renewable and Sustainable Energy Reviews, 15 (3), 1625–1636. DOI: 10.1016/j.rser.2010.11.032.
  52. Banoni, V. A., Arnone, A., Fondeur, M., Hodge, A., Offner, J. P., & Phillips, J. K.(2012). The place of solar power: an economic analysis of concentrated and distributed solar power. Chemistry Central Journal, 6, 1-11. DOI: 10.1186/1752-153X-6-S1-S6.
  53. Kaur, H. K., I. . Energy return on investment analysis of a solar photovoltaic system. Retrieved June 5, 2024, from https://www.intechopen.com/chapters/67364.
  54. Adefarati, T., & Bansal, R. C. (2017). Reliability and economic assessment of a microgrid power system with the integration of renewable energy resources. Applied Energy, 206, 911-933 DOI: 10.1016/j.apenergy.2017.08.228.
  55. Knapp, K., & Jester, T. (2011). Empirical investigation of the energy payback time for photovoltaic modules. Solar Energy, 71 (3), 165-172. DOI: 10.1016/S0038-092X(01)00033-0.
  56. Emami Razavi, S. M., Jahangir, M. H., & Mousavi, S. (2019). A review study about photovoltaic systems and the energy payback time calculation for selected modules. Journal of Renewable Energy and Environment, 6 (3), 38–49. DOI: 10.30501/jree.2019.100263.
  57. Zohdia, H. Z., & Sarvia, M. (2023). Optimal and economic evaluation of using a two-axis solar tracking system in photovoltaic power plants, a case study of Tehran. Iran. Journal of Solar Energy Research, 8 (1), 1211-1221. DOI: 10.22059/jser.2022.337394.1237.
  58. Niekurzak , M. a. K.-J., E. (2021). Analysis of the return on investment in solar collectors on the example of a household: the case of Poland. Frontiers in Energy Research, 9, 1-12. DOI: 10.3389/fenrg.2021.660140.
  59. Agdas, D., & Barooah, P. (2023) . On the economics of rooftop solar PV adoption. Energy Policy, 178, 113611. DOI: 10.1016/j.enpol.2023.113611.
  60. Fregonara, E., & Ferrando, D. G. (2023). The discount rate in the evaluation of project economic-environmental sustainability. Sustainability, 15 (3), 2467. DOI: 10.3390/su15032467.
  61. Adefarati, T., Bansal, R. C., Naidoo, R., Onaolapo, K. A., Bettayeb, M., &bOlulope, P. K. (2024). Design and techno-economic assessment of a standalone photovoltaic-diesel-battery hybrid energy system for electrification of rural areas: A step towards sustainable development. Renewable Energy, 227, 120556. DOI: 10.1016/j.renene.2024.120556.
  62. Garip, M., Egemen Sulukan, E., & Celiktas, M. S. (2022). Optimization of a grid-connected hybrid energy system: Techno-economic and environmental assessment. Cleaner Energy Systems, 3, 100042. DOI: 10.1016/j.cles.2022.100042.
  63. Aziz, A. S., Tajuddin, M. F. N., Adzman, M. R., Ramli, M. A. M & Mekhilef, S. (2019) . Energy management and optimization of a PV/diesel/battery hybrid energy system using a combined dispatch strategy. Sustainability, 11 (3), 683. DOI: 10.3390/su11030683.
  64. Saha, S., Saini, G., Chauhan, A., Upadhyay, S., Elavarasan, R. M., Lipu, M. S. H. (2023). Optimum design and techno-socio-economic analysis of a PV/biomass based hybrid energy system for a remote hilly area using discrete grey wolf optimization algorithm. Sustain. Energy Technol. Assessments, 57, 103213. DOI: 10.1016/j.seta.2023.103213.
  65. Mahmoud, F. S., ZakiDiab, A. A., Ali Z.M., El-Sayed, A. M, Alquthami, T., & Ahmed, M. (2022). Optimal sizing of smart hybrid renewable energy system using different optimization algorithms. Energy Rep., 8, 4935–4956. DOI: 10.1016/j.egyr.2022.03.197.
  66. Yahya , W., Saied, K. M., Nassar, A.,  Qader, M.R., Al-Nehari, M., Jemuel Zarabia, J., &  Jian, Z. (2024) . Optimization of a hybrid renewable energy system consisting of a of PV/wind turbine/battery/fuel cell integration and component design. International Journal of Hydrogen Energy, 94, 1406-1418. DOI: 10.1016/j.ijhydene.2024.11.187.
  67. Saiprasad, N. K., A. Zayegh, A. (2019). Triple bottom line analysis and optimum sizing of renewable energy using improved hybrid optimization employing the genetic algorithm: a case study from India. Energies, 12, 349 DOI: 10.3390/en12030349.
  68. Elbaz, A. (2022). Techno-economic analysis of grid-connected pv systems using BAT algorithms and comparison with other algorithms. Journal of Millimeter wave Communication, Optimization and Modelling, 2, 82–88.
  69. Wu, K., Zhou, H., & Liu, J. (2104). Optimal Capacity Allocation of Large-Scale Wind-PV-Battery Units. International Journal of Photoenergy, Article ID 539414, 1–13 DOI: 10.1155/2014/539414.
  70. El-Sattar, H. A., Kamel S, Sultan, H., Tostado-V´ M., Eltamaly, A. M., & Jurado, F. (2022). Performance analysis of a standalone PV/WT/Biomass/Bat System in Alrashda Village in Egypt. Appl. Sci., 11, 10191. DOI: 10.3390/app112110191.
  71. Yimen, N., Tchotang, T., Kanmogne, A., Idriss, I. A., Musa, B., & Aliyu, A. (2020). Optimal sizing and techno-economic analysis of hybrid renewable energy systems—a case study of a photovoltaic/wind/battery/diesel system in Fanisau, Northern Nigeria. Processes, 8, 1381. DOI: 10.3390/pr8111381.
  72. Saraswat, R., & Suhag, S. (2022). Optimal economic sizing of standalone hybrid renewable energy system (HRES) suiting to the community in Kurukshetra, India. Int. J. Comput. Digital Syst., 12, 801–812. DOI: 10.12785/ijcds/120166.
  73. Mohammed, Y. S. A., B. B., Oghenewvogaga, O., & Oshiga, O. (2023). Sustainable assessment of hybrid renewable energy systems using modern optimization algorithms for off-grid rural electrification. Social Science Research Network, 1-35. DOI: 10.2139/ssrn.4112952.
  74. Shamim, M. M. H., Silmee, S. M., & Sikder, M. M. (2022). Optimization and cost-benefit analysis of a grid-connected solar photovoltaic system. AIMS Energy, 10, 434–457. DOI: 10.3934/energy.2022022.
  75. Msh L., M. U., & Mar, M. (2013). A feasibility study of solar-wind-diesel hybrid system in rural and remote areas of Bangladesh. Int. J. Renew. Energy Res., 3, 1–9. DOI: 10.20508/ijrer.v3i4.898.g6220.
  76. Adefarati, T., Bansal, R. C., Shongwe, T., Naidoo R., Bettaye, M., Onaolapo, A. K. (2023). Optimal energy management, technical, economic, social, political and environmental benefit analysis of a grid-connected PV/WT/FC hybrid energy system. Energy Conversion and Management, 292, 117390. DOI: 10.1016/j.enconman.2023.117390.
  77. Rehan, A. (2024). Optimization of grid-connected hybrid renewable energy system for the educational institutes in Pakistan e-Prime - Advances in Electrical Engineering, Electronics and Energy, 10, 100781. DOI: 10.1016/j.cles.2022.100042.
  78. Al-Sahlawi, A. A. K., Ayob 1, S. M., Tan, C. W., Ridha, H. M., & Hachim, D. M. (2024). Optimal design of grid-connected hybrid renewable energy system considering electric vehicle station using improved multi-objective optimization: techno-economic perspectives. Sustainability, 16, 2491. DOI: 10.3390/su16062491.
  79. Sultan, H. M., Menesy, A.S., Kamel, S., Korashy, A., Almohaimeed, S. A., & Abdel-Akher, M. (2021). An improved artificial ecosystem optimization algorithm for optimal configuration of a hybrid PV/WT/FC energy system. Alex. Eng. J., 60 (1), 1001-1025. DOI: 10.1016/j.aej.2020.10.027.
  80. V. Suresh, V. K., M. M. R. (2020). Modelling and optimization of an off-grid hybrid renewable energy system for electrification in a rural areas. Energy Rep., 6, 594-604. DOI: 10.1016/j.egyr.2020.01.013.
  81. Rezk, H., Alghassab, M., & Ziedan, H. (2020). An optimal sizing of standalone hybrid PV-fuel cell-battery to desalinate seawater at Saudi NEOM city. Processes, 8, 382. DOI: 10.3390/pr8040382.
  82. Charabi, Y., & Abdul-wahab, S. (2020). The optimal sizing and performance assessment of a hybrid renewable energy system for a mini-gird in an exclave territory. AIMS Energy, 8, 669-685. DOI: 10.3934/energy.2020.4.669.
  83. Li, J., Liu, P., & Li, Z. (2020). Optimal design and techno-economic analysis of a solar-wind-biomass off-grid hybrid power system for remote rural electrification: a case study of west China. Energy, 208, 118387. DOI: 10.1016/j.energy.2020.118387.
  84. Ali, F., Ahmar, M., Jiang, Y., & AlAhmad, M. (2021). A techno-economic assessment of hybrid energy systems in rural Pakistan. Energy, 215, 119103. DOI: 10.1016/j.energy.2020.119103.
  85. Odou, O.D.T., Bhandari, & R., Adamou, R. (2020). Hybrid off-grid renewable power system for sustainable rural electrification in Benin. Renew. Energy, 145, 1266-1279. DOI: 10.1016/j.renene.2019.06.032