Linear Fresnel Solar Collectors for Heat Generation: An Overview of Existing Prototypes

Document Type : Review Article

Authors

1 Department of Mechanical Engineering, UPL University of Sustainable Technology, Ankleshwar, India – 393135

2 Silver Oak College of Engineering and Technology, Ahmedabad, India – 380054

Abstract

A linear Fresnel collector (LFC) is categorized as a line focus collector, which is geometrically simple and converts beam radiation into heat energy. In this article, the introduction of concentrating solar power technology is first explained, covering the aspects of LFC technology and its historical development. The LFC operative projects globally are presented to show that the LFC technologies are technically and commercially proven to generate heat energy. The existing LFC prototypes are then illustrated using actual images and important results. Most prototypes obtained collector efficiencies ranging from 12% to 82%, and operating temperature difference spans from 5°C to 90°C. A broad range of improvements, including mirror arrangements, design of reflectors, absorber tube designs, cavity receivers, vacuum tubes, selective coatings, and secondary concentrators is reported. Along with detailed geometrical specifications, advancements are enlightened to demonstrate the progress and present state of LFC. This study provides a complete overview of the LFC prototypes and their progress, which offers practical support to future researchers.

Keywords

  1. Kumar, G., Galphade, A., Solanki, A., BN, S., & Vasava, K. (2025). A comparative analysis of standard and flat reflector integrated parabolic trough solar collectors for hot water generation. Journal of Solar Energy Research, 10(Emerging Trends in Photothermal Conversion for Solar Energy Harvesting), 1–11. https://doi.org/10.22059/jser.2025.379565.1440
  2. Kumar, G., & Kumar, P. (2025). Linear Fresnel solar collector with point focus integration: a novel approach to enhance the performance. International Journal of Ambient Energy, 46(1). https://doi.org/10.1080/01430750.2025.2471977
  3. Kumar, G., & Kumar, P. (2025). Design and Development of Point Focus Integrated Linear Fresnel Solar Collector for 1kW Thermal Power Generation. Heat Transfer Engineering, 1–13. https://doi.org/10.1080/01457632.2025.2452743
  4. Kumar, G., & Gupta, H. (2022). Development and validation of a thermal model for line focus solar concentrators in water heating applications. International Journal of Energy Technology and Policy, 18(1), 1. https://doi.org/10.1504/ijetp.2022.10050760
  5. Chinnappan, T., Raguraman, C. M., Dhairiyasamy, R., & Rajendran, S. (2024). Comparative analysis of polycarbonate and glass cover configurations for enhanced thermal efficiency in flat plate solar collectors for water heating. Journal of Solar Energy Research, 9(1), 1794–1810. https://doi.org/10.22059/jser.2024.374268.1394
  6. Ghaedi, A., Sedaghati, R., & Mahmoudian, M. (2023). Reliability evaluation of solar power plants equipped with parabolic trough reflectors. Journal of Solar Energy Research, 8(3), 1635–1650. https://doi.org/10.22059/jser.2023.359179.1305
  7. The Colorado River Commission of Nevada. (2002). World fossil fuel reserves and projected depletion. http://crc.nv.gov/docs/world%20fossil%20reserves.pdf
  8. (n.d.). The end of fossil fuel. http://www.ecotricity.co.uk/our-green-energy/energy-independence/the-end-of-fossil-fuels (Retrieved November 10, 2023)
  9. Rajvaidya, N., & Markandey, D. K. (2008). Environmental pollution control (pp. 209–220). S.B. Nangia.
  10. Hashemian, N. and Noorpoor, A. (2023). Thermo-eco-environmental Investigation of a Newly Developed Solar/wind Powered Multi-Generation Plant with Hydrogen and Ammonia Production Options. Journal of Solar Energy Research, 8(4), 1728-1737. doi: 10.22059/jser.2024.374028.1388.
  11. Hashemian, N., & Noorpoor, A. (2019). Assessment and multi-criteria optimization of a solar and biomass-based multi-generation system: Thermodynamic, exergoeconomic and exergoenvironmental aspects. Energy Conversion and Management, 195, 788–797. https://doi.org/10.1016/j.enconman.2019.05.039.
  12. European Academies Science Advisory Council (EASAC). (2011). Concentrating solar power: Its potential contribution to a sustainable energy future. http://www.easac.eu/fileadmin/Reports/Easac_CSP_Web-Final.pdf
  13. Energy Efficiency and Renewable Energy (EERE). (2001). Concentrating solar power: Energy from mirrors. http://www.nrel.gov/docs/fy01osti/28751.pdf
  14. Gharbi, N. E., Derbal, H., Bouaichaoui, S., & Said, N. (2011). A comparative study between parabolic trough collector and linear Fresnel reflector technologies. Energy Procedia, 6, 565–572. https://doi.org/10.1016/j.egypro.2011.05.065
  15. Sonawane, P. D., & Raja, V. K. B. (2017). An overview of concentrated solar energy and its applications. International Journal of Ambient Energy, 39(8), 898–903. https://doi.org/10.1080/01430750.2017.1345009
  16. Roostaee, A., & Ameri, M. (2020). A comparative study of different optimised mirrors layouts of Linear Fresnel concentrators on annual energy and exergy efficiencies. International Journal of Ambient Energy, 43(1), 2627–2644. https://doi.org/10.1080/01430750.2020.1758780
  17. Alam, M. I., Nuhash, M. M., Zihad, A., Nakib, T. H., & Ehsan, M. M. (2023). Conventional and emerging CSP technologies and design modifications: research status and recent advancements. International Journal of Thermofluids, 20, 100406. https://doi.org/10.1016/j.ijft.2023.100406
  18. Lovegrove, K., & Stein, W. (2012). Concentrating solar power technology: Principles, developments and applications. Woodhead Publishing.
  19. Starke, N. a. R., Cardemil, N. J. M., Lemos, N. L. L., Escobar, N. R., Reinaldo, N. R. F., & Colle, N. S. (2015). A methodology for simulation and assessment of Concentrated Solar Power plants. Proceedings of the . . . International Congress of Mechanical Engineering. https://doi.org/10.20906/cps/cob-2015-1739
  20. Suman, S., Khan, M. K., & Pathak, M. (2015). Performance enhancement of solar collectors—A review. Renewable and Sustainable Energy Reviews, 49, 192–210. https://doi.org/10.1016/j.rser.2015.04.087
  21. Greenpeace International, Solar PACES and ESTELA (2009): Concentrating solar power outlook 2009 – why renewable energy is hot. Available from:⟨http://www.greenpeace.org/international/Global/international/planet-2/report/2009/5/concentrating-solar-power-2009. pdf⟩.
  22. Archimede Solar Energy (Angelantoni industries). Available from: ⟨http:// www.archimedesolarenergy.it⟩ [retrieved 05.01.13].
  23. Google Images. Use of parabolic trough collector. Available from: ⟨http://www.google.com⟩ [retrieved March/2013].
  24. Parabolic or Fresnel? (2009): Available from: ⟨http://www.soltigua.com/wp- content/uploads/2009/09/Soltigua_Energetica_india.pdf⟩.
  25. S. Department of Energy (DOE) (2010): Concentrating solar power commercial application study: reducing water consumption of concentrating solar power electricity generation: report to congress. Available from: ⟨http://www.circleofblue.org/waternews/wpcontent/uploads/2010/08/csp_water_study1.pdf⟩.
  26. ESMAP World Bank (MENA). Review of CSP technologies. Available from:⟨http://arabworld.worldbank.org/content/dam/awi/pdf/CSP_MENA_Rview_CSP_Technologies.pdf⟩.
  27. Mills, D. R., & Morrison, G. L. (2000). Compact Linear Fresnel Reflector solar thermal powerplants. Solar Energy, 68(3), 263–283. https://doi.org/10.1016/s0038-092x(99)00068-7
  28. Global Energy Network Institute (GENI). (2011). Review and comparison of different solar energy technologies. http://www.geni.org/globalenergy/research/review-and-comparison-of-solar-technologies/Review-and-Comparison-of-Different-Solar-Technologies.pdf
  29. Pitz-Paal, P. (2012). Parabolic trough, linear Fresnel, power tower: A technology comparison. http://www.iass-potsdam.de/sites/default/files/files/12.5-iass_pitz-paal.pdf
  30. International Energy Agency (IEA). (n.d.). Solar PACES, energy technology network. http://www.solarpaces.org (Retrieved March 15, 2013)
  31. Burbidge, D., Mills, D. R., & Morrison, G. L. (2006). Stanwell thermal power project. Stanwell Corporation Limited.
  32. Yuan, J., Jiao, Z., Chai, J., Kong, X., & Emura, K. (2025). Application and development of retroreflective materials: A review. Energy and Buildings, 337, Article 115707. https://doi.org/10.1016/j.enbuild.2025.115707.
  33. López Smeetz, C., Barbón, A., Bayón, L., & Bayón Cueli, C. (2024). Experimental investigation of the influence of longitudinal tilt angles on the thermal performance of a small scale linear Fresnel reflector. Applied Sciences,  14 (9),  3666. https://doi.org/10.3390/app14093666.
  34. Shojaei, A., Ameri, M., Nakhaei Zadeh, A., & Baniasad Askari, I. (2024). The experimental and numerical study on the total efficiency of a short length linear Fresnel reflector considering the effects of field slope and side mirror. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering,  49,  859–873. https://doi.org/10.1007/s40997-024-00796-5
  35. Wu, Y., Qian, L., Zhang, C., Han, S., Sun, H., & Niu, J. (2022). Comparative study on heat flux and temperature distribution performance of linear Fresnel collector based on uniformity index. Journal of Thermal Science,  31,  678–688. https://doi.org/10.1007/s11630-022-1613-x
  36. Hasan, H. A., Sherza, J. S., Abed, A. M., Togun, H., Ben Khedher, N., Sopian, K., Mahdi, J. M., & Talebizadehsardari, P. (2023). Thermal and flow performance analysis of a concentrated linear Fresnel solar collector with transverse ribs. Frontiers in Chemistry,  10, Article 1074581. https://doi.org/10.3389/fchem.2022.1074581
  37. John,  A. & Oyekale,  J. (2024). Numerical simulations of an Al₂O₃ water nanofluid based linear Fresnel solar collector. International Journal of Engineering Technologies,  9 (2),  50–62. https://doi.org/10.19072/ijet.1152535
  38. Grena, R., Lanchi, M., Frangella, M., Ferraro, V., Marinelli, V., & D’Auria, M. (2024). Thermal analysis of parabolic and Fresnel linear solar collectors using compressed gases as heat transfer fluid in CSP plants. Energies, 17(16), 3880. https://doi.org/10.3390/en17163880
  39. Famiglietti, A., & Lecuona, A. (2024). Energetic and economic analysis of a novel concentrating solar air heater using linear Fresnel collector for industrial process heat. Renewable Energy, 236, Article 121362. https://doi.org/10.1016/j.renene.2024.121362
  40. Thomas, S., Sahoo, S. S. Thomas, S., & Kumar, A. K. (2025). A review on linear Fresnel reflector (LFR) as a solar line concentrator in polygeneration for low medium temperature applications among the rural livelihoods. Energy Nexus, 17(1), 100340. https://doi.org/10.1016/j.nexus.2024.100340
  41. Kalogirou, S. A. (2009). Solar energy engineering: Processes and systems. Knovel.
  42. Feuermann, D., & Gordon, J. M. (1991). Analysis of a two-stage linear fresnel reflector solar concentrator. Journal of Solar Energy Engineering, Transactions of the ASME, 113(4), 272–279. https://doi.org/10.1115/1.2929973
  43. Fraunhofer Institute for Solar Energy Systems (ISE) (2012). Study levelized cost of electricity renewable energies.
  44. Feuermann, D., & Gordon, J. M. (1991). Analysis of a two-stage linear Fresnel reflector solar concentrator. ASME Journal of Solar Energy Engineering, 113, 272–279
  45. Baum, V. A., Aparasi, R. R., & Garf, B. A. (1957). High-power solar installations. Solar Energy, 1(1), 6–12. https://doi.org/10.1016/0038-092X(57)90049-X
  46. Francia, G. (1968). Pilot plants of solar steam generating stations. Solar Energy, 12(1). https://doi.org/10.1016/0038-092x(68)90024-8
  47. Kalogirou, S. A. (2004). Solar thermal collectors and applications. Progress in Energy and Combustion Science, 30(3), 231–295.
  48. Silvi C (2009): The pioneering work on linear Fresnel reflector concentrators in Italy, 15th Solar PACES International Symposium.
  49. Mills, D. (2004). Advances in solar thermal electricity technology. Solar Energy, 76, 19–31.
  50. Häberle, A., Zahler, C., Lerchenmüller, H., Mertins, M., Wittwer, C., Trieb, F., et al. (2002). The Solarmundo line focusing Fresnel collector: Optical and thermal performance and cost calculations. http://solarpaces-csp.org/CSP_Technology/docs/solarpaces_fresnel_9_2002.pdf
  51. Facão, J., & Oliveira, A. C. (2011). Numerical simulation of a trapezoidal cavity receiver for a linear Fresnel solar collector concentrator. Renewable Energy, 36(1), 90–96.
  52. Plataforma Solar de Almería (P.S.A.). (2007). Annual report.
  53. Bernhard, R., Laabs, H., & Lalaing, J. D. (2008). Linear Fresnel collector demonstration on the PSA, Part I–design, construction and quality control. SolarPaces …, 1–10. Retrieved from http://www.researchgate.net/publication/225000351_Linear_Fresnel_Collector_Demonstration_on_the_PSA_Part_I__Design_Construction_and_Quality_Control/file/60b7d515e950a285ce.pdf
  54. Bernhard, R., Hein, S., de LaLaing, J., Eck, M., Eickhoff, M., Pfänder, M., Häberle, A. (2008). Linear Fresnel Collector Demonstration on the Psa Part Ii – Commissioning and First Performnce Tests. 14th International Symposium on Concentrated Solar Power and Chemical Energy Technologies, 3–10. Retrieved from http://elib.dlr.de/57087/1/final_paper_FRESDEMO_Part_2_V1.pdf
  55. Ford, G. (2008). CSP: bright future for linear fresnel technology? Renewable Energy Focus, 9(5). https://doi.org/10.1016/S1755-0084(08)70029-2
  56. National Renewable Energy Laboratory (NREL). (n.d.). Puerto Errado 1 Thermosolar power plant: Linear Fresnel technology. https://solarpaces.nrel.gov/project/puerto-errado-1-thermosolar-power-plant (Retrieved on February 1, 2025)
  57. Kimberlina solar thermal plant: linear Fresnel technology. https://solarpaces.nrel.gov/project/kimberlina-solar-thermal-power-plant (Retrieved on February 1, 2025).
  58. Augustin Fresnel 1 solar thermal plant: linear Fresnel technology. Available from: https://solarpaces.nrel.gov/project/augustin-fresnel-1 (Retrieved on February 1, 2025).
  59. Liddell power station: linear Fresnel technology. Available from: https://solarpaces.nrel.gov/project/liddell-power-station (Retrieved on February 1, 2025).
  60. Puerto Errado 2 Thermosolar power plant: linear Fresnel technology. Available from: https://solarpaces.nrel.gov/project/puerto-errado-2-thermosolar-power-plant (Retrieved on February 1, 2025).
  61. Baharoon, D. A., Rahman, H. A., Omar, W. Z. W., & Fadhl, S. O. (2015). Historical development of concentrating solar power technologies to generate clean electricity efficiently – A review. Renewable and Sustainable Energy Reviews. Elsevier Ltd. https://doi.org/10.1016/j.rser.2014.09.008
  62. Italian patent no. 6788664, Nov. 23, 1962; extended to France and the United States (Francia Archive, Musil, Brescia).
  63. Negi, B. S., Mathur, S. S., & Kandpal, T. C. (1989). Optical and thermal performance evaluation of a linear fresnel reflector solar concentrator. Solar and Wind Technology, 6(5), 589–593. https://doi.org/10.1016/0741-983X(89)90095-7
  64. Mills, D. R., Morrison, G., Pye, J., & Le Lièvre, P. (2006). Multi-tower line focus fresnel array project. Journal of Solar Energy Engineering, Transactions of the ASME, 128(1), 118–120. https://doi.org/10.1115/1.2148971
  65. Morin, G., Platzer, W., Eck, M., Uhlig, R., Häberle, A., Berger, M., & Zarza, E. (2006). Road map towards the demonstration of a linear Fresnel collector using a single tube receiver. In Proc. 13th SolarPACES International Symposium.Sevilla, 20-23 June 2006. Retrieved from Morin2006.pdf TS - EndNote
  66. Sirimanna, M. P. G., & Nixon, J. D. (2024). Energy cost optimization of Linear Fresnel Reflector (LFR) systems for different regions of installation. Energy, 306, 132040. https://doi.org/10.1016/j.energy.2024.132040
  67. Barale, G., Heimsath, A., Nitz, P., & Toro, A. (2010). Optical design of a linear Fresnel collector for Sicily. SolarPaces Conference, 1–7.
  68. Spoladore, M., Camacho, E. F., & Valcher, M. E. (2011). Distributed parameters dynamic model of a solar fresnel collector field. In IFAC Proceedings Volumes (IFAC-PapersOnline) (Vol. 44, pp. 14784–14789). IFAC Secretariat. https://doi.org/10.3182/20110828-6-IT-1002.02992
  69. Pino, F. J., Caro, R., Rosa, F., & Guerra, J. (2013). Experimental validation of an optical and thermal model of a linear Fresnel collector system. In Applied Thermal Engineering (Vol. 50, pp. 1463–1471). https://doi.org/10.1016/j.applthermaleng.2011.12.020
  70. Morin, G., Karl, M., Mertins, M., & Selig, M. (2015). Molten Salt as a Heat Transfer Fluid in a Linear Fresnel Collector - Commercial Application Backed by Demonstration. In Energy Procedia (Vol. 69, pp. 689–698). Elsevier Ltd. https://doi.org/10.1016/j.egypro.2015.03.079
  71. Areva Solar (2013a). Available from: ⟨http://www.areva.com/EN/solar-220/arevasolar.html⟩.
  72. Brost, R., Zhu, G. (2009). Commercial development of an advanced, high-temperature, linear-Fresnel based concentrating solar power concept. SkyFuel, prepared under DOE FOA no. DE-FC36-08GO18034.
  73. Conlon, W. M., Johnson, P., & Hanson, R. (2011). Superheated steam from CLFR solar steam generators. In American Society of Mechanical Engineers, Power Division (Publication) POWER (Vol. 1, pp. 301–307). American Society of Mechanical Engineers (ASME). https://doi.org/10.1115/POWER2011-55174
  74. Selig, M., & Mertins, M. (2010). From saturated to superheated direct solar steam generation - technical challenges and economical benefits. SolarPaces Conference.
  75. Morin, G., Mertins, M., Kirchberger, J., & Selig, M. (2011). SUPERNOVA – Construction, control & performance of steam superheating Linear Fresnel collector. SolarPACES Conference 2011, 1–6.
  76. Sen, P. K., Ashutosh, K., Bhuwanesh, K., Engineer, Z., Hegde, S., Sen, P. V., & Davies, P. (2013). Linear Fresnel Mirror Solar Concentrator with tracking. In Procedia Engineering (Vol. 56, pp. 613–618). Elsevier Ltd. https://doi.org/10.1016/j.proeng.2013.03.167
  77. Mokhtar, G., Boussad, B., & Noureddine, S. (2016). A linear Fresnel reflector as a solar system for heating water: Theoretical and experimental study. Case Studies in Thermal Engineering, 8, 176–186. https://doi.org/10.1016/j.csite.2016.06.006
  78. Dostucok, I., Selbas, R., & Şahin, A. (2014). Experimental investigation of a linear Fresnel collector system. Journal of Thermal Science and Technology, 34, 77–83.
  79. Moaleman, A., Kasaeian, A., Aramesh, M., Mahian, O., Sahota, L., & Nath Tiwari, G. (2018). Simulation of the performance of a solar concentrating photovoltaic-thermal collector, applied in a combined cooling heating and power generation system. Energy Conversion and Management, 160, 191–208. https://doi.org/10.1016/j.enconman.2017.12.057.
  80. Kumar, G., & Gupta, H. (2021). A Study of Linear Fresnel Solar Collector Reflector Field for Performance Improvement. In Lecture Notes in Intelligent Transportation and Infrastructure (Vol. Part F1363, pp. 353–371). Springer Nature. https://doi.org/10.1007/978-981-33-4176-0_31
  81. Babu, M., Raj, S. S., & Valan Arasu, A. (2019). Experimental analysis on Linear Fresnel reflector solar concentrating hot water system with varying width reflectors. Case Studies in Thermal Engineering, 14. https://doi.org/10.1016/j.csite.2019.100444
  82. Bellos, E., Mathioulakis, E., Tzivanidis, C., Belessiotis, V., & Antonopoulos, K. A. (2016). Experimental and numerical investigation of a linear Fresnel solar collector with flat plate receiver. Energy Conversion and Management, 130, 44–59. https://doi.org/10.1016/j.enconman.2016.10.041
  83. de Sá, A. B., Pigozzo Filho, V. C., Tadrist, L., & Passos, J. C. (2021). Experimental study of a linear Fresnel concentrator: A new procedure for optical and heat losses characterization. Energy, 232. https://doi.org/10.1016/j.energy.2021.121019
  84. Lin, M., Sumathy, K., Dai, Y. J., Wang, R. Z., & Chen, Y. (2013). Experimental and theoretical analysis on a linear Fresnel reflector solar collector prototype with V-shaped cavity receiver. Applied Thermal Engineering, 51(1–2), 963–972. https://doi.org/10.1016/j.applthermaleng.2012.10.050
  85. Nixon, J. D., & Davies, P. A. (2016). Construction and Experimental Study of an Elevation Linear Fresnel Reflector. Journal of Solar Energy Engineering, Transactions of the ASME, 138(3). https://doi.org/10.1115/1.4032682
  86. Kumar, G., & Gupta, H. (2022). Experimental Investigation of a Line Focus Solar Collector Using Flat and Parabolic Reflector. In Lecture Notes in Mechanical Engineering (pp. 763–771). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-981-16-4222-7_84
  87. Kumar, G., & Gupta, H. (2022). Optical design of integrated line and point focus solar collector for process heat generation. International Journal of Environmental Technology and Management, 25(3), 218–232. https://doi.org/10.1504/IJETM.2022.122631
  88. Mokhtar, M. M. (2019). Control of solar thermal linear Fresnel collector plants in single phase and direct steam generation modes (Doctoral dissertation, Karlsruhe Institute of Technology). KITopen. https://publikationen.bibliothek.kit.edu/1000089861
  89. Desai NB, Bandyopadhyay S, Nayak JK, Banerjee R, Kedare SB (2014). Simulation of 1 MWe solar thermal power plant. Energy Procedia, 57, 507–516. DOI: 10.1016/j.egypro.2014.10.157
  90. Beltagy, H., Semmar, D., Lehaut, C., & Said, N. (2017). Theoretical and experimental performance analysis of a Fresnel type solar concentrator. Renewable Energy, 101, 782–793. https://doi.org/10.1016/j.renene.2016.09.038
  91. El Alj S., Al Mers A, Merroun O, Bouatem A, Boutammachte N, Ajdad H, Benyakhlef S, Filali Baba Y (2017). Optical modeling and analysis of the first Moroccan linear Fresnel solar collector prototype. Journal of Solar Energy Engineering, 139(4), 041009. DOI: 10.1115/1.4036726
  92. Pedraza Yepes, C. A., Higuera Cobos, O. F., Hernández Vásquez, J. D., De La Hoz Muñoz, N. J., & Julio Gonzalez, H. N. (2019). Design, construction and evaluation of a Fresnel Linear Concentrator for Oil Heating. Scientia et Technica, 24(2), 218. https://doi.org/10.22517/23447214.20671
  93. N’Tsoukpoe, K. E., Ko, G. K., Falcoz, Q., & Coulibaly, Y. (2021). Design, construction and experimental investigation of a linear Fresnel concentrator for sustainable energy services in Sub-Saharan Africa. Technische Hochschule Wildau. https://doi.org/10.15771/978-3-9819225-5-4_si-1a