Investigation an Effect of Tilt Angle and Water Cooling on Performance of a Photovoltaic Module of a Solar-Powered Vehicle Charging Station

Document Type : Research Article

Authors

1 Department of Electrical Engineering, Universitas AKPRIND Indonesia, Yogyakarta, Indonesia

2 Department of Mechanical Engineering, Universitas AKPRIND Indonesia, Yogyakarta, Indonesia

10.22059/jser.2025.396549.1578

Abstract

Recently, the use of electric vehicle increases significantly worldwide including in Indonesia. However, this trend is in contrast with availability of an electric vehicle charging station. Since Indonesia has a huge solar energy potential, it is possible to build a solar powered electric charging station. Various parameters that affect the performance of the solar panel have to be considered. The present work is performed into two parts, i.e. the first part is investigation of performance of the photovoltaic (PV) panel at tilt angle of 5, 10, 15, 20, and 25 and the second part is the investigation of performance of the PV panel without and with water cooling at optimum tilt angle obtained from the first part. Data collection is performed from 9 am to 2 pm for 5 days. The results show that the optimum tilt angle is found to be 20 with maximum conversion efficiency of 21.02%. Meanwhile, the water spray cooling of the PV module’s surface can improve output power at the rate of 9.1%. The scientific innovation of the present work is the development of electric bicycle charging station with energy source from solar energy which is renewable and clean energy.

Keywords

  1. Jahangiri M., Mostafaeipour A., Habib H.U.R., Saghaei H., Waqar A. (2021). Effect of Emission Penalty and Annual Interest Rate on Cogeneration of Electricity, Heat, and Hydrogen in Karachi: 3E Assessment and Sensitivity Analysis. Journal of Engineering, 2021, 1-16. https://doi.org/10.1155/2021/6679358 
  2. Zarouria A., Yaghoubia S., Jahangiri M. (2023). Simultaneous Production of Heat Required for Space Heating, Sanitary Water Consumption, And Swimming Pool in Different Climates of Iran. Journal of Solar Energy Research, 8(2), 1393-1409. https://10.22059/jser.2023.349797.1260  
  3. Jahangiri M., Shahmarvandi F.K., Alayi R. (2021). Renewable Energy-Based Systems on a Residential Scale in Southern Coastal Areas of Iran: Trigeneration of Heat, Power, and Hydrogen. Journal of Renewable Energy and Enviroment. 8(4), 67-76. https://doi.org/10.30501/jree.2021.261980.1170
  4. Ghaderian A., Jahangiri M., Saghaei H. (2020). Emergency Power Supply for NICU of a Hospital by Solar-Wind-Based System, a Step Towards Sustainable Development. Journal of Solar Energy Research, 5(3), 506-515. https://doi.org/10.22059/jser.2020.306423.1166
  5. Jahangiri M., Abolhasani M., Noorbakhsh S.M. (2024). The Potential of Renewable Energy Sources in Providing Sustainable Power for Natural Disaster Zones: TOPSIS Method for Gaziantep, Turkey. Journal of Solar Energy Research, 9(2), 1887-1901. https://doi.org/10.22059/jser.2024.372225.1379
  6. Hanif M. & Mi J. (2024). Harnessing AI for solar energy: Emergence of transformer models. Appl Energy, 369, 123541. https://doi.org/10.1016/j.apenergy.2024.123541 
  7. Mousavi Y., Bevan G., Kucukdemiral I.B., Fekih A. (2022). Sliding mode control of wind energy conversion systems: Trends and applications. Renew Sustain Energy Rev., 167, 112734. https://doi.org/10.1016/j.rser.2022.112734
  8. Hassan Q., Abbas M.K., Tabar V.S., Tohidi S., Al-Hitmi M., Jaszczur M., Sameen A.Z., Salman H.M. (2023). Collective self-consumption of solar photovoltaic and batteries for a micro-grid energy system. Results in Engineering, 17, 100925. https://doi.org/10.1016/j.rineng.2023.100925
  9. Khalid H.M., Rafique Z., Muyeen S.M., Raqeeb A., Said Z., Saidur R., Sopian K. (2023). Dust accumulation and aggregation on PV panels: an integrated survey on impacts, mathematical models, cleaning mechanisms, and possible sustainable solution. Sol. Energy, 251, 261–285. https://doi.org/10.1016/j.solener.2023.01.010
  10. Mousavi R., Mousavi A., Mousavi Y., Tavasoli M., Arab A., Kucukdemiral I.B., Alfi A., Fekih A. (2025). Revolutionizing solar energy resources: The central role of generative AI in elevating system sustainability and efficiency. Applied Energy, 15 (382), 125296. https://doi.org/10.1016/j.apenergy.2025.125296
  11. Lepiksaar K., Kajandi G.M., Sukumaran S., Krupenski I., Kirs T., Volkova A. (2025). Optimizing solar energy integration in Tallinn's district heating and cooling systems. Smart Energy, 1 (17), 100166. https://doi.org/10.1016/j.segy.2024.100166
  12. Liu J., Hu J., Wan Q., Ming J., Shuai C. (2024). Energy services for solar PV projects: Exploring the accessibility and affordability of clean energy for rural China. Energy, 299,131442. https://doi.org/10.1016/j.energy.2024.131442
  13. Kalbasia R., Jahangiri M., Nariman A., Yari M. (2019). Optimal Design and Parametric Assessment of Grid-Connected Solar Power Plants in Iran: a Review. Journal of Solar Energy Research, 4(2), 142-162. https://doi.org/10.22059/jser.2019.282276.1114
  14. Jahangiri M., Nematollahi O., Sooreshjani E.H., Sooreshjani A.H. (2020). Investigating the Current State of Solar Energy Use in Countries with Strong Radiation Potential in Asia Using GIS Software, A Review. Journal of Solar Energy Research, 5(3), 477-497. https://doi.org/10.22059/jser.2020.305637.1163
  15. Mostafaeipour A., Goudarzi H., Sedaghat A., Jahangiri M., Hadian H., Rezaei M., Golmohammadi A-M., Karimi P. (2019). Energy efficiency for cooling buildings in hot and dry regions using sol-air temperature and ground temperature effects. Journal of Engineering, Design and Technology, 17(3), 613–628. https://doi.org/10.1108/JEDT-12-2018-0216
  16. Bianco G., Delfino F., Ferro G., Robba M., Rossi M. (2023). A hierarchical building management system for temperature’s optimal control and electric vehicles integration. Energy Convers. Manag., X 17, 100339. https://doi.org/10.1016/j.ecmx.2022.100339
  17. Sun C., Zhao X., Qi B., Xiao W., Zhang H. (2022). Economic and environmental analysis of coupled PV-energy storage-charging station considering location and scale. Appl. Energy, 328, 119680. https://doi.org/10.1016/j.apenergy.2022.119680
  18. Akomea-Frimpong I., Amponsah-Asante L., Tettey A.S., Antwi-Afari P. (2025). A systematic review of literature on electric vehicle ready buildings. Journal of Building Engineering, 7, 111789. https://doi.org/10.1016/j.jobe.2025.111789
  19. Li X., Liu Y., Qu Y., Ding L., Yan X. (2025). Effect of electric vehicles and renewable electricity on future life cycle air emissions from China’s road transport fleet. Energy, 318, 134969. https://doi.org/10.1016/j.energy.2025.134969
  20. Perpres Nomor 22 Tahun 2017. Peraturan Presiden Republik Indonesia tentang Rencana Umum Energi Nasional. Jakarta. 2017 (President Regulation of Republik of Indonesia Number 22 Year 2017).
  21. Sameera, Tariq M., Rihan M. (2024). Analysis of the impact of irradiance, temperature and tilt angle on the performance of grid-connected solar power plant. Measurement Energy, 25:100007. https://doi.org/10.1016/j.meaene.2024.100007
  22. Kumar A., Thakur N.S., Makade R., Shivhare M.K. (2011). Optimization of tilt angle for photovoltaic array. International Journal of Engineering Science and Technology, 3(4), 3153-61.
  23. Slama R.B. (2009). Incidental solar radiation according to the solar collector slope horizontal measurements conversion on an inclined panel laws. Open Renew. Energy J., 2, 52–58. http://dx.doi.org/10.2174/1876387100902010052  
  24. Ripalda J.M., Chemisana D., Llorens J.M., García I. (2020). Location-specific spectral and thermal effects in tracking and fixed tilt photovoltaic systems. Iscience, 23(10). https://doi.org/10.1016/j.isci.2020.101634
  25. Alzahrani M., Rahman T., Rawa M., Weddell A. (2025). Impact of dust and tilt angle on the photovoltaic performance in a desert environment. Solar Energy, 288, 113239. https://doi.org/10.1016/j.solener.2025.113239
  26. Al-Sayyab A.K, Al-Tmari Z.Y., Taher M.K. (2019). Theoretical and experimental investigation of photovoltaic cell performance, with optimum tilted angle: Basra city case study. Case Studies in Thermal Engineering, 14, 100421. https://doi.org/10.1016/j.csite.2019.100421
  27. Kallioğlu M.A., Avcı A.S., Sharma A., Khargotra R., Singh T. (2024). Solar collector tilt angle optimization for agrivoltaic systems. Case Studies in Thermal Engineering, 54, 103998. https://doi.org/10.1016/j.csite.2024.103998
  28. Handoyo E.A., Ichsani D., Prabowo. (2013). The optimal tilt angle of a solar collector. Energy Procedia, 32:166-75. https://doi.org/10.1016/j.egypro.2013.05.022
  29. Aly, S. P., Ahzi, S., Barth, N. (2019). Effect of physical and environmental factors on the performance of a photovoltaic panel.Solar Energy Materials and Solar Cells, 200, 109948. https://doi.org/10.1016/j.solmat.2019.109948
  30. Edmund, J. W. T., & Go, Y. I. (2022). Enhancement and validation of building integrated PV system: 3D modelling, techno-economics and environmental assessment.Energy and Built Env., 3(4), 444-466. https://doi.org/10.1016/j.enbenv.2021.05.001
  31. Aboutalebi G.R., Geshnigani M.K., Jahangiri M. (2023). Effect of Temperature Coefficient and Efficiency of PV Technologies On 3E Performance and Hydrogen Production of On-Grid PV System in A Very Hot and Humid Climate. Journal of Solar Energy Research, 8(4), 1715-1727. https://doi.org/10.22059/JSER.2024.362287.1326
  32. Chanphavong L., Chanthaboune V., Phommachanh S., Vilaida X., Bounyanite P. (2022). Enhancement of performance and exergy analysis of a water-cooling solar photovoltaic panel. Total Environment Research Themes, 3, 100018. https://doi.org/10.1016/j.totert.2022.100018
  33. Mostakim K., Akbar M.R., Islam M.A., Islam M.K. (2024). Integrated photovoltaic-thermal system utilizing front surface water cooling technique: An experimental performance response. Heliyon, 10(3). https://doi.org/10.1016/j.heliyon.2024.e25300
  34. Chala G.T., Sulaiman S.A., Al Alshaikh S.M. (2024). Effects of cooling and interval cleaning on the performance of soiled photovoltaic panels in Muscat, Oman. Results in Engineering, 21, 101933. https://doi.org/10.1016/j.rineng.2024.101933
  35. Piotrowski L.J., Simões M.G., Farret F.A. (2020). Feasibility of water-cooled photovoltaic panels under the efficiency and durability aspects. Solar Energy, 207, 103-109. https://doi.org/10.1016/j.solener.2020.06.087
  36. Said Z. & Ahmad F.F. (2025). Maximizing solar photovoltaic efficiency with Mist Cooled sandwich bifacial panels under extreme hot climate conditions. Energy Conversion and Management 335, 119865. https://doi.org/10.1016/j.enconman.2025.119865  
  37. Shen Y., Zhang J., Guo P., Wang X. (2018). Impact of solar radiation variation on the optimal tilted angle for fixed grid-connected PV array—case study in Beijing. Global Energy Interconnection, 1(4), 460-466. https://doi.org/10.14171/j.2096-5117.gei.2018.04.006
  38. Zubeer S.A., Ali O.M. (2021). Performance analysis and electrical production of photovoltaic modules using active cooling system and reflectors. Ain shams engineering journal, 12(2) :2009-2016. https://doi.org/10.1016/j.asej.2020.09.022