Sustainable Cooling Technique for Maximizing Performance of Photovoltaic Panel in The Hot Climate of Rajasthan

Document Type : SI:Emerging Trends in Photothermal Conversion for Solar Energy Harvesting

Authors

1 Department of Mechanical Engineering, MBM University Jodhpur, India

2 Department of Mechanical Engineering, MBM University, Jodhpur,India

3 Department of Mechanical Engineering, MBM University, Jodhpur, India

4 Birmingham Energy Institute, University of Birmingham, Birmingham B155 2TT, United Kingdom

Abstract

This study evaluates the performance of an automated water cooling system to enhance the performance of a Photovoltaic (PV) panel in the climatic conditions of Rajasthan. A 105-watt photovoltaic system with integrated electrical, mechanical and control components was developed and tested. MATLAB was used to simulate panel performance under different sunlight and temperature conditions. Using two Identical panels, one cooled and the other noncooled, the system operated for 3 minutes every hour during daylight. Results showed a 3.6% increase in energy output and a 3.57°C reduction in panel temperature for the cooled system. With just 27 minutes of daily operation, the cooling method proved significantly more efficient than those in previous studies. The findings highlight the potential of automated water cooling in optimizing PV performance under high temperature conditions like Rajasthan, contributing to sustainable and efficient solar energy generation. This approach combines simplicity, low operating time, and measurable performance benefits.

Keywords

[1]. Sutanto, B., Indartono, Y.S., Wijayanta, A.T. and Iacovides, H. (2022). Enhancing the performance of floating photovoltaic system by using thermosiphon cooling method: Numerical and experimental analyses. International Journal of Thermal Sciences180, p.107727. DOI: https://doi.org/10.1016/j.ijthermalsci.2022.107727
[2]. Gupta, V., Sharma, M., Pachauri, R. and Dinesh Babu, K.N. (2022). Design and development of self-cleaning PV sliding system. Clean Energy6(3), pp.392-403. DOI:10.1093/ce/zkac015
[3]. Attia, H. and Elkhateb, A. (2022). Intelligent maximum power point tracker enhanced by sliding mode control. International Journal of Power Electronics and Drive Systems (IJPEDS)13(2), pp.1037-1046. DOI: 10.11591/ijpeds. v13.i2. pp1037-1046
[4]. Noorpoor, A., Hamedi, D., Hashemian, N. (2017). 'Optimization of parabolic trough solar collectors integrated with two stage Rankine cycle', Journal of Solar Energy Research, 2(2), pp. 61-66.
[5] Chala, G. T., & Al Alshaikh, S. M. (2023). Solar Photovoltaic Energy as a Promising Enhanced Share of Clean Energy Sources in the Future—A Comprehensive Review. Energies16(24), 7919. DOI: https://doi.org/10.3390/en16247919
[6] Koohestani, S. S., Nižetić, S., & Santamouris, M. (2023). Comparative review and evaluation of state-of-the-art photovoltaic cooling technologies. Journal of Cleaner Production406, 136953.
[7] Chala, G. T., Sulaiman, S. A., & Al Alshaikh, S. M. (2024). Effects of cooling and interval cleaning on the performance of soiled photovoltaic panels in Muscat, Oman. Results in Engineering21, 101933.
[8]. García, M.A. and Balenzategui, J.L. (2004). Estimation of photovoltaic module yearly temperature and performance based on nominal operation cell temperature calculations. Renewable energy29(12), pp.1997-2010. DOI: https://doi.org/10.1016/j.renene.2004.03.010
[9]. Wang, Y., Zhang, N., Kang, C., Miao, M., Shi, R. and Xia, Q. (2017). An efficient approach to power system uncertainty analysis with high-dimensional dependencies. IEEE Transactions on Power Systems33(3), pp.2984-2994. DOI: 10.1109/TPWRS.2017.2755698
[10]. Guiza, D., Ounnas, D., Soufi, Y., Bouden, A. and Maamri, M. (2019). December. Implementation of modified perturb and observe based MPPT algorithm for photovoltaic system. In 2019 1st International Conference on Sustainable Renewable Energy Systems and Applications (ICSRESA) (pp. 1-6).IEEE.DOI:10.1109/ICSRESA49121.2019.9182483
[11]. Narwat, L.K. and Dhillon, J. (2021). April. Design and operation of fuzzy logic based MPPT controller under uncertain condition. In Journal of Physics: Conference Series (Vol. 1854, No. 1, p. 012035). IOP Publishing. DOI:  10.1088/1742-6596/1854/1/012035
[12]. Wei, L. and Li, K. (2022). Research on the maximum power point tracking method of photovoltaic based on Newton interpolation-assisted particle swarm algorithm. Clean Energy6(3), pp.496-502. DOI: 10.1093/ce/zkac028
[13]. Hamidat, A. and Benyoucef, B. (2008). Mathematic models of photovoltaic motor-pump systems. Renewable Energy33(5), pp.933-942.  DOI: 10.1016/j.renene.2007.06.023
[14]. Veerabhadra and Nagaraja Rao, S. (2022). Assessment of high-gain quadratic boost converter with hybrid-based maximum power point tracking technique for solar photovoltaic systems. Clean Energy6(4), pp.632-645. DOI: https://doi.org/10.1093/ce/zkac041
[15]. Assahout, S., Elaissaoui, H., El Ougli, A., Tidhaf, B. and Zrouri, H. (2018). A neural network and fuzzy logic based MPPT algorithm for photovoltaic pumping system. International Journal of Power Electronics and Drive System (IJPEDS)9(4), pp.1823-1833. DOI: 10.11591/ijpeds. v9. i4. pp1823-1833
[16]. Attia, H. and Hossin, K. (2022). Efficient maximum power point tracker based on neural network and sliding-mode control for buck converters. Clean Energy6(5), pp.716-725.DOI: https://doi.org/10.1093/ce/zkac048
[17] Moharram, K.A., Abd-Elhady, M.S., Kandil, H.A. and El-Sherif, H. (2013). Enhancing the performance of photovoltaic panels by water cooling. Ain Shams Engineering Journal4(4), pp.869-877. DOI: https://doi.org/10.1016/j.asej.2013.03.005
[18]. Grubišić-Čabo, F., Nižetić, S. and Giuseppe Marco, T. (2016). Photovoltaic panels: A review of the cooling techniques. Transactions of FAMENA40(SI-1), pp.63-74. DOI: https://hrcak.srce.hr/159196
[19] Selvaraj, J., Tharmarajah, N., Faeshol Umam, M., Kumar, L., Hasanuzzaman, Md., Abd Rahim, N., & Abdulmuhsen Saleh Basuhaib, A. (2023). Comparative Experimental Investigation on Front Cooling for Tempered Glass Photovoltaic Thermal System. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects45(3), 7245–7261.DOI:https://doi.org/10.1080/15567036.2023.2220663
[20] Anjum, T., Abdulmuhsen Saleh Basuhaib, A., Selvaraj, J., Kumar, L., & Hasanuzzaman, M. (2023). Performance investigation of tempered glass based photovoltaic panel integrated with back cooling hollow chamber. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects45(4), DOI:11733–11751. https://doi.org/10.1080/15567036.2023.2262441
[21] Naqvi, S. A. R., Kumar, L., Harijan, K., & Sleiti, A. K. (2024). Performance investigation of solar photovoltaic panels using mist nozzles cooling system. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects46(1), 2299–2317.DOI:https://doi.org/10.1080/15567036.2024.2305302
[22]. Attia, H. and Hossin, K. (2019). Integrated renewable PV system through artificial neural network based MPPT and water cooling treatment. In 2019 International Conference on Electrical and Computing Technologies and Applications (ICECTA) (pp. 1-5). IEEE. DOI: 10.1109/ICECTA48151.2019.8959581
[23]. Odeh, S. and Behnia, M. (2009). Improving photovoltaic module efficiency using water cooling. Heat Transfer Engineering30(6), pp.499-505.DOI:https://doi.org/10.1080/01457630802529214
[24]. Iqbal, S., Afzal, S., Mazhar, A.U., Anjum, H. and Diyyan, A. (2016). Effect of water cooling on the energy conversion efficiency of PV cell. American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS)20(1), pp.122-128.
[25]. Chander, S., Purohit, A., Sharma, A., Nehra, S.P. and Dhaka, M.S. (2015). A study on photovoltaic parameters of mono-crystalline silicon solar cell with cell temperature. Energy Reports1, pp.104-109. DOI: https://doi.org/10.1016/j.egyr.2015.03.004
[26]. Al-Maghalseh, M. (2018). Experimental study to investigate the effect of dust, wind speed and temperature on the PV module performance. Jordan Journal of Mechanical & Industrial Engineering12(2).
[27]. Amhani, A. and Attia, H. (2018). November. Autonomous dust monitoring and cleaning system for solar panel applications in GCC region. In The International Conference on Energy, Water & Environmental Sciences (ICEWES 2018), Ras Al Khaimah-UAE (pp. 13-15).
[28]. Shakouri, M., Noorpoor, A., Golzari, S., Zamen, M. (2018) Energy Simulation and Parametric Analysis of Water Cooled Photovoltaic/Thermal System, Amirkabir Journal of Mechanical Engineering, 50(6), 1361-1374. DOI: 10.22060/mej.2017.12703.540
[29]. Smith, M.K., Selbak, H., Wamser, C.C., Day, N.U., Krieske, M., Sailor, D.J. and Rosenstiel, T.N., (2014). Water cooling method to improve the performance of field-mounted, insulated, and concentrating photovoltaic modules. Journal of Solar Energy Engineering136(3), p.034503. DOI:  https://doi.org/10.1115/1.4026466
[30]. Zhao, Y., Gong, S., Zhang, C., Ge, M. and Xie, L. (2022). Performance analysis of a solar photovoltaic power generation system with spray cooling. Case Studies in Thermal Engineering29, p.101723.DOI:https://doi.org/10.1016/j.csite.2021.101723
[31]. Zubeer, S.A. and Ali, O.M. (2022). Experimental and numerical study of low concentration and water-cooling effect on PV module performance. Case Studies in Thermal Engineering34,p.102007.DOI:https://doi.org/10.1016/j.csite.2022.102007
[32]. Sornek, K., Goryl, W., Figaj, R., Dąbrowska, G. and Brezdeń, J. (2022). Development and tests of the water-cooling system dedicated to photovoltaic panels. Energies15(16), p.5884. DOI: https://doi.org/10.3390/en15165884
[33]. Hasan, H.A., Sherza, J.S., Mahdi, J.M., Togun, H., Abed, A.M., Ibrahim, R.K. and Yaïci, W. (2022). Experimental evaluation of the thermoelectrical performance of photovoltaic-thermal systems with a water-cooled heat sink. Sustainability14(16), p.10231. DOI: https://doi.org/10.3390/su141610231
[34]. Solar Module Arun series WS 100-235. https://www.waaree.com/download-center. (31 January 2024, date last accessed)
[35] Jafarkazemi, F. and Saadabadi, S.A. (2013). Optimum tilt angle and orientation of solar surfaces in Abu Dhabi, UAE. Renewable energy56, pp.44-49.DOI: ttps://doi.org/10.1016/j.renene.2012.10.036
[36]. K Type thermocouple. https://autocon.biz/k-type-thermocouple-with-beyonut (31 January 2024, date last accessed)
[37]. I-V Tracer Novtec PV-900. https://www.indiamart.com/proddetail/i-v-curve-tracer-and-ivck-tester-for-solar-module-testing-15488551562.html (31 January 2024, date last accessed)
[38]. NREL Data Catalog. https://data.nrel.gov/ (31 January 2024, date last accessed)