[2]. Herzog, A. V., Lipman, T. E., & Kammen, D. M. (2001). Renewable energy sources. Encyclopedia of Life Support Systems (EOLSS). Forerunner Volume-Perspectives and overview of life support systems and sustainable development, 76.
[3]. Ahmed, O. K., & Ahmed, A. H. (2011). Principle of Renewable energies. Foundation of Technical Education.
[4]. Giostri, A., Binotti, M., Astolfi, M., Silva, P., Macchi, E., & Manzolini, G. (2012). Comparison of different solar plants based on parabolic trough technology.
Solar Energy, 86(5), 1208-1221.
https://doi.org/10.1016/j.solener.2012.01.014.
[5]. Hashim, W. M., Shomran, A. T., Jurmut, H. A., Gaaz, T. S., Kadhum, A. A. H., & Al-Amiery, A. A. (2018). Case study on solar water heating for flat plate collector.
Case studies in thermal engineering, 12, 666-671.
https://doi.org/10.1016/j.csite.2018.09.002.
[6]. Pandey, K. M., & Chaurasiya, R. (2017). A review on analysis and development of solar flat plate collector.
Renewable and Sustainable Energy Reviews, 67, 641-650.
https://doi.org/10.1016/j.rser.2016.09.078.
[7]. Struckmann, F. (2008). Analysis of a flat-plate solar collector. Heat and Mass Transport, Project Report, 2008MVK160.
[8]. Udoy, S. A., Bhuiya, K. M. S., Das, P., Azad, A. M., Haque, M. A., Oishi, Z. T., ... & Jahan, M. (2025). Advancements in Solar Still Water Desalination: A Comprehensive Review of Design Enhancements and Performance Optimization. Journal of Solar Energy Research.
https://doi.org/10.22059/jser.2025.382301.1464.
[9]. Duffie, J. A., Beckman, W. A., & Blair, N. (2020). Solar engineering of thermal processes, photovoltaics and wind. John Wiley & Sons.
[11]. Mallik, A., Al Nahian, S. R., & Rashid, F. (2018). PV/T Systems for Renewable Energy Storage: A Review. Journal of Solar Energy Research, 3(1), 35-42.
[13]. Naik, H., Baredar, P., & Kumar, A. (2017). Medium temperature application of concentrated solar thermal technology: Indian perspective.
Renewable and Sustainable Energy Reviews, 76, 369-378.
https://doi.org/10.1016/j.rser.2017.03.014.
[14]. Jamshidian, F. J., Gorjian, S., & Far, M. S. (2018). An overview of solar thermal power generation systems.
[17]. Bazen, E. F., & Brown, M. A. (2009). Feasibility of solar technology (photovoltaic) adoption: A case study on Tennessee's poultry industry.
Renewable Energy, 34(3), 748-754.
https://doi.org/10.1016/j.renene.2008.04.003.
[18]. Huang, J., Li, R., He, P., & Dai, Y. (2018). Status and prospect of solar heat for industrial processes in China.
Renewable and Sustainable Energy Reviews, 90, 475-489.
https://doi.org/10.1016/j.rser.2018.03.077.
[21]. Kumar, L., Hasanuzzaman, M., & Rahim, N. A. (2019). Global advancement of solar thermal energy technologies for industrial process heat and its future prospects: A review.
Energy conversion and management, 195, 885-908.
https://doi.org/10.1016/j.enconman.2019.05.081.
[22]. eddine Boukelia, T., & Mecibah, M. S. (2013). Parabolic trough solar thermal power plant: Potential, and projects development in Algeria.
Renewable and Sustainable Energy Reviews, 21, 288-297.
https://doi.org/10.1016/j.rser.2012.11.074.
[23]. Senthilkumar, R., Sithivinanayagam, N., & Shankar, N. (2014). Experimental investigation of solar water heater using phase change material. International Journal of Research in Invent Technology, 2(7), 1110-1117.
[25]. Cabrera, F. J., Fernández-García, A., Silva, R. M. P., & Pérez-García, M. (2013). Use of parabolic trough solar collectors for solar refrigeration and air-conditioning applications.
Renewable and sustainable energy reviews, 20, 103-118.
https://doi.org/10.1016/j.rser.2012.11.081.
[26]. Montes, I. E. P., Benitez, A. M., Chavez, O. M., & Herrera, A. E. L. (2014). Design and construction of a parabolic trough solar collector for process heat production.
Energy Procedia, 57, 2149-2158.
https://doi.org/10.1016/j.egypro.2014.10.181.
[27]. Fuqiang, W., Ziming, C., Jianyu, T., Yuan, Y., Yong, S., & Linhua, L. (2017). Progress in concentrated solar power technology with parabolic trough collector system: A comprehensive review.
Renewable and Sustainable Energy Reviews, 79, 1314-1328.
https://doi.org/10.1016/j.rser.2017.05.174.
[29]. Razmmand, F., Mehdipour, R., & Mousavi, S. M. (2019). A numerical investigation on the effect of nanofluids on heat transfer of the solar parabolic trough collectors.
Applied Thermal Engineering, 152, 624-633.
https://doi.org/10.1016/j.applthermaleng.2019.02.118.
[30]. Conrado, L. S., Rodriguez-Pulido, A., & Calderón, G. (2017). Thermal performance of parabolic trough solar collectors.
Renewable and Sustainable Energy Reviews, 67, 1345-1359.
https://doi.org/10.1016/j.rser.2016.09.071.
[31]. Fuqiang, W., Jianyu, T., Lanxin, M., & Chengchao, W. (2015). Effects of glass cover on heat flux distribution for tube receiver with parabolic trough collector system.
Energy Conversion and Management, 90, 47-52.
https://doi.org/10.1016/j.enconman.2014.11.004.
[32]. Gugulothu, R., Reddy, K. V. K., Somanchi, N. S., & Adithya, E. L. (2017). A review on enhancement of heat transfer techniques.
Materials Today: Proceedings, 4(2), 1051-1056.
https://doi.org/10.1016/j.matpr.2017.01.119.
[33]. Prasad, B. N., Kumar, A., & Singh, K. D. P. (2015). Optimization of thermo hydraulic performance in three sides artificially roughened solar air heaters.
Solar Energy, 111, 313-319.
https://doi.org/10.1016/j.solener.2014.10.030.
[35]. Karwa, R., Maheshwari, B. K., & Karwa, N. (2005). Experimental study of heat transfer enhancement in an asymmetrically heated rectangular duct with perforated baffles.
International Communications in Heat and Mass Transfer, 32(1-2), 275-284.
https://doi.org/10.1016/j.icheatmasstransfer.2004.10.002.
[36]. Karwa, R., & Maheshwari, B. K. (2009). Heat transfer and friction in an asymmetrically heated rectangular duct with half and fully perforated baffles at different pitches.
International Communications in Heat and Mass Transfer, 36(3), 264-268.
https://doi.org/10.1016/j.icheatmasstransfer.2008.11.005.
[37]. Mahmood, A. J., Aldabbagh, L. B. Y., & Egelioglu, F. (2015). Investigation of single and double pass solar air heater with transverse fins and a package wire mesh layer.
Energy Conversion and Management, 89, 599-607.
https://doi.org/10.1016/j.enconman.2014.10.028.
[38]. Kumar, R., &
[39]. Omojaro, A. P., & Aldabbagh, L. B. Y. (2010). Experimental performance of single and double pass solar air heater with fins and steel wire mesh as absorber.
Applied energy, 87(12), 3759-3765.
https://doi.org/10.1016/j.apenergy.2010.06.020.
[40]. Hans, V. S., Saini, R. P., & Saini, J. S. (2010). Heat transfer and friction factor correlations for a solar air heater duct roughened artificially with multiple v-ribs.
Solar energy, 84(6), 898-911.
https://doi.org/10.1016/j.solener.2010.02.004.
[41]. Kumar, A., Saini, R. P., & Saini, J. S. (2013). Development of correlations for Nusselt number and friction factor for solar air heater with roughened duct having multi v-shaped with gap rib as artificial roughness.
Renewable Energy, 58, 151-163.
https://doi.org/10.1016/j.renene.2013.03.013.
[42]. Akpinar, E. K., & Koçyiğit, F. (2010). Energy and exergy analysis of a new flat-plate solar air heater having different obstacles on absorber plates.
Applied energy, 87(11), 3438-3450.
https://doi.org/10.1016/j.apenergy.2010.05.017.
[45]. Layek, A. (2010, October). Performance evaluation of solar air heater having chamfered rib groove roughness on absorber plate. In AIP Conference Proceedings (Vol. 1298, No. 1, pp. 282-287). American Institute of Physics.
https://doi.org/10.1063/1.3516316.
[46]. Alam, T., Meena, C. S., Balam, N. B., Kumar, A., & Cozzolino, R. (2021). Thermo-hydraulic performance characteristics and optimization of protrusion rib roughness in solar air heater.
Energies, 14(11), 3159.
https://doi.org/10.3390/en14113159.
[48]. Yadav, A. S. (2009). Effect of half-length twisted-tape turbulators on heat transfer and pressure drop characteristics inside a double pipe u-bend heat exchanger. JJMIE, 3(1), 17-22.
[49]. Lau, S. C., McMillin, R. D., & Han, J. C. (1991). Turbulent heat transfer and friction in a square channel with discrete rib turbulators.
https://doi.org/10.1115/1.2927884.
[51]. Alam, T., Saini, R. P., & Saini, J. S. (2014). Effect of circularity of perforation holes in V-shaped blockages on heat transfer and friction characteristics of rectangular solar air heater duct.
Energy Conversion and Management, 86, 952-963.
https://doi.org/10.1016/j.enconman.2014.06.050.
[52]. Alam, T., Saini, R. P., & Saini, J. S. (2014). Experimental investigation of thermohydraulic performance of a rectangular solar air heater duct equipped with V-shaped perforated blocks.
Advances in Mechanical Engineering, 6, 948313.
https://doi.org/10.1155/2014/948313.
[53]. Promvonge, P., Khanoknaiyakarn, C., Kwankaomeng, S., & Thianpong, C. (2011). Thermal behavior in solar air heater channel fitted with combined rib and delta-winglet.
International Communications in Heat and Mass Transfer, 38(6), 749-756.
https://doi.org/10.1016/j.icheatmasstransfer.2011.03.014.
[54]. Chokphoemphun, S., Pimsarn, M., Thianpong, C., & Promvonge, P. (2015). Heat transfer augmentation in a circular tube with winglet vortex generators.
Chinese Journal of Chemical Engineering, 23(4), 605-614.
https://doi.org/10.1016/j.cjche.2014.04.002
[55]. Akhavan-Behabadi, M. A., Kumar, R., Salimpour, M. R., & Azimi, R. (2010). Pressure drop and heat transfer augmentation due to coiled wire inserts during laminar flow of oil inside a horizontal tube.
International Journal of Thermal Sciences, 49(2), 373-379.
https://doi.org/10.1016/j.ijthermalsci.2009.06.004.
[56]. Gunes, S., Ozceyhan, V., & Buyukalaca, O. (2010). The experimental investigation of heat transfer and pressure drop in a tube with coiled wire inserts placed separately from the tube wall.
Applied Thermal Engineering, 30(13), 1719-1725.
https://doi.org/10.1016/j.applthermaleng.2010.04.001.
[57]. Min, C., Qi, C., Kong, X., & Dong, J. (2010). Experimental study of rectangular channel with modified rectangular longitudinal vortex generators.
International Journal of Heat and Mass Transfer, 53(15-16), 3023-3029.
https://doi.org/10.1016/j.ijheatmasstransfer.2010.03.026.
[58]. Yakut, K., Sahin, B., Celik, C., Alemdaroglu, N., & Kurnuc, A. (2005). Effects of tapes with double-sided delta-winglets on heat and vortex characteristics.
Applied energy, 80(1), 77-95.
https://doi.org/10.1016/j.apenergy.2004.03.003.
[59]. Ozgen, F., Esen, M., & Esen, H. (2009). Experimental investigation of thermal performance of a double-flow solar air heater having aluminium cans.
Renewable Energy, 34(11), 2391-2398.
https://doi.org/10.1016/j.renene.2009.03.029.
[61]. Tagle-Salazar, P. D., Nigam, K. D., & Rivera-Solorio, C. I. (2020). Parabolic trough solar collectors: A general overview of technology, industrial applications, energy market, modeling, and standards.
Green Processing and Synthesis, 9(1), 595-649.
https://doi.org/10.1515/gps-2020-0059.
[62].Hashemian, N., & Noorpoor, A. (2019). Assessment and multi-criteria optimization of a solar and biomass-based multi-generation system: Thermodynamic, exergoeconomic and exergoenvironmental aspects. Energy conversion and management, 195, 788-797. https://doi.org/10.1016/j.enconman.2019.05.039.
[63]. Chafie, M., Aissa, M. F. B., Bouadila, S., Balghouthi, M., Farhat, A., & Guizani, A. (2016). Experimental investigation of parabolic trough collector system under Tunisian climate: Design, manufacturing and performance assessment.
Applied thermal engineering, 101, 273-283.
https://doi.org/10.1016/j.applthermaleng.2016.02.073.
[64]. Zou, B., Dong, J., Yao, Y., & Jiang, Y. (2016). An experimental investigation on a small-sized parabolic trough solar collector for water heating in cold areas.
applied energy, 163, 396-407.
https://doi.org/10.1016/j.apenergy.2015.10.186.
[65]. Hameed, V. M., & Ibrahim, M. (2021, February). An experimental study on new multistage solar parabolic trough collector. In IOP Conference Series: Materials Science and Engineering (Vol. 1094, No. 1, p. 012103). IOP Publishing. doi10.1088/1757-899X/1094/1/012103.
[67]. Diwan, K., & Soni, M. S. (2015). Heat transfer enhancement in absorber tube of parabolic trough concentrators using wire-coils inserts. Universal Journal of Mechanical Engineering, 3(3), 107-112. doi: 10.13189/ujme.2015.030305.
[68]. Jaramillo, O. A., Borunda, M., Velazquez-Lucho, K. M., & Robles, M. (2016). Parabolic trough solar collector for low enthalpy processes: An analysis of the efficiency enhancement by using twisted tape inserts.
Renewable energy, 93, 125-141.
https://doi.org/10.1016/j.renene.2016.02.046.
[69]. Gong, X., Wang, F., Wang, H., Tan, J., Lai, Q., & Han, H. (2017). Heat transfer enhancement analysis of tube receiver for parabolic trough solar collector with pin fin arrays inserting.
Solar Energy, 144, 185-202.
https://doi.org/10.1016/j.solener.2017.01.020.
[70]. Jamal-Abad, M. T., Saedodin, S., & Aminy, M. (2017). Experimental investigation on a solar parabolic trough collector for absorber tube filled with porous media.
Renewable Energy, 107, 156-163.
https://doi.org/10.1016/j.renene.2017.02.004.
[71]. Nasir, K. F., Ali, M., & Mamoori, A. H. A. (2018). Thermal Characteristics of Phase Change Material Used As Thermal Storage System By Using Solar Energy.
Kufa Journal of Engineering, 9(1), 1-22.
http://dx.doi.org/10.30572/2018/kje/090101.
[72]. Esapour, M., Hamzehnezhad, A., Darzi, A. A. R., & Jourabian, M. (2018). Melting and solidification of PCM embedded in porous metal foam in horizontal multi-tube heat storage system.
Energy conversion and management, 171, 398-410.
https://doi.org/10.1016/j.enconman.2018.05.086.
[73]. Agbanigo, A. O., & Ajayi, I. S. (2017). Performance Evaluation of Solar Water Heating System with PCM Thermal Storage. Journal of Multidisciplinary Engineering Science and Technology (JMEST), 4(10).
[74]. Venkatesaperumal, R., Syed Jafar, K., Elumalai, P. V., Abbas, M., Cuce, E., Shaik, S., & Saleel, C. A. (2022). Heat transfer studies on solar parabolic trough collector using corrugated tube receiver with conical strip inserts.
Sustainability, 15(1), 378.
https://doi.org/10.3390/su15010378.
[75]. Yan, P., Fan, W., Yang, Y., Ding, H., Arshad, A., & Wen, C. (2022). Performance enhancement of phase change materials in triplex-tube latent heat energy storage system using novel fin configurations.
Applied Energy, 327,120064.
https://doi.org/10.1016/j.apenergy.2022.120064.
[76]. Hasan, H. A., & Suffer, K. H. (2023). Thermal performance enhancement of energy storage system using spiral-wired tube heat exchanger.
Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(3), 7280-7293.
https://doi.org/10.1080/15567036.2023.2220676.
[77]. Saleh, E. M., & Hameed, V. M. (2024). Innovative new solar parabolic trough collector enhanced by corrugated receiver surface with PCM and turbulator inside.
Journal of Energy Storage, 86, 111403.
https://doi.org/10.1016/j.est.2024.111403.
[78]. Moravej, M., Noghrehabadi, A., Esmaeilinasab, A. L. I., & Khajehpour, E. (2020). The effect of SiO2 nanoparticle on the performance of photovoltaic thermal system: Experimental and Theoretical approach.
Journal of Heat and Mass Transfer Research, 7(1), 11-24.
https://doi.org/10.22075/jhmtr.2020.18904.1254.
[80]. Kolahkaj, S., Moravej, M., & Ghafouri, A. (2024). Thermal performance of a flat-plate solar collector using elliptical riser tubes and magnesium oxide nanofluid.
International Journal of Ambient Energy, 45(1), 2323642.
https://doi.org/10.1080/01430750.2024.2323642.
[81]. Moravej, M., & Soozanyar, A. (2017). An experimental investigation of the efficiency of a stationary helical solar water heater. Current World Environment, 12(2), 250.
[82]. Li, X., Wilson, C. T., Zhang, L., Bhatia, B., Zhao, L., Leroy, A., ... & Wang, E. N. (2022). Design and modeling of a multiscale porous ceramic heat exchanger for high temperature applications with ultrahigh power density.
International Journal of Heat and Mass Transfer, 194, 122996.
https://doi.org/10.1016/j.ijheatmasstransfer.2022.122996.
[83]. Egerer, U., Dana, S., Jager, D., Stanislawski, B. J., Xia, G., & Yellapantula, S. (2024). Field measurements reveal insights into the impact of turbulent wind on loads experienced by parabolic trough solar collectors.
Solar Energy, 280, 112860.
https://doi.org/10.1016/j.solener.2024.112860.
[84]. Ritter, K. A., Prilliman, M. J., Chambers, T. L., & Raush, J. R. (2018). Maintenance of a small-scale parabolic trough concentrating solar power plant in Louisiana. International Journal of Sustainable and Green Energy, 6(6), 104. doi: 10.11648/j.ijrse.20170606.12.
[85]. Talayero, A. P., Llombart, A., Casado, A., & Melero, J. J. (2018). Operation and maintenance in solar plants: eight study cases (No. ART-2018-113439).
[87]. Hepbasli, A. (2008). A key review on exegetic analysis and assessment of renewable energy resources for a sustainable future.
Renewable and sustainable energy reviews, 12(3), 593-661.
https://doi.org/10.1016/j.rser.2006.10.001.
[88]. Garcia-Vallvé, D., et al. (2023). “Environmental life cycle assessment of parabolic trough CSP plants.”
Cleaner Energy Systems, 3, 100045.
http://dx.doi.org/10.1021/es1033266.
[89]. Moss, R., Shire, S., Henshall, P., Arya, F., Eames, P., & Hyde, T. (2018). Performance of evacuated flat plate solar thermal collectors.
Thermal Science and Engineering Progress, 8, 296-306.
https://doi.org/10.1016/j.tsep.2018.09.003.