Design and Fabrication of a Multi-Junction Hybrid Heterostructure Based on ZnO/CuO/PS/Si for Advanced Optoelectronic Applications

Document Type : Research Article

Authors

Physics Department, College of Science, University of Wasit, Wasit, Iraq

10.22059/jser.2025.398689.1599

Abstract

The study designs a vertically stacked Ag:ZnO/CuO/PS/Si hybrid heterojunction to enhance optoelectronic performance through material synergy and Ag doping. ZnO, CuO, and Ag structures were analyzed; the Ag:ZnO layer was doped at 3%, 5%, and 7% and deposited on porous silicon. Structural tests showed average crystallite sizes of 25.20 nm (Ag), 31.42 nm (CuO), and 35.16 nm (ZnO). AFM revealed the smoothest surface at 3% Ag (Sq = 19.11 nm), while 5% and 7% were less smooth. Optical band gaps showed quantum confinement: 2.37 eV (Ag), 3.57 eV (CuO), 3.71 eV (ZnO). The device with 7% Ag achieved the highest efficiency (0.3125) and Pmax (27.60 μW). The 5% sample had 0.1027 efficiency and 9.09 μW Pmax, and 3% had 0.0964 and 8.68 μW. Results indicate lower doping yields smoother surfaces reducing recombination, while higher Ag content improves optical response and transport, boosting photovoltaic performance.

Keywords

  1. Aadim, K. A., & Jasim, A. S. (2022). Silver nanoparticles synthesized by Nd: YAG laser ablation technique: characterization and antibacterial activity. Karbala International Journal of Modern Science, 8(1), 71–82. https://doi.org/10.33640/2405-609X.3210
  2. Abdullah, S., Jaduaa, M., & Abd, A. N. (2021). Preparation of Bismuth Oxide Nanoparticles/PSi/Si heterojunction by a simple chemical method for solar cell applications. In Journal of Physics: Conference Series (Vol. 1853, No. 1, p. 012045). IOP Publishing. https://doi.org/10.1088/1742-6596/1853/1/012045
  3. Alkhafaji, E. N., & Umran, N. M. (2024). Preparation and diagnosis of zinc oxide nano-hybrid composite with silver nanoparticles and study the kinetic release of silver nanoparticles. https://doi.org/10.21203/rs.3.rs-4799794/v1
  4. Anandaraj, K., Ilakkiya, R., & Natarajan, N. (2018). Synthesis of zinc oxide (ZnO), silver (Ag), copper oxide (CuO) and titanium oxide (TiO2) nanoparticles. International Journal of Current Microbiology and Applied Sciences, 7(11), 1514–1521. http://dx.doi.org/10.20546/ijcmas.2018.711.174
  5. Baran, T., Wojtyła, S., Dibenedetto, A., Aresta, M., & Macyk, W. (2021). Copper oxide-based photocatalysts and photocathodes: fundamentals and recent advances. Molecules, 26(23), Article 7271. https://doi.org/10.3390/molecules26237271
  6. Bulutay, C., & Ossicini, S. (2010). Electronic and optical properties of silicon nanocrystals. In Silicon Nanocrystals (pp. 5–42). Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/9783527629954
  7. Chen, K., Zhang, Y., Wang, X., Liu, H., & Li, M. (2025). Photocatalysis for sustainable energy and environmental protection in construction: A review on surface engineering and emerging synthesis. Journal of Environmental Chemical Engineering, 13(5), Article 117529. https://doi.org/10.1007/s13369-024-09941-3
  8. Dorodnyy, A., Alarcon-Lladó, E., Shklover, V., Hafner, C., Fontcuberta i Morral, A., & Leuthold, J. (2018). Plasmonic photodetectors. IEEE Journal of Selected Topics in Quantum Electronics, 24(6), 1–13. https://doi.org/10.1109/JSTQE.2018.2840339
  9. Fayyadh, A. A., & Alzubaidy, M. H. J. (2021). Biosynthesis and characterization of ZnO: Ag2O nanocomposite for antifungal efficacy. In Journal of Physics: Conference Series (Vol. 2114, No. 1, p. 012081). IOP Publishing. https://doi.org/10.1088/1742-6596/2114/1/012081
  10. Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183–191. https://doi.org/10.1038/nmat1849
  11. Hassan, H. J., Jaber, A. A., & Thamer, A. (2025). Synthesis of ZnO nanorods through hydrothermal techniques: A study of optical properties and gas detection performance. Journal of Nanostructures, 15(3), 820–830. https://doi.org/10.22052/JNS.2025.03.001
  12. Hoang, M. T., Nguyen, V. H., Le, T. K., Pham, Q. N., & Tran, D. L. (2025). Silver nanoparticles-decorated porous silicon microcavity as a high-performance SERS substrate for ultrasensitive detection of trace-level molecules. Nanomaterials, 15, Article 1007. https://doi.org/10.3390/nano15131007
  13. Holzwarth, U., & Gibson, N. (2011). The Scherrer equation versus the 'Debye-Scherrer equation'. Nature Nanotechnology, 6(9), 534. https://doi.org/10.1038/nnano.2011.145
  14. Khalifa, M., Jaduaa, M., & Abd, A. (2021). Al2O3 NPs/porous silicon/silicon photovoltaic device. In Journal of Physics: Conference Series (Vol. 1853, No. 1, p. 012046). IOP Publishing. https://doi.org/10.1088/1742-6596/1853/1/012046
  15. Koppens, F. H. L., Mueller, T., Avouris, P., Ferrari, A. C., Vitiello, M. S., & Polini, M. (2014). Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nature Nanotechnology, 9(10), 780–793. https://doi.org/10.1038/nnano.2014.215
  16. Lanje, A. S., Sharma, S. J., & Pode, R. B. (2010). Synthesis of silver nanoparticles: a safer alternative to conventional antimicrobial and antibacterial agents. Journal of Chemical and Pharmaceutical Research, 2(3), 478–483.
  17. Lehmann, V. (2002). Electrochemistry of silicon: instrumentation, science, materials and applications.
  18. Naderi, N., Ahmad, H., & Ismail, M. F. (2024). Improved optoelectrical performance of nanostructured ZnO/porous silicon photovoltaic devices. Ceramics International, 50(9, Part A), 14849-14855. https://doi.org/https://doi.org/10.1016/j.ceramint.2024.01.400
  19. Alrasheedi, N. H. (2024). The Effects of Porous Silicon and Silicon Nitride Treatments on the Electronic Qualities of Multicrystalline Silicon for Solar Cell Applications. Silicon, 16(4), 1765-1773. https://doi.org/10.1007/s12633-023-02803-x
  20. Hasani, E. (2025). Optimization of ZnO/CuO/Cu₂Se heterojunction solar cells: a pathway to high efficiency via SCAPS-1D simulations. Optical and Quantum Electronics, 57(6), 361. https://doi.org/10.1007/s11082-025-08297-8
  21. Nowsherwan, G. A., Samad, A., Iqbal, M. A., Mushtaq, T., Hussain, V., Akbar, M., Haider, S., Pham, P. V., & Choi, J. R. (2024). Advances in organic materials for next-generation optoelectronics: potential and challenges. Organics, 5(4), 520–560. https://doi.org/10.3390/org5040028
  22. Özgür, Ü., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M. A., Doğan, S., Avrutin, V., Cho, S.-J., & Morkoć, H. (2005). A comprehensive review of ZnO materials and devices. Journal of Applied Physics, 98(4), Article 041301. https://doi.org/10.1063/1.1992666
  23. Parekh, Z. R., Sharma, M., Prajapati, P. K., & Shimpi, N. G. (2021). CuO nanoparticles–synthesis by wet precipitation technique and their characterization. Physica B: Condensed Matter, 610, Article 412950. https://doi.org/10.1016/j.physb.2021.412950
  24. Ra, H. S., Lee, A. Y., Kim, D. H., Cho, Y. J., Heo, J., & Lim, J. A. (2024). Advances in heterostructures for optoelectronic devices: materials, properties, conduction mechanisms, device applications. Small Methods, 8(2), Article 2300245. https://doi.org/10.1002/smtd.202300245
  25. Rocheleau, R. E., Miller, E. L., & Misra, A. (1998). High-efficiency photoelectrochemical hydrogen production using multijunction amorphous silicon photoelectrodes. Energy & Fuels, 12(1), 3–10. https://doi.org/10.1021/ef9701347
  26. Suntako, R. (2015). Effect of zinc oxide nanoparticles synthesized by a precipitation method on mechanical and morphological properties of the CR foam. Bulletin of Materials Science, 38(4), 1033–1038. https://doi.org/10.1007/s12034-015-0921-0
  27. Thamer, A. A., Imran, S. H., & Hassani, R. H. (2025). Sol-gel process optimization for CuO nanoparticle synthesis, achieving high purity and homogeneity. In Journal of Physics: Conference Series (Vol. 2974, No. 1, p. 012019). IOP Publishing. https://doi.org/10.1088/1742-6596/2974/1/012019
  28. Tian, W., Zhang, C., Zhai, T., Li, S.-L., Wang, X., Liu, J., Jie, X., Liu, D., Liao, M., Koide, Y., Golberg, D., & Bando, Y. (2017). Hybrid nanostructures for photodetectors. Advanced Optical Materials, 5(4), Article 1600468. https://doi.org/10.1002/adom.201600468
  29. Zainal Abidin, N. A., Asri, M. A., Teridi, M. A. M., Osman, N., Sopian, K., & Syafiq, A. (2023). Dopant engineering for ZnO electron transport layer towards efficient perovskite solar cells. RSC Advances, 13(48),33797–33819. https://doi.org/10.1039/D3RA04823C
  30. Zielińska-Jurek, A. (2014). Progress, challenge, and perspective of bimetallic TiO2‐based photocatalysts. Journal of Nanomaterials, 2014, Article 208920. https://doi.org/10.1155/2014/208920