A Comparative Analysis of Standard and Flat Reflector Integrated Parabolic Trough Solar Collectors for Hot Water Generation

Document Type : SI:Emerging Trends in Photothermal Conversion for Solar Energy Harvesting

Authors

1 Department of Mechanical Engineering, UPL University of Sustainable Technology, Ankleshwar, Gujarat, India

2 Faculty of Engineering and Technology, Sigma University, Bakrol, Vadodara, India

3 Department of Mechanical Engineering, UPL University of Sustainable Technology, Ankleshwar, India

10.22059/jser.2025.379565.1440

Abstract

The vital elements of solar thermal technology are solar collectors, which collect solar radiation and produce heat energy. They can be broadly divided into two categories: focused and non-focused. Parabolic trough collectors belong to the type of focused systems that accommodates reflected radiation into a centrally located receiver. Parabolic collectors are commonly employed to fulfill process heat requirements. This paper presents an experimental analysis of a parabolic solar concentrator using both flat and parabolic reflectors. This study investigates the practical performance of a standard and novel flat reflector integrated parabolic trough solar collector while maintaining identical operational conditions. The novel collector's maximum thermal efficiency is recorded as 55%, which is competitive with the standard parabolic trough collector's performance. The average temperature difference of working fluid is 6.85°C, indicating a 1.14°C increase compared to the standard parabolic trough collector that was examined. The findings of this work provides vital information to researchers and scientists working in this field.

Keywords

  1. Ram, S., Ganesan, H., Saini, V., & Kumar, A. (2023). Performance assessment of a parabolic trough solar collector using nanofluid and water based on direct absorption. Renewable Energy, 214, 11-12. https://doi.org/10.1016/j.renene.2023.06.016
  2. Chinnappan, T., Raguraman, C.M., Dhairiyasamy, R., & Rajendran, S. (2024). Comparative Analysis of Polycarbonate and Glass Cover Configurations for Enhanced Thermal Efficiency in Flat Plate Solar Collectors for Water Heating. Journal of Solar Energy Research, 9(1), 1794-1810. https://doi.org/10.22059/jser.2024.374268.1394
  3. Kumar, G., & Gupta, H. (2022). Optical design of integrated line and point focus solar collector for process heat generation. J. Environmental Technology and Management, 25, 218-232. https://doi .org/10.1504/IJETM.2022.122631
  4. Sarwara, J., Georgakis, G., Kouloulias, K., & Kakosimos, K.E. (2015). Experimental and numerical investigation of the aperture size effect on the efficient solar energy harvesting for solar thermochemical applications. Energy Convers Manag, 92, 331–41. https://doi.org/ 10.1016/j.enconman.2014.12.065
  5. Francesco, G., & Peter, Z. (2013). Exploring the uncertainty around potential shale gas development – a global energy system analysis based on TIAM (TIMES Integrated Assessment Model). Energy, 57, 443–57.https://doi.org/10.1016/j.energy.2013.06.006
  6. Wang, F.Q., Cheng, Z.M., Tan, J.Y., Zhang, J.Q., Leng, Y., & Liu, L.H. (2017). Energy storage efficiency analyses of CO2 reforming of methane in metal foam solar thermochemical reactor. Appl Therm Eng, 111, 1091–100. https://doi.org/10.1016/j.applthermaleng.2016.10.025
  7. Neven, D., Zvonimir, G., Vyatcheslav, K., Jiří, J. K., Brian, M., & Yan, J.Y. (2013). Sustainable development of energy, water and environment systems. Appl Energy, 101, 3–5. https://doi.org/10.1016/j.apenergy.2012.08.002

 

  1. Mostafa, A.A., Yasser, E., Mohamed, B., Thokozani, M., Monica, T., Al-Qabandi, O.A., & Sameh, S.K. (2024). Performance enhancement of flat-plate and parabolic trough solar collector using nanofluid for water heating application. Results in Engineering, 21, 101673. https://doi.org/10.1016/j.rineng.2023.101673
  2. Josué, F.R.P., Andrés, V.J., Manuel, P.G., José, M. C., & Rodrigo, E. (2024). Techno-economic analysis of hybrid solar thermal systems with flat plate and parabolic trough collectors in industrial applications. Alexandria Engineering Journal, 86, 98-119. https://doi.org/10.1016/j.aej.2023.11.056
  3. Jebasingh, V.K., & Joselin, H.G.M. (2016). A review of solar parabolic trough collector. Renewable and Sustainable Energy Reviews, 54, 1085–1091. https://doi.org/10.1016/j.rser.2015.10.043
  4. Ghaedi, A., Sedaghati, R., & Mahmoudian, M. (2023). Reliability Evaluation of Solar Power Plants Equipped with parabolic Trough Reflectors. Journal of Solar Energy Research, 8(3), 1635-1650. https://doi.org/10.22059/jser.2023.359179.1305
  5. Eck, M., & Hennecke, K. (2007). Heat transfer fluids for future parabolic trough solar thermal power plants. In: Goswami DY, Zhao Y, editors. . Proceedings of ISES world congress, Vol. I–Vol. V. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-540-75997-3_369
  6. Cheng, Z.D., He, Y.L., Xiao, J., Tao, Y.B., & Xu, R.J. (2010). Three–dimensional numerical study of heat transfer characteristics in the receiver tube of parabolic trough solar collector. Int Commun Heat Mass, 37(7), 782–7. https://doi.org/10.1016/j.icheatmasstransfer.2010.05.002
  7. Qiu, Y., Li, M.J., He, Y.L., & Tao, W.Q. (2017). Thermal performance analysis of a parabolic trough solar collector using supercritical CO2 as heat transfer fluid under non–uniform solar flux. Applied Thermal Engineering, 115, 1255-1265. https://doi.org/10.1016/j.applthermaleng.2016.09.044
  8. Hachicha, A.A., Rodríguez, I., Capdevila, R., & Oliva, A. (2013). Heat transfer analysis and numerical simulation of a parabolic trough solar collector. Appl Energy, 111(11), 581–92. https://doi.org/10.1016/j.apenergy.2013.04.067
  9. Khanna, S., Kedare, S.B., & Singh, S. (2014). Deflection and stresses in absorber tube of solar parabolic trough due to circumferential and axial flux variations on absorber tube supported at multiple points. Sol Energy, 99(1), 134–51. https://doi.org/10.1016/j.solener.2013.11.005
  10. Khanna, S., Singh, S., & Kedare, S.B. (2015). Explicit expressions for temperature distribution and deflection in absorber tube of solar parabolic trough concentrator. Sol Energy, 114, 289–302. https://doi.org/10.1016/j.solener.2015.01.044
  11. Wang, F., Cheng, Z., Tan, J., Yuan, Y. Shuai, Y., & Liu, L., (2017). Progress in concentrated solar power technology with parabolic trough collector system: A comprehensive review. Renewable and Sustainable Energy Reviews, 79, 1314–1328. https://doi.org/ 10.1016/j.rser.2017.05.174
  12. Kumar, G., & Gupta, H. (2021). A Study of Linear Fresnel Solar Collector Reflector Field for Performance Improvement. In: Recent Advances in Mechanical Infrastructure. Lecture Notes in Intelligent Transportation and Infrastructure. Springer, Singapore. https://doi.org/10.1007/978-981-33-4176-0_31
  13. Goswami, Y.D. (1998). Solar thermal power technology: Present status and ideas for the future. Energy Sources. 20 (2), 137–45. https://doi.org/ 10.1080/00908319808970052
  14. Kalogirou, S.A. (2004). Solar thermal collectors and applications. Progress in energy and combustion science. https://doi.org/10.1016/j.pecs.2004.02.001
  15. Vaghasia, J.G., Ratnadhariya, J.K., Panchal, H., & Kumar, K. (2019). Experimental performance investigations on various orientations of evacuated double absorber tube for solar parabolic trough concentrator. International Journal of Ambient Energy, 1–17. https://doi.org/10.1080/01430750.2019.1653980
  16. Bhavsar, N., Prajapati, D., Patel. S., Vaghela, S., & Upadhyay, B. (2019). New technique for water desalination using novel solar still and parabolic trough collector. Journal of Emerging Technologies and Innovative Research, 6, 342–46. Available at: http://www.jetir.org/papers/JETIRCQ06064.pdf
  17. Upadhyay, B.H., Patel, A.J., & Ramana, P.V. (2017). Parabolic trough collector, a novel design for domestic water heating application. International Journal for Research in Applied Science and Engineering Technology, 5, 497–503. https://doi.org/10.22214/ijraset.2017.10073
  18. [Abbas, M., Boumeddane, B., Said, N., & Chikouche, A. (2011). Dish Stirling technology: a 100 MW solar power plant using hydrogen for Algeria. Int J Hydrogen Energy, 36(7), 4305–14. https://doi.org/10.1016/j.ijhydene.2010.12.114
  19. Baharoon, D.A., Rahman, H.A., Wan, W.Z., & Fadhl, S.O. (2015). Historical development of concentrating solar power technologies to generate clean electricity efficiently – A review. Renewable and Sustainable Energy Reviews, 41, 996-1027 https://doi.org/10.1016/j.rser.2014.09.008
  20. Mills, R.D., & Morrison, L.G. (1999). Compact linear Fresnel reflector solar thermal power plants. Solar Energy, 68, 263–283. https://doi.org/10.1016/S0038-092X (99)00068-7
  21. Guangdong, Z., Tim, W., Michael, W.J., & Chuck, K. (2014). History, current state, and future of linear Fresnel concentrating solar collectors. Solar Energy, 103, 639–652. https://doi.org/10.1016/j.solener.2013.05.021
  22. Jaber, A., Mariah, N., Zainal, M., Kadir, A., & Aziz, A. (2018). Review of Solar Parabolic-Trough Collector Geometrical and Thermal Analyses, Performance, and Applications. Renewable & Sustainable Energy Reviews, 91, 822–831. https://doi.org/ 10.1016/j.rser.2018.04.085
  23. Taylor, P., Haddock, C., & Mckee, J.S.C. (2007). Solar Energy Collection, Concentration, and Thermal Conversion — A Review. Energy sources, 13, 461–482. https://doi.org/10.1063/1.2718755
  24. Jebasingh, V.K., & Herbert, G.M.J. (2016). A Review of Solar Parabolic Trough Collector. Renewable and Sustainable Energy Reviews, 54, 1085–1091. https://doi.org/ 10.1016/j.rser.2015.10.043
  25. Kaygusuz, K. (2009). Environmental Impacts of the Solar Energy Systems. Energy Sources, Part A: Recovery, Utilization, and Environmental Effect, 31 (15), 1376–1386. https://doi.org/ 10.1080/15567030802089664
  26. Yogi, Goswami, D. (1998). Solar Thermal Power Technology: Present Status and Ideas for the Future. Energy Sources, 20 (2), 137–145. https://doi.org/10.1080/00908319808970052
  27. Ummadisingu, A., & Soni, M.S. (2011). Concentrating Solar Power - Technology, Potential and Policy in India. Renewable and Sustainable Energy Reviews, 15 (9), 5169–5175. https://doi.org/10.1016/j.rser.2011.07.040
  28. Reddy, K.S., & Kumar, K.R. (2012). Solar Collector Field Design and Viability Analysis of Stand-Alone Parabolic Trough Power Plants for Indian Conditions. Energy for Sustainable Development, 16 (4), 456–470. https://doi.org/10.1016/j.esd.2012.09.003
  29. Olusola, B., Dongsheng, C., Humphrey, A., Michael, A., Mustafa, D., Ferdinard, D., & Huang, Q. (2022). A brief review and comparative evaluation of nanofluid application in solar parabolic trough and flat plate collectors. Energy Reports, 8, 156-166. doi.org/10.1016/j.egyr.2022.08.078.
  30. Bhargav, H., Ramani, B., & Reddy, V. S. (2018). Experimental study on adsorption capacity of an activated carbon-based adsorption water chiller. International Journal of Ambient Energy, 40(6), 657–660.https://doi.org/10.1080/01430750.2017.1421580
  31. Thakkar, H., Sankhala, A., Ramana, P. V., & Panchal, H. (2018). A detailed review on solar desalination techniques. International Journal of Ambient Energy, 41(9), 1066–1087. https://doi.org/10.1080/01430750.2018.1490351
  32. Panchal, H., & Bhargav, H. (2019). Mini-review of different co-generation systems: solar thermal perspective. International Journal of Ambient Energy, 43(1), 1–3. https://doi.org/10.1080/01430750.2019.1568912
  33. Eleazar, I., Montes, P., Mejia, A., & Mercado, O. (2014). Design and construction of a parabolic trough solar collector for process heat production. Energy Procedia, 57, 2149–58. https://doi.org/10.1016/j.egypro.2014.10.181
  34. Sagade, A., & Shinde, N. (2012). Performance evaluation of parabolic dish type solar collector for industrial heating application. International Journal of Energy Technology and Policy, 8 (1), 80. https://doi.org/10.1504/IJETP.2012.046015
  35. Sagade, A.A., Shinde, N.N., & Patil, P.S. (2014). Effect of receiver temperature on performance evaluation of silver coated selective surface compound parabolic reflector with top glass cover. Energy Procedia, 48, 212–22. https://doi.org/10.1016/j.egypro.2014.02.026
  36. Donga, R.K., & Kumar, S. (2018). Parabolic trough collector with rhombus tube absorber for higher concentration ratio. Energy sources, Part A recover. Util. Environmental Effects, 40, 2620–31. https://doi.org/10.1080/15567036.2018.1505981
  37. Peng, Y., Ren, T., Xia, B., Wang, Y., & Zhu, Y. (2019). Numerical investigation of a novel single-pass all-glass receiver for parabolic trough collector. Energy sources, Part A recover. Util. Environmental Effects, 1–15. https://doi.org/10.1080/15567036.2019.1668084
  38. Jafar, K.S., Arulprakasajothi, M., Beemkumar, N., & Elangovan, K. (2019). Effect of conical strip inserts in a parabolic trough solar collector under turbulent flow. Energy sources, Part A recover. Util. Environmental Effects, 1–13. https://doi.org/10.1080/15567036.2019.1650850
  39. Upadhyay, B. H., Patel, A. J., & Ramana, P. V. (2019). A detailed review on solar parabolic trough collector. International Journal of Ambient Energy, 43(1), 176–196. https://doi.org/10.1080/01430750.2019.1636869
  40. IS 16648 (Part 5) (2017). Concentrated Solar Thermal — Specification, Test Methods.
  41. Upadhyay, B. H., Patel, A. J., & Ramana, P. V. (2020). Comparative study of parabolic trough collector for low-temperature water heating. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 46(1), 9821–9837. https://doi.org/10.1080/15567036.2020.1779874
  42. Kumar, G., & Gupta, H. (2021) Experimental investigation of a line focus solar collector using flat and parabolic reflector. In: Lecture Notes in Mechanical Engineering, Springer, Singapore. https://doi.org/10.1007/978-981-16-4222-7_84.
  43. Didi, F., Saleh, E.A.M., Kumar, A., Alawadi, A., Alsaalamy, A., Alawsi, T., Alayi, R., Hosseinzadeh, H., & Morovati, R. (2024) Modeling and optimizing the thermodynamics of a flat plate solar collector in transient mode for economic purposes. AIP Advances 14 (1), 015302, https://doi.org/10.1063/5.0185818.
  44. Incropera FP, DeWitt DP (Eds.). (1999) Fundamentals of Heat Transfer. Wiley.